
Graph-based Heuristic Search

for Module Selection Procedure

in Neural Module Network

Yuxuan Wu and Hideki Nakayama

The University of Tokyo
{wuyuxuan,nakayama}@nlab.ci.i.u-tokyo.ac.jp

Abstract. Neural Module Network (NMN) is a machine learning model
for solving the visual question answering tasks. NMN uses programs to
encode modules’ structures, and its modularized architecture enables
it to solve logical problems more reasonably. However, because of the
non-differentiable procedure of module selection, NMN is hard to be
trained end-to-end. To overcome this problem, existing work either in-
cluded ground-truth program into training data or applied reinforcement
learning to explore the program. However, both of these methods still
have weaknesses. In consideration of this, we proposed a new learning
framework for NMN. Graph-based Heuristic Search is the algorithm we
proposed to discover the optimal program through a heuristic search
on the data structure named Program Graph. Our experiments on Fig-
ureQA and CLEVR dataset show that our methods can realize the train-
ing of NMN without ground-truth programs and achieve superior pro-
gram exploring efficiency compared to existing reinforcement learning
methods. 1

1 Introduction

With the development of machine learning in recent years, more and more tasks
have been accomplished such as image classification, object detection, and ma-
chine translation. However, there are still many tasks that human beings perform
much better than machine learning systems, especially those in need of logical
reasoning ability. Neural Module Network (NMN) is a model proposed recently
targeted to solve these reasoning tasks [1, 2]. It first predicts a program indicating
the required modules and their layout, and then constructs a complete network
with these modules to accomplish the reasoning. With the ability to break down
complicated tasks into basic logical units and to reuse previous knowledge, NMN
achieved super-human level performance on challenging visual reasoning tasks
like CLEVR [3]. However, because the module selection is a discrete and non-
differentiable process, it is not easy to train NMN end-to-end.

To deal with this problem, a general solution is to separate the training into
two parts: the program predictor and the modules. In this case, the program

1 The code of this work is available at https://github.com/evan-ak/gbhs



2 Y. Wu, H. Nakayama

Fig. 1. Our learning framework enables the NMN to solve the visual reasoning problem
without ground-truth program annotation.

becomes a necessary intermediate label. The two common solutions to provide
this program label are either to include the ground-truth programs into train-
ing data or to apply reinforcement learning to explore the optimal candidate
program. However, these two solutions still have the following limitations. The
dependency on ground-truth program annotation makes NMN’s application hard
to be extended to datasets without this kind of annotation. This annotation is
also highly expensive while being hand-made by humans. Therefore, program
annotation cannot always be expected to be available for tasks in real-world
environments. In view of this, methods relying on ground-truth program an-
notation cannot be considered as complete solutions for training NMN. On the
other hand, the main problem in the approaches based on reinforcement learning
is that with the growth of the length of programs and number of modules, the
size of the search space of possible programs becomes so huge that a reasonable
program may not be found in an acceptable time.

In consideration of this, we still regard the training of NMN as an open
problem. With the motivation to take advantage of NMN on broader tasks and
overcome the difficulty in its training in the meanwhile, in this work, we pro-
posed a new learning framework to solve the non-differentiable module selection
problem in NMN.

In this learning framework, we put forward the Graph-based Heuristic Search
algorithm to enable the model to find the most appropriate program by itself.
Basically, this algorithm is inspired by Monte Carlo Tree Search (MCTS). Sim-
ilar to MCTS, our algorithm conducts a heuristic search to discover the most
appropriate program in the space of possible programs. Besides, inspired by the
intrinsic connection between programs, we proposed the data structure named
Program Graph to represent the space of possible programs in a way more rea-
sonable than the tree structure used by MCTS. Further, to deal with the cases
that the search space is extremely huge, we proposed the Candidate Selection
Mechanism to narrow down the search space.

