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Abstract. Instance segmentation in point clouds is one of the most fine-
grained ways to understand the 3D scene. Due to its close relationship to
semantic segmentation, many works approach these two tasks simulta-
neously and leverage the benefits of multi-task learning. However, most
of them only considered simple strategies such as element-wise feature
fusion, which may not lead to mutual promotion. In this work, we build
a Bi-Directional Attention module on backbone neural networks for 3D
point cloud perception, which uses similarity matrix measured from fea-
tures for one task to help aggregate non-local information for the other
task, avoiding the potential feature exclusion and task conflict. From
comprehensive experiments on the three prevalent datasets, as well as
ablation and efficiency studies, the superiority of our method is verified.
Moreover, the mechanism of how bi-directional attention module helps
joint instance and semantic segmentation is also analyzed.

1 Introduction

Among the tasks of computer vision, instance segmentation is one of the most
challenge ones which requires understanding and perceiving the scene in unit
and instance level. Notably, the vast demands for machines to interact with real
scenarios, such as robotics and autonomous driving [1, 2], make the instance
segmentation in the 3D scene to be the hot research topic.

Though much progress has been made, 3D instance segmentation still lags
far behind its 2D counterpart [3–8]. Unlike the 2D image, the 3D scene can
be represented by many forms, such as multi-view projection images [9–13],
volumes [14–17], and point clouds.

Since point clouds could represent a 3D scene more compactly and intu-
itively, and thus became more popular and drew more attention recently. The
proposed PointNet [18] and some following works [19–28] could process the raw
point clouds directly, achieving remarkable performance on 3D classification and
part segmentation tasks. The success brings the prospect for more fine-grained
perception tasks in 3D point clouds, such as instance segmentation.

Instance segmentation in point clouds requires distinguishing category and
instance belonging to each point. The most direct way is to regress further each
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instance’s bounding box based on the semantic segmentation results, such as [29–
31].

Due to the close relationship between instance segmentation and semantic
segmentation, most of the recent works approach these two tasks simultaneously
and use deep neural networks with two sub-branches for the two tasks, respec-
tively [32–34]. Among them, many take feature fusion strategy letting features
for one task promote the other task. However, in fact, the features of the two
tasks are not completely compatible with each other. While points belong to
different semantics must belong to different instances, points in the different
instances are not necessarily of the different semantics. Obviously, directly con-
catenating or adding these two kinds of features in the model may lead to task
conflict.

Actually, with simple element-wise feature fusion way such as concatenating
and adding, only semantic features could always help distinguish instances in all
the cases.

This situation poses a question, do we still need instance features for seman-
tic segmentation and how to make these two tasks mutually promoted? In this
work, we invest another way to incorporate features for semantic and instance
segmentation. Instead of explicitly fusing features, we use similarity informa-
tion implied in features for one task to assist the other task. Specifically, we first
measure pair-wise similarity on semantic features to form the semantic similarity
matrix, with which we propagate instance features. The propagation operation
computes the response at a point as a weighted sum of the features at all points
with semantic similarity as weight. Finally, the responses are further concate-
nated to the original instance features for instance segmentation. The same steps
are also conducted in another direction that computing instance similarity ma-
trix to propagate semantic features for semantic segmentation. The propagation
operation could aggregate non-local information and is also referred to as atten-
tion [35–38]. Therefore, we name this kind of module as Bi-Directional Attention
and call our networks as BAN.

Fig. 1. Instance and semantic segmentation in point clouds using BAN. (a) Results on
the S3DIS dataset, (b) Results on the PartNet dataset.
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The help of Bi-Directional Attention module lies in the following aspects.
First, for aggregation operation applied to instance features for instance seg-
mentation, semantic similarity matrix would help push instance features belong-
ing to the different semantic apart. Though it will also pull instance features
belonging to the same semantic together, the concatenated original instance
features could still guarantee the difference distinguishable. Second, for aggrega-
tion operation applied on semantic features for semantic segmentation, instance
similarity matrix would let semantic within each instance more consistent, thus
improve the detail delineation. In addition to the positive effects when using
bi-directional attention in a forward manner, the operation will also be good
for back-propagating uniform gradients within the same semantic or instance.
Consequently, our Bi-Directional Attention module could aggregate the features
more properly and avoid potential task conflict.