With these proposed methods, our learning framework implemented the
training of NMN regardless of the existence of the non-differentiable module



Graph-based Heuristic Search for Module Selection in NMN 3

selection procedure. Compared to existing work, our proposed learning frame-
work has the following notable characteristics:

– It can implement the training of NMN with only the triplets of {question,
image, answer} and without the ground-truth program annotation.

– It can explore larger search spaces more reasonably and efficiently.
– It can work on both trainable modules with neural architectures and non-

trainable modules with discrete processing.

2 Related Work

2.1 Visual Reasoning

Generally, Visual Reasoning can be considered as a kind of Visual Question
Answering (VQA) [4]. Besides the requirement of understanding information
from both images and questions in common VQA problems, Visual Reasoning
further asks for the capacity to recognize abstract concepts such as spatial,
mathematical, and logical relationships. CLEVR [5] is one of the most famous
and widely used datasets for Visual Reasoning. It provides not only the triplets
of {question, image, answer} but also the functional programs paired with each
question. FigureQA [6] is another Visual Reasoning dataset we focus on in this
work. It provides questions in fifteen different templates asked on five different
types of figures.

To solve Visual Reasoning problems, a naive approach would be the combi-
nation of Convolutional Neural Network (CNN) and Recurrent Neural Network
(RNN). Here, CNN and RNN are responsible for extracting information from
images and questions, respectively. Then, the extracted information is combined
and fed to a decoder to obtain the final answer. However, this methodology of
treating Visual Reasoning simply as a classification problem sometimes cannot
achieve desirable performance due to the difficulty of learning abstract concepts
and relations between objects [4, 6, 3]. Instead, more recent work applied models
based on NMN to solve Visual Reasoning problems [3, 7–12].

2.2 Neural Module Network

Neural Module Network (NMN) is a machine learning model proposed in 2016 [1,
2]. Generally, the overall architecture of NMN can be considered as a controller
and a set of modules. Given the question and the image, firstly, the controller of
NMN takes the question as input and outputs a program indicating the required
modules and their layout. Then, the specified modules are concatenated with
each other to construct a complete network. Finally, the image is fed to the
assembled network and the answer is acquired from the root module. As far
as we are concerned, the advantage of NMN can be attributed to the ability
to break down complicated questions into basic logical units and the ability to
reuse previous knowledge efficiently.



4 Y. Wu, H. Nakayama

By the architecture of modules, NMN can further be categorized into three
subclasses: the feature-based, attention-based, and object-based NMN.

For feature-based NMNs, the modules apply CNNs and their calculations
are directly conducted on the feature maps. Feature-based NMNs are the most
concise implementation of NMN and were utilized most in early work [3].

For attention-based NMNs, the modules also apply neural networks but their
calculations are conducted on the attention maps. Compared to feature-based
NMNs, attention-based NMNs retain the original information within images bet-
ter so they achieved higher reasoning precision and accuracy [1, 2, 7, 9].

For object-based NMNs, they regard the information in an image as a set of
discrete representations on objects instead of a continuous feature map. Corre-
spondingly, their modules conduct pre-defined discrete calculations. Compared
to feature-based and attention-based NMNs, object-based NMNs achieved the
highest precision on reasoning [10, 11]. However, their discrete design usually
requires more prior knowledge and pre-defined attributes on objects.

2.3 Monte Carlo Methods

Monte Carlo Method is the general name of a group of algorithms that make use
of random sampling to get an approximate estimation for a numerical comput-
ing [13]. These methods are broadly applied to the tasks that are impossible or
too time-consuming to get exact results through deterministic algorithms. Monte
Carlo Tree Search (MCTS) is an algorithm that applied the Monte Carlo Method
to the decision making in game playing like computer Go [14, 15]. Generally, this
algorithm arranges the possible state space of games into tree structures, and
then applies Monte Carlo estimation to determine the action to take at each
round of games. In recent years, there also appeared approaches to establish
collaborations between Deep Learning and MCTS. These work, represented by
AlphaGo, have beaten top-level human players on Go, which is considered to be
one of the most challenging games for computer programs [16, 17].

3 Proposed Method

3.1 Overall Architecture

The general architecture of our learning framework is shown as Fig.2. As stated
above, the training of the whole model can be divided into two parts: a. Pro-
gram Predictor and b. modules. The main difficulty of training comes from the
side of Program Predictor because of the lack of expected programs as training
labels. To overcome this difficulty, we proposed the algorithm named Graph-
based Heuristic Search to enable the model to find the optimal program by itself
through a heuristic search on the data structure Program Graph. After this
searching process, the most appropriate program that was found is utilized as
the program label so that the Program Predictor can be trained in a supervised
manner. In other words, this searching process can be considered as a procedure
targeted to provide training labels for the Program Predictor.



Graph-based Heuristic Search for Module Selection in NMN 5

Fig. 2. Our Graph-based Heuristic Search algorithm assists the learning of the Program
Predictor.

The abstract of the total training workflow is presented as Algorithm 1. Note
that here q denotes the question, p denotes the program, {module} denotes the
set of modules available in the current task, {img} denotes the set of images that
the question is asking on, {ans} denotes the set of answers paired with images.
Details about the Sample function are provided in Appendix A.

Algorithm 1 Total Training Workflow

1: function Train()
2: Program Predictor, {module} ← Intialize()
3: for loop in range(Max loop) do
4: q, {img}, {ans} ← Sample(Dataset)
5: p ← Graph-based Heuristic Search(q, {img}, {ans}, {module})
6: Program Predictor.train(q, p)
7: end for

8: end function

3.2 Program Graph

To start with, we first give a precise definition of the program we use. Note that
each of the available modules in the model has a unique name, fixed numbers of
inputs, and one output. Therefore, a program can be defined as a tree meeting
the following rules :

i) Each of the non-leaf nodes stands for a possible module, each of the leaf
nodes holds a 〈END〉 flag.

ii) The number of children that a node has equal to the number of inputs of
the module that the node represents.

For the convenience of representation in prediction, a program can also be
transformed into a sequence of modules together with 〈END〉 flags via pre-order
tree traversal. Considering that the number of inputs of each module is fixed,
the tree form can be rebuilt from such sequence uniquely.

Then, as for the Program Graph, Program Graph is the data structure we use
to represent the relation between all programs that have been reached through-
out the searching process, and it is also the data structure that our algorithm



6 Y. Wu, H. Nakayama

Fig. 3. Illustration of part of a Program Graph

Graph-based Heuristic Search works on. A Program Graph can be built meeting
the following rules :

i) Each graph node represents a unique program that has been reached.
ii) There is an edge between two nodes if and only if the edit distance of

their programs is one. Here, insertion, deletion, and substitution are the three
basic edit operations whose edit distance is defined as one. Note that the edit
distance between programs is judged on their tree form.

iii) Each node in the graph maintains a score. This score is initialized as the
output probability of the program of a node according to the Program Predictor
when the node is created, and can be updated when the program of a node is
executed.

Fig.3 is an illustration of a Program Graph consisting of several program
nodes together with their program trees as examples. To distinguish the node in
the tree of a program and the node in the Program Graph, the former will be
referred to as m n for “module node” and the latter will be referred to as p n

for “program node” in the following discussion. Details about the initialization
of the Program Graph are provided in Appendix B.

3.3 Graph-based Heuristic Search

Graph-based Heuristic Search is the core algorithm in our proposed learning
framework. Its basic workflow is presented as the Main function in line 1 of
Algorithm 2. After Program Graph g gets initialized, the basic workflow can be
described as a recurrent exploration on the Program Graph consisting of the
following four steps :

i) Collecting all the program nodes in Program Graph g that have not been
fully explored yet as the set of candidate nodes {p n}c.

ii) Calculating the Expectation for all the candidate nodes.
iii) Selecting the node with the highest Expectation value among all the

candidate nodes.
iv) Expanding on the selected node to generate new program nodes and

update the Program Graph.
The details about the calculation of Expectation and expanding strategy are

as follows.