We compare our BAN to state-of-the-art methods on prevalent 3D point
cloud datasets, including S3DIS [39], PartNet [40] and ScanNetV2 [41]. Some in-
stance and semantic segmentation results is shown in Fig. 1. In experiments, our
method demonstrates consistent superiority according to most of the evaluation
metrics. Moreover, we conduct detailed ablation, mechanism and efficiency stud-
ies, which suggest that the similarity matrices truly reflect the required pair-wise
semantic and instance similarities without too much computation complexity in-
crease.

With attention operations from two directions together sequentially, BAN
we can reach the best performance. Our code has been open sourced.

2 Related Works

Here, we mainly focus on methods that are most relevant to ours.

As well known, PointNet [18], for the first time, used neural networks to
perceive point clouds and showed leading results on classification and semantic
segmentation. However, it has difficulties in capturing local and fine-grained fea-
tures. Correspondingly, many sequential works proposed to address this problem,
such as [19–27].

Recently, instance segmentation in point clouds has drawn intense atten-
tion. Many works have been proposed and could be divided into two types in
general, proposal-based and proposal-free. The former ones usually follow the
scheme of Mask R-CNN [4] in 2D images, leading to a two-stage training, such
as 3D-SIS [29] and GSPN [30]. Unlike them, BoNet [31] follows the one-stage
scheme and regresses the bounding box directly. Nevertheless, the bounding box
sometimes contains multiple objects or just a part of an object, making proposal-
based methods hard to delineate the instance precisely. In contrast, the latter
ones, e.g., SGPN [42], 3D-BEVIS [43], JSIS3D [33], ASIS [32] and JSNet [34],
directly produce representations to estimate the semantic categories and cluster
the instance groups for each element, correspondingly, obtain more fine-grained
perception.
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It is worth to note that, whether for semantic segmentation or instance seg-
mentation in 2D images, capturing long-range dependency and non-local infor-
mation had been the consensus approach to improve accuracy. For this purpose,
attention has been invented in [35], and become basic operation that applied
prevalently [38, 37]. However, this operation has not been well studied for 3D
point cloud perception.

3 Motivation

In this work, we intend to propose a proposal-free type of joint instance and
semantic segmentation method in point clouds. For this task, the key issue is
how to incorporate the features of semantic and instance efficiently for mutual
benefits. In view of the close relationship between instance and semantic segmen-
tation, JSNet [34] fuses semantic and instance features to each other by simple
aggregation strategies such as element-wise add and concatenate operations. In
this way, the problem can be formalized as the following equations:

F(α(Sa, Ia)) → Ca, F(α(Sb, Ib)) → Cb,

H(α(Sa, Ia)) → Ga, H(α(Sb, Ib)) → Gb,
(1)

where Si and Ii represent semantic and instance features of point i respectively,
and Ci and Gi are the semantic category and instance group of point i. α is
some simple feature aggregating method. We use F and H to represent mapping
functions for semantic and instance segmentation, respectively.

Ideally, there are three cases for two points a and b: (1) Ca=Cb and Ga 6=Gb;
(2) Ca=Cb and Ga=Gb; (3) Ca 6=Cb and Ga 6=Gb. In the first case, for semantic
segmentation F , aggregating S and I by α will make responses α(Sa, Ia) and
α(Sb, Ib) far away. Thus Ca and Cb are hard to keep consistent, which is con-
trary to the case setting. In the second case, both F and H could get promoted
by aggregating features of the same instance by α. The third case will not be
considered when aggregating feature, because a and b are not relevant in ei-
ther semantic or instance. So, with the simple aggregation strategy adopted by
JSNet [34], there is a potential risk of task conflict in some specific cases.