Graph-based Heuristic Search for Module Selection in NMN 7

Algorithm 2 Graph-based Heuristic Search

1: function Main(q, {img}, {ans}, {module})
2: g ← InitializeGraph(q)
3: for step in range(Max step) do
4: {p n}c ← p n for p n in g and p n.fully explored == False
5: p ni.Exp ← FindExpectation(p ni, g) for p ni in {p n}c
6: p ne ← p ni s.t. p ni.Exp = max{p ni.Exp for p ni in {p n}c}
7: Expand(p ne, g, {img}, {ans}, {module})
8: end for

9: p nbest ← p ni s.t. p ni.score = max{p ni.score for p ni in {p ni}}
10: return p nbest.program
11: end function

12: function Expand(p ne, g, {img}, {ans}, {module})
13: p ne.visit count ← p ne.visit count + 1
14: if p ne.visited == False then

15: p ne.score ← accuracy(p ne.program, {img}, {ans}, {module})
16: p ne.visited ← True
17: end if

18: {m n}c ← m n for m n in p ne.program and m n.expanded == False
19: m nm ← Sample({m n}c)
20: {program}new ← Mutate(p ne.program, m nm, {module})
21: for programi in {program}new do

22: if LegalityCheck(programi) == True then

23: g.update(programi)
24: end if

25: end for

26: m nm.expanded ← True
27: p ne.fully explored ← True if {m n}c.remove(m nm) == ∅

28: end function

Expectation Expectation is a measurement defined on each program node to
determine which node should be selected for the following expanding step. This
Expectation is calculated through the following Equation 1.

p ni.Exp =

D∑

d=0

wd ∗max{p nj .score | p nj in g, distance(p ni, p nj) ≤ d}

+
α

p ni.visit count + 1

(1)

Intuitively, this equation estimates how desirable a program is to guide the
modules to answer a given question reasonably. Here, D, wd, and α are hyper-
parameters indicating the max distance in consideration, a sequence of weight
coefficients while summing best scores within different distances d, and the scale
coefficient to encourage visiting less-explored nodes, respectively.



8 Y. Wu, H. Nakayama

In this equation, the first term observes the nodes nearby and find the high-
est score within each different distance d from 0 to D. Then, these scores are
weighted by wd and summed up. Note that the distance here is measured on
the Program Graph, which also equals to the edit distance between two pro-
grams. The second term in this equation is a balance term negatively correlated
to the number of times that a node has been visited and expanded on. This term
balances the Expectation levels that unexplored or less-explored nodes get.

Expansion Strategy Expansion is another essential procedure of our proposed
algorithm as shown in line 12 of Algorithm 2. The main purpose of this procedure
is to generate new program nodes and update the Program Graph. To realize
this, the five main steps are as follows:

i) If the program node p ne is visited for the first time, try its program by
building the model with specified modules to answer the question. The ques-
tion answering accuracy is used to update its score. If there are modules with
neural architecture, these modules should also be trained here, but the updated
parameters are retained only if the new accuracy exceeds the previous one.

ii) Collect the module nodes that have not been expanded on yet within the
program, then sample one from them as the module node m nm to expand on.

iii) Mutate the program at module m nm to generate a set of new programs
{program}new with three edit operations: insertion, deletion, and substitution.

iv) For each new program judged to be legal, if there is not yet a node
representing the same program in the Program Graph g, then create a new
program node representing this program and add it to g. The related edge should
also be added to g if it does not exist yet.

v) If all of the module nodes have been expanded on, then mark this program
node p ne as fully explored.

For the Mutation in step iii), the three edit operations are illustrated by
Fig.4. Here, insertion adds a new module node between the node m nm and its
parent. The new module can be any of the available modules in the model. If
the new module has more than one inputs, m nm should be set as one of its
children, and the rest of the children are set to leaf nodes with 〈END〉 flag.