Some works get rid of task conflict problem by introducing more complex
feature aggregation strategies. JSIS3D [33] uses multi-value conditional random
field to fuse semantic and instance, but it requires some approximation to opti-
mize. ASIS [32] uses KNN to assemble more instance features from the neigh-
borhood to each point and make the assembled feature more robust, but the
KNN operation is non-differentiable and will break the back-propagation chain.
The use of KNN in this work could be considered as proto non-local operation.

In summary, simple feature aggregation strategies such as element-wise add
and concatenation will bring task conflict potential while other more complex
feature aggregation strategies are far more satisfying.
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Fig. 2. Attention operation.

4 Methodology and Implementation

4.1 Methodology

As discussed in Sec. 3, for semantic segmentation, just adding or concatenating
instance feature to semantic feature will be problematic. It poses a question,
does instance feature has any help for semantic segmentation?

Here we suggest a way to use similarity information implied in the instance
features to help semantic segmentation without any harm. To be specific, we
propose to adjust the point’s semantic feature as the weighted sum of semantic
features of points belong to the same instance (with similar instance features).
This way would make the semantic features robust and consistent within each
instance, which will promote the details delineation.

To enable this function and take advantage of similar information in the
instance features, we design the aggregation operation as:

α(X,Y ) = {P · g(Y ), Y },

P = softmax(θ(X)φ(X)T ),
(2)

where X and Y represent two kinds of features of size N × NX and N × NY

respectively (N is point number and Ni is number of channels for feature i).
θ, φ and g are functions to re-weighted sum values in feature dimension with
learned weights. Here, α is the concat operation. We measure similarities by
inner-product of θ(X) and φ(X), which results into a matrix of size N ×N . We
further apply softmax on each row to get transition matrix which is our final
similarity matrix P .

When X is instance features, and Y is semantic features, this operation prop-
agates semantic features to other points by instance similarity matrix and the
adjusted semantic features P · g(Y ) will be more uniform in each instance than
the original Y . Since there is no explicit element-wise adding or concatenat-
ing between semantic and instance features, using the final aggregation result
α(X,Y ) for semantic segmentation will not have the problems mentioned in the
last section. Besides, this aggregation operation has the non-local characteris-
tic naturally. For these reasons, we will also use it to fuse semantic features
for instance segmentation. In other words, we will conduct another aggregation
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operation with X as semantic features and Y as instance features for instance
segmentation. It is worth to note that though in this case, Eq. 2 will tend to
pull instance features belonging to the same semantic together, the concatenated
original instance features could still guarantee the difference distinguishable.

The above-defined operation has a similar form as attention in [35]. How-
ever, we have two of them with different architecture and goals. We have two
different data flow directions, to aggregate semantic and instance features with
the help of similarity inherent in features. Consequently, we name the proposed
module as the Bi-Directional Attention module. The architecture of our module
is illustrated in Fig. 2.

4.2 Implementation

Networks By connecting the Bi-Directional Attention module to the end of
the feature extracting backbone, we have the Bi-Directional Attention networks
(BAN), which uses two attention operations to achieve information transmission
and aggregation between instance branch and semantic branch. The full pipeline
of our networks is illustrated in Fig. 3.

Our BAN is composed of a shared encoder, and two parallel decoders to
produce representations for estimating the semantic categories and clustering
the instance groups. Specifically, our backbone is PointNet++ [19]. Given input
point clouds of size N , the backbone first extracts and encodes them into feature
matrix which further decoded to semantic feature matrix S of size N ×NS and
instance feature matrix I of N ×NI .

The Bi-Directional Attention module takes these two feature matrices as in-
put and will conduct two attention operations as defined by Eq. 2. We name
the attention operation that computes semantic similarity matrix applied to in-
stance features for instance segmentation as STOI, and attention operation that
computes instance similarity matrix applied to semantic features for semantic
segmentation as ITOS. The output of STOI is further passed to some simple fully
connected layers (FC) to produces instance embedding space (of size N ×NE),
while the output of ITOS is further passed to some simple fully connected layers
(FC) to give semantic prediction (of size N ×NC). To get the instance groups,
we cluster the produced instance embedding space by mean-shift method [44].