Deletion removes the node m nm and set its child as the new child of m nm’s
parent. If m nm has more than one child, only one of them should be retained
and the others are abandoned.

Substitution replaces the module of m nm with another module. The new
module can be any of the modules that have the same number of inputs as
m nm.

For insertion and deletion, if there are multiple possible mutations because
the related node has more than one child as shown in Fig.4, all of them are
retained.

These rules ensure that newly generated programs consequentially have legal
structures, but there are still cases that these programs are not legal in the
sense of semantics, e.g., the output data type of a module does not match the
input data type of its parent. Legality check is conducted to determine whether



Graph-based Heuristic Search for Module Selection in NMN 9

a program is legal and should be added to the Program Graph, more details
about this function are provided in Appendix C.

Fig. 4. Example of the mutations generated by the three opeartions insertion, deletion,
and subsitution.

3.4 Candidate Selection Mechanism for Modules

The learning framework presented above is already a complete framework to
realize the training of the NMN. However, in practice we found that with the
growth of the length of programs and the number of modules, the size of search
space explodes exponentially. This brings trouble to the search. To overcome
this problem, we further proposed the Candidate Selection Mechanism (CSM),
which is an optional component within our learning framework. Generally speak-
ing, if CSM is activated, it selects only a subset of modules from the whole of
available modules. Then, only these selected modules are used in the following
Graph-based Heuristic Search. The abstract of the training workflow with CSM
is presented as Algorithm 3.

Here, we included another model named Necessity Predictor into the learn-
ing framework. This model takes the question as input, and predicts a Nm-
dimensions vector as shown in Fig.5. Here, Nm indicates the total number of

Algorithm 3 Training Workflow with Candidate Selection Mechanism

1: function Train()
2: Program Predictor, Necessity Predictor, {module} ← Intialize()
3: for loop in range(Max loop) do
4: q, {img}, {ans} ← Sample(Dataset)
5: {module}candidate ← Necessity Predictor(q, {module})
6: p ← Graph-based Heuristic Search(q, {img}, {ans}, {module}candidate)
7: Necessity Predictor.train(q, p)
8: Program Predictor.train(q, p)
9: end for

10: end function



10 Y. Wu, H. Nakayama

modules. Each component of this output is a real number between zero and one
indicating the possibility that each module is necessary for solving the given
question. Np and Nr are the two hyperparameters for the candidate modules
selection procedure. Np indicates the number of modules to select according
to the predicted possibility value. The Np modules with the top Np values of
predictions are selected. Nr indicates the number of modules that are selected
randomly besides the Np selected ones. The union of these two selections with
Np +Nr modules becomes the candidate modules for the following search.

For the training of this Necessity Predictor, the optimal program found in the
search is transformed into a Nm-dimensions boolean vector indicating whether
each module appeared in the program. Then, this boolean vector is set as the
training label so that the Necessity Predictor can also be trained in a supervised
manner as Program Predictor does.

Fig. 5. The process to selecte the Np +Nr candidate modules

4 Experiments and Results

Our experiments are conducted on the FigureQA and the CLEVR dataset. Their
settings and results are presented in the following subsections respectively.

4.1 FigureQA Dataset

The main purpose of the experiment on FigureQA is to certify that our learning
framework can realize the training of NMN on a dataset without ground-truth
program annotations and outperform the existing methods with models other
than NMN.

An overview of how our methods work on this dataset is shown in Fig.6.
Considering that the size of the search space of the programs used in FigureQA
is relatively small, the CSM introduced in Section 3.4 is not activated.

Generally, the workflow consists of three main parts. Firstly, the technique of
object detection [18] together with optical character recognition [19] are applied



Graph-based Heuristic Search for Module Selection in NMN 11

Table 1. Setting of hyperparameters in our experiment

Max loop Max step D wd α

100 1000 4 (0.5, 0.25, 0.15, 0.1) 0.05

to transform the raw image into discrete element representations as shown in
Fig.6.a. For this part, we applied Faster R-CNN [20, 21] with ResNet 101 as the
backbone for object detection and Tesseract open source OCR engine [22, 23] for
text recognition. All the images are resized to 256 by 256 pixels before following
calculations.

Secondly, for the part of program prediction as shown in Fig.6.b., we applied
our Graph-based Heuristic Search algorithm for the training. The setting of the
hyperparameters for this part are shown in Table 1. The type of figure is treated
as an additional token appended to the question.

Thirdly, for the part of modules as shown in Fig.6.c., we designed some
pre-defined modules with discrete calculations on objects. Their functions are
corresponded to the reasoning abilities required by FigureQA. These pre-defined
modules are used associatively with other modules with neural architecture.
Details of all these modules are provided in Appendix D.

Table 2 shows the results of our methods compared with baseline and existing
methods. “Ours” is the primitive result from the experiment settings presented
above. Besides, we also provide the result named “Ours + GE” where “GE”
stands for ground-truth elements. In this case, element annotations are obtained
directly from ground-truth plotting annotations provided by FigureQA instead
of the object detection results. We applied this experiment setting to measure
the influence of the noise in object detection results.

Through the result, firstly it can be noticed that both our method and our
method with GE outperform all the existing methods. In our consideration, the
superiority of our method mainly comes from the successful application of NMN.
As stated in Section 2.2, NMN has shown outstanding capacity in solving logical

Fig. 6. An example of the inference process on FigureQA



12 Y. Wu, H. Nakayama

Table 2. Comparison of accuracy with previous methods on the FigureQA dataset.

Method
Accuracy

Validation Sets Test Sets
Set 1 Set 2 Set 1 Set 2

Text only [6] 50.01% 50.01%
CNN+LSTM [6] 56.16% 56.00%

Relation Network [6, 24] 72.54% 72.40%
Human [6] 91.21%

FigureNet [25] 84.29%
PTGRN [26] 86.25% 86.23%
PReFIL [27] 94.84% 93.26% 94.88% 93.16%

Ours 95.74% 95.55% 95.61% 95.28%
Ours + GE 96.61% 96.52%

problems. However, limited by the non-differentiable module selection procedure,
the application of NMN can hardly be extended to those tasks without ground-
truth program annotations like FigureQA. In our work, the learning framework
we proposed can realize the training of NMN without ground-truth programs so
that we succeeded to apply NMN on this FigureQA. This observation can also
be certified through the comparison between our results and PReFIL.

Compared to PReFIL, considering that we applied the nearly same 40-layer
DenseNet to process the image, the main difference we made in our model is the
application of modules. The modules besides the final Discriminator ensure that
the inputs fed to the Discriminator are related to what the question is asking on
more closely.

Here, another interesting fact shown by the result is the difference between
accuracies reached on set 1 and set 2 of both validation sets and test sets. Note
that in FigureQA, validation set 1 and test set 1 adopted the same color scheme
as the training set, while validation set 2 and test set 2 adopted an alternated
color scheme. This difference leads to the difficulty of the generalization from
the training set to the two set 2. As a result, for PReFIL the accuracy on each
set 2 drops more than 1.5% from the corresponding set 1. However, for our
method with NMN, this decrease is only less than 0.4%, which shows a better
generalization capacity brought by the successful application of NMN.

Also, Appendix E reports the accuracies achieved on test set 2 by different
question types and figure types. It is worth mentioning that our work is the first
one to exceed human performance on every question type and figure type.

4.2 CLEVR Dataset

The main purpose of the experiment on CLEVR is to certify that our learning
framework can achieve superior program exploring efficiency compared to the
classic reinforcement learning method.

For this experiment, we created a subset of CLEVR only containing the train-
ing data whose questions appeared at least two times in the whole training set.