There are three kinds of sequences to conduct STOI and ITOS, and they are
STOI first, ITOS first, and simultaneously. Here we use STOI first because we
will use pixel-level regression loss for semantic segmentation and discriminative
loss for instance segmentation, and we believe semantic features will converge
faster than instance features. So, semantic features will give instance segmen-
tation task more help at the beginning. This assumption will be verified in our
ablation study in Sec. 5.

Loss Function Our loss function L has two parts, semantic segmentation loss
Lsem and instance segmentation loss Lins. These two parts are optimized at the
same time:

L = Lsem + Lins. (3)
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Fig. 3. The pipeline of proposed Bi-Directional Attention Networks (BAN).

We use cross-entropy loss for Lsem, and choose discriminative loss for 2D images
in [8] as Lins. The discriminative loss has been extended to 3D point clouds and
used by many works [32–34]. Lins will penalize the grouping of the points across
different instances and bring the points belonging to the same instance closer in
the embedding space. For the details, please check the supplementary.

Derivative Analysis The above sections have explained how our module gives
help in a forward manner. Here we further analyze the back-propagation of
proposed Eq. 2. To simplify the problem, we first give a simple version of Eq. 2
without softmax, re-weight functions, and concatenation of original features:

Z = XXTY. (4)

where Z is the output of simplified attention operation.
In this case, the derivatives with respect to feature X and Y are:

vec(dL) = (
∂L

∂Z
)T vec(dZ)

= (
∂L

∂Z
)T [vec(dXXTY ) + vec(XdXTY )]

= (
∂L

∂Z
)T [(XTY )T ⊗ EN + (Y T ⊗X)KNNX

]vec(dX) (5)

∂L

∂X
= [(XTY )⊗ EN +KNNX

(Y ⊗XT )]
∂L

∂Z

vec(dL) = (
∂L

∂Z
)T vec(dZ)

= (
∂L

∂Z
)T vec(XXT dY )

= (
∂L

∂Z
)T (ENY

⊗XXT )vec(dY ) (6)

∂L

∂Y
= (ENY

⊗XXT )
∂L

∂Z
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where vec() means matrix vectorization and ⊗ represents Kronecker Product, E
is identity matrix and K is commutation matrix.

It can be seen, the similarity matrices also appear in ∂L
∂X

and ∂L
∂Y

. As for

XXT in ∂L
∂Y

, it will make the gradients uniform and robust within a similar
region defined by X (semantic or instance), thus help optimization. As for XTY ,
it computes similarities between different features of X and Y other than points
and provides another crucial information to extract robust and useful gradients.

In summary, the proposed Bi-Directional Attention module not only help
joint instance and semantic segmentation by transmitting and aggregating in-
formation between instance features and semantic features, and also be good for
back-propagating uniform and robust gradients.

5 Experiments

5.1 Experiments Setting

Datasets We train and evaluate methods on three prevalent used datasets.
Stanford 3D Indoor Semantics (S3DIS) [39] contains 3D scans in 6 areas includ-
ing 271 rooms. Each scanned 3D point is associated with an instance label and
a semantic label from 13 categories. PartNet [40] contains 573,585 fine-grained
part instances with annotations and has 24 object categories. ScanNetV2 [41] is
an RGB-D video dataset containing 2.5 million views in more than 1500 scans.

Evaluation Metrics For semantic segmentation, we compare our BAN with
others by overall accuracy (oAcc), mean accuracy (mAcc), and mean IoU (mIoU).

As for instance segmentation, coverage (Cov) and weighted coverage (WCov)
[45–47] are adopted.

Cov and Wcov are defined as:

Cov(G,O) =

|G|∑

i=1

1

|G|
max

j
IoU(rGi , r

O
j ) (7)

WCov(G,O) =

|G|∑

i=1

1

|G|
ωi max

j
IoU(rGi , r

O
j ), ωi =

|rGi |∑
k |r

G
k |

(8)

where ground-truth is denoted as G and prediction is denoted as O, |rGi | is the
number of points in ground-truth i. Besides, the classical metrics mean precision
(mPrec), and mean recall (mRec) with IoU threshold 0.5 are also reported.