Graph-based Heuristic Search for Module Selection in NMN 13

This subset contains 31252 different questions together with their corresponding
annotated programs. The reason for applying such a subset is that the size of
the whole space of possible programs in CLEVR is approximately up to 1040,
which is so huge that no existing method can realize the search in it without any
prior knowledge or simplification on programs. Considering that the training of
modules is highly time-consuming, we only activated the part of program pre-
diction in our learning framework, which is shown as Fig.6.b. With this setting,
the modules specified by the program would not be trained actually. Instead, a
boolean value indicating whether the program is correct or not is returned to
the model as a substitute for the question answering accuracy. Here, only the
programs that are exactly the same as the ground-truth programs paired with
given questions are considered as correct.

In this experiment, comparative experiments were made on the cases of both
activating and not activating the CSM. The structures of the models used as
the Program Predictor and the Necessity Predictor are as follows. For Program
Predictor, we applied a 2-layer Bidirectional LSTM with hidden state size of 256
as the encoder, and a 2-layer LSTM with hidden state size of 512 as the decoder.
Both the input embedding size of encoder and decoder are 300. The setting of
hyperparameters are the same as FigureQA as shown in Table.1 except that
Max loop is not limited. For Necessity Predictor, we applied a 4-layer MLP.
The input of the MLP is a boolean vector indicating whether each word in the
dictionary appears in the question, the output of the MLP is a 39-dimensional
vector for there are 39 modules in CLEVR, the size of all hidden layers is 256. The
hyperparameters Np and Nr are set to 15 and 5 respectively. For the sentence
embedding model utilized in the initialization of the Program Graph, we applied
the GenSen model with pre-trained weights [28, 29].

For the baseline, we applied REINFORCE [30] as most of the existing work [3,
12] did to train the same Program Predictor model.

The searching processes of our method, our method without CSM, and REIN-
FORCE are shown by Fig.7. Note that in this figure, the horizontal axis indicates
the times of search, the vertical axis indicates the number of correct programs
found. The experiments on our method and our method without CSM are re-
peated four times each, and the experiment on REINFORCE is repeated eight
times. Also, we show the average results as the thick solid lines in this figure.
They indicate the average times of search consumed to find specific numbers
of correct programs. Although in this subset of CLEVR, the numbers of cor-
rect programs that can be finally found are quite similar for the three methods,
their searching processes show great differences. From this result, three main
conclusions can be drawn.

Firstly, in terms of the average case, our method shows a significantly higher
efficiency in exploring appropriate programs.

Secondly, the searching process of our method is much more stable while the
best case and worst case of REINFORCE differ greatly.

Thirdly, the comparison between the result of our method and our method
without CSM certified the effectiveness of the CSM.



14 Y. Wu, H. Nakayama

Fig. 7. Relation between the times of search and the number of correct programs found
within the searching processes of three methods.

5 Conclusion

In this work, to overcome the difficulty of training the NMN because of its non-
differentiable module selection procedure, we proposed a new learning framework
for the training of NMN. Our main contribution in this framework can be sum-
marized as follows.

Firstly, we proposed the data structure named Program Graph to represent
the search space of programs more reasonably.

Secondly and most importantly, we proposed the Graph-based Heuristic
Search algorithm to enable the model to find the most appropriate program
by itself to get rid of the dependency on the ground-truth programs in training.

Thirdly, we proposed the Candidate Selection Mechanism to improve the
performance of the learning framework when the search space is huge.

Through the experiment, the experiment on FigureQA certified that our
learning framework can realize the training of NMN on a dataset without ground-
truth program annotations and outperform the existing methods with models
other than NMN. The experiment on CLEVR certified that our learning frame-
work can achieve superior efficiency in searching programs compared to the clas-
sic reinforcement learning method. In view of this evidence, we conclude that
our proposed learning framework is a valid and advanced approach to realize the
training of NMN.

Nevertheless, our learning framework still shows weakness in dealing with
the extremely huge search spaces, e.g., the whole space of possible programs in
CLEVR. We leave further study on methods that can realize the search in such
enormous search spaces for future work.

Acknowledgment

This work was supported by JSPS KAKENHI Grant Number JP19K22861.



Graph-based Heuristic Search for Module Selection in NMN 15

References

1. Andreas, J., Rohrbach, M., Darrell, T., Klein, D.: Neural module networks. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
(2016) 39–48

2. Andreas, J., Rohrbach, M., Darrell, T., Klein, D.: Learning to compose neural
networks for question answering. In: Proceedings of the 2016 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies. (2016) 1545–1554

3. Johnson, J., Hariharan, B., van der Maaten, L., Hoffman, J., Fei-Fei, L.,
Lawrence Zitnick, C., Girshick, R.: Inferring and executing programs for visual
reasoning. In: Proceedings of the IEEE International Conference on Computer
Vision. (2017) 2989–2998

4. Antol, S., Agrawal, A., Lu, J., Mitchell, M., Batra, D., Lawrence Zitnick, C., Parikh,
D.: Vqa: Visual question answering. In: Proceedings of the IEEE international
conference on computer vision. (2015) 2425–2433

5. Johnson, J., Hariharan, B., van der Maaten, L., Fei-Fei, L., Lawrence Zitnick, C.,
Girshick, R.: Clevr: A diagnostic dataset for compositional language and elemen-
tary visual reasoning. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. (2017) 2901–2910

6. Kahou, S.E., Michalski, V., Atkinson, A., Kádár, Á., Trischler, A., Bengio, Y.:
Figureqa: An annotated figure dataset for visual reasoning. In: International Con-
ference on Learning Representations. (2018)

7. Hu, R., Andreas, J., Rohrbach, M., Darrell, T., Saenko, K.: Learning to reason:
End-to-end module networks for visual question answering. In: Proceedings of the
IEEE International Conference on Computer Vision. (2017) 804–813

8. Hu, R., Andreas, J., Darrell, T., Saenko, K.: Explainable neural computation via
stack neural module networks. In: Proceedings of the European conference on
computer vision (ECCV). (2018) 53–69

9. Mascharka, D., Tran, P., Soklaski, R., Majumdar, A.: Transparency by design:
Closing the gap between performance and interpretability in visual reasoning. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
(2018) 4942–4950

10. Shi, J., Zhang, H., Li, J.: Explainable and explicit visual reasoning over scene
graphs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. (2019) 8376–8384

11. Yi, K., Wu, J., Gan, C., Torralba, A., Kohli, P., Tenenbaum, J.: Neural-symbolic
vqa: Disentangling reasoning from vision and language understanding. In: Ad-
vances in Neural Information Processing Systems. (2018) 1031–1042

12. Mao, J., Gan, C., Kohli, P., Tenenbaum, J.B., Wu, J.: The neuro-symbolic concept
learner: Interpreting scenes, words, and sentences from natural supervision. In:
International Conference on Learning Representations. (2019)

13. Metropolis, N., Ulam, S.: The monte carlo method. Journal of the American
statistical association 44 (1949) 335–341

14. Kocsis, L., Szepesvári, C.: Bandit based monte-carlo planning. In: European
conference on machine learning, Springer (2006) 282–293

15. Coulom, R.: Efficient selectivity and backup operators in monte-carlo tree search.
In: International conference on computers and games, Springer (2006) 72–83



16 Y. Wu, H. Nakayama

16. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G.,
Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Master-
ing the game of go with deep neural networks and tree search. nature 529 (2016)
484

17. Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A.,
Hubert, T., Baker, L., Lai, M., Bolton, A., et al.: Mastering the game of go without
human knowledge. Nature 550 (2017) 354

18. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for ac-
curate object detection and semantic segmentation. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. (2014) 580–587

19. Singh, S.: Optical character recognition techniques: a survey. Journal of emerging
Trends in Computing and information Sciences