Hyper-parameters To optimize the proposedBAN , we use Adam optimizer [48]
with batch size 12 and set initial learning rate as 0.001 following the “divided
by 2 every 300k iterations” learning rate policy. During training, we use the de-
fault parameter setting in [8] for Lins. At test time, bandwidth is set to 0.6 for
mean-shift clustering. BlockMerging algorithm proposed by SGPN [42] is used
to merge instances from different blocks. Please check supplementary for the
training and testing details on the three datasets.
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Table 1. Instance segmentation results on S3DIS dataset.

Method Backbone mCov mWCov mPrec mRec

Test on 6-fold cross-validation

PointNet PointNet 43.0 46.3 50.6 39.2

PointNet++ PointNet++ 49.6 53.4 62.7 45.8

SGPN PointNet 37.9 40.8 38.2 31.2

ASIS PointNet++ 51.2 55.1 63.6 47.5

BoNet PointNet++ 46.0 50.2 65.6 47.6

JSNet PointNet++ 46.4 50.3 58.9 43.0

Ours PointNet++ 52.1 56.2 63.4 51.0

Ours ASIS GT Ours ASIS GT

Fig. 4. Visual comparison of instance and semantic segmentation results on the S3DIS
dataset. The first three columns are the instance segmentation results, while the last
three columns show semantic segmentation results.

5.2 S3DIS Results

In this section, we will compare our method (BAN) with other state-of-the-
art methods, and the reported metric values are either from their papers or
implemented and evaluated by ourselves when not available.

Instance segmentation In Tab. 1, six methods are compared, including Point-
Net[18], PointNet++[19], SGPN[42], ASIS[32], BoNet[31] and our BAN. It’s
worth to note that, PointNet++ has the same architecture and settings as ours
except the Bi-Directional Attention module, and thus can be treated as base-
line. PointNet is similar to PointNet++ except the backbone. It can be seen, our
BAN outperforms baseline (PointNet++) on all the metrics, and demonstrates
significant superiority compared with others.

Semantic segmentation Since SGPN[42] and BoNet[31] do not provide se-
mantic segmentation results. For semantic segmentation, we only compare Point-
Net[18], PointNet++[19] and ASIS[32]. The evaluation results are shown in
Tab. 2, from mAcc, mIoU, and oAcc, our method achieves the best performance
consistently.
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Table 2. Semantic segmentation results on S3DIS dataset.

Method Backbone mAcc mIoU oAcc

Test on 6-fold cross-validation

PointNet PointNet 60.7 49.5 80.4

PointNet++ PointNet++ 69.0 58.2 85.9

ASIS PointNet++ 70.1 59.3 86.2

JSNet PointNet++ 65.5 56.3 85.5

Ours PointNet++ 71.7 60.8 87.0

Visual Comparison We show some visual results of semantic and instance
segmentation methods in Fig. 4. From results, we can see ours are more accurate
and uniform compared with ASIS [32], especially for instance segmentation as
marked by red circles. We believe it is because of the applying of attention
operations and the introduction of non-local information. The more studies of
attention mechanisms are in Sec. 6.

Table 3. Instance segmentation results on PartNet dataset.

Method Backbone mCov mWCov mPrec mRec

PointNet++ PointNet++ 42.0 43.1 51.2 44.7

ASIS PointNet++ 39.3 40.2 49.9 42.8

Ours PointNet++ 42.7 44.2 52.8 45.3

5.3 PartNet Results

In addition to object instance segmentation in indoor scenes, we further eval-
uate our method on part instance segmentation in objects using the PartNet
dataset. This task is more fine-grained and thus requires more perception ability
to understand the similarity between points.

The semantic and instance segmentation scores are listed in Tab. 3, 4. We
can see that the performance has a significant drop compared with the S3DIS.
This is because the dataset contains many kinds of small semantic parts, which
are difficult to perceive and predict, causing low semantic mIoU and instance
mCov but relative high semantic oAcc.

For this kind of dataset with small semantic parts, ASIS [32] with KNN is
difficult to adapt by a fixed range control parameter. However, with the Bi-
Directional Attention module, our method could compute the similarities be-
tween any of two points and achieves better results.

The visual results on PartNet are shown in Fig. 5. Our method demonstrates
obvious advantages compared with ASIS [32], and produces more accurate in-
stance and semantic segmentation, especially for some small parts as marked
by red circles. For other methods compared in S3DIS, their performance is not
evaluated in this section, because we do not have their code or statistic report.



Bi-Directional Attention 11

Table 4. Semantic segmentation results on PartNet dataset.

Method Backbone mAcc mIoU oAcc

PointNet++ PointNet++ 53.4 43.4 78.4

ASIS PointNet++ 50.6 40.2 76.7

Ours PointNet++ 56.1 44.9 80.3

Ours ASIS GT Ours ASIS GT

Fig. 5. Visual comparison of instance and semantic segmentation results on the Part-
Net dataset. Columns are arranged as Fig. 4.

5.4 ScanNetV2 Results

Finally, we evaluate the performance on the ScanNetV2 which is the biggest in-
door 3D point cloud dataset by now. The quantitative results are listed in Tab. 5
and Tab. 6, while the qualitative results are shown in Fig. 6. We only evaluate
the methods we have code or corresponding statistic report. All the results have
verified the superiority of our method in the large scale dataset.

Table 5. Instance segmentation results on ScanNetV2 dataset.

Method Backbone mCov mWCov mPrec mRec

PointNet++ PointNet++ 39.0 40.1 46.0 40.1

ASIS PointNet++ 39.1 40.4 46.3 40.5

Ours PointNet++ 40.4 41.7 48.2 42.2

6 Discussion

In this section, we intend to show more evidence to justify the design and the
mechanism of the proposed Bi-Directional Attention module.

6.1 Ablation study

As mentioned in Sec. 4.2, there are three kinds of sequences to conduct STOI
and ITOS in our Bi-Directional Attention module, and we gave an assumption to
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Table 6. Semantic segmentation results on ScanNetV2 dataset.

Method Backbone mAcc mIoU oAcc

PointNet++ PointNet++ 58.3 47.1 82.3

ASIS PointNet++ 58.5 46.5 81.9

Ours PointNet++ 60.8 48.8 82.7

Ours ASIS GT Ours ASIS GT

Fig. 6. Visual comparison of instance and semantic segmentation results on the Scan-
NetV2 dataset. Columns are arranged as Fig. 4.

decide our design. Here, we will verify our choice and further prove the necessity
to have both STOI and ITOS.

In Tab. 7, we give five rows of results for instance and semantic segmenta-
tion with different combinations and order of STOI and ITOS. The experiments
are conducted on Area 5 of S3DIS [39]. We can see, by introducing STOI, the
instance segmentation gets boosted. With ITOS, both instance and semantic
segmentation demonstrate certain improvement, which suggests fusing instance
features for semantic segmentation in our way is very effective. Moreover, con-
sidering the potential task conflict when using simple element-wise feature ag-
gregation strategies such as adding and concatenating, the improvement is more
significant. Finally, with both STOI and ITOS, and STOI first, we achieve the
best results. But, with an inverse order that ITOS first, the performance shows a
large drop, even worse than results without STOI and ITOS. This phenomenon
verified the importance of order to conduct STOI and ITOS and is worth to be
studied further in the future.

Further, we test performance when X = Y in Eq. 2 where our Bi-Directional
Attention module is degraded to two independent self-attention operations [35].
The result is listed in the last row of Tab. 7. Obviously, without feature fusing,
self-attention is not comparable to our method.

6.2 Mechanism Study

Here, we visualize the learned instance and semantic similarity matrices P de-
fined in Eq. 2 to study and verify their mechanism. The similarity matrix is the
key functional unit, which builds the pair-wise similarities and uses to weighted-
sum non-local information. A good instance similarity matrix should accurately
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Table 7. Results of all ablation experiments on Area 5 of S3DIS.

Ablation Instance segmentation Semantic segmentation

STOI ITOS mCov mWCov mPrec mRec mAcc mIoU oAcc

× × 46.0 49.1 54.2 43.3 62.1 53.9 87.3

X × 47.1 50.1 55.3 43.6 61.2 53.4 87.0

× X 47.4 50.3 54.0 43.4 62.0 54.7 87.8

X X 49.0 52.1 56.7 45.9 62.5 55.2 87.7

Inverse order 46.3 49.4 53.5 41.5 62.5 55.1 87.9

Self-attention 45.4 48.6 53.3 43.6 62.5 55.1 87.9

reflect the similarity relationship between all of the points, so P are of size
N ×N . When the instance/semantic similarity matrix trained well, it will help
generate uniform and robust semantic/instance features. Besides, good instance
and semantic similarity matrices will also benefit the back-propagation process,
as stated in Sec. 4.2.

In Fig. 7, for trained networks and each sample, we select the same row from
instance similarity matrix and semantic similarity matrix, respectively, then re-
shape the row vector to the 3D point cloud. So, the value of each point here
represents the similarity to the point corresponding to the selected row. For bet-
ter visualization, we binarize the 3D point cloud to divide points into two groups,
similar points (green) and dissimilar points (blue) and marked the point corre-
sponding to the selected row by red circle. Each sample of Fig. 7 has two chairs
in the scenes. We can see that the semantic similarity matrix could basically cor-
rectly reflect the semantic similarities, and the instance similarity matrix could
highlight most of the points in the same instance.

Real Scene GT Semantic Sim. Instance Sim.

Fig. 7. Visualization of instance and semantic similarity matrices. One row for each
sample. From left to right, they are real scene blocks (each has two chairs), ground truth
(instance), point cloud reflecting semantic similarity, point cloud reflecting instance
similarity.



14 G. Wu, Z. Pan, P. Jiang, C. Tu.

Table 8. Speed and Memory

Method Backbone Speed with/without clustering GPU memory cost

Pointnet++ PointNet++ 1859/322sec 4500MB

ASIS PointNet++ 2146/501sec 4500MB+64MB

Our model PointNet++ 1649/361sec 4500MB+64MB

6.3 Efficiency Study

In Tab. 8, we report the computation speed and memory cost of ours and some
other methods. For memory cost, with size of 4096×4096 and single precision, our
similarity matrix will cost 64M memory. Though we have two similarity matrices,
they are constructed sequentially, so the maximum cost of GPU memory is
4500M+64M . ASIS also has a matrix of size 4096 × 4096. The storage of the
similarity matrix can be further reduced with one-way/three-way, criss-cross
connection operations [49, 50].

For computation speed, ASIS is the slowest one, because it needs another
KNN step. Though our method will spend more time on network feed-forward
(without cluster op) than the backbone, we are faster over the whole process
(with cluster op) because we divide the features of different instances far apart
and make mean-shift converge quickly. In summary, our similarity matrices do
not cost too much computation and memory.

7 Conclusion

We present Bi-Directional Attention Networks (BAN) for joint instance and se-
mantic segmentation. Instead of element-wised fusing features for two tasks, our
Bi-Directional Attention module builds instance and semantic similarity matrices
from the instance and semantic features, respectively, with which two attention
operations are conducted to bi-directionally aggregate features implicitly, intro-
duce non-local information and avoid potential task conflict. Experiments on the
three prevalent datasets S3DIS, PartNet and ScanNetV2 and method analysis
suggest that the Bi-Directional Attention module could help give uniform and ro-
bust results within the same semantic or instance regions, and would also help to
back-propagate uniform and robust gradients for optimization. Our BAN demon-
strates significant superiority compared with baseline and other state-of-the-art
works on the instance and semantic segmentation tasks consistently. Moreover,
the ablation, mechanism and efficiency study further verifies the design and ef-
fectiveness of the Bi-Directional Attention module.
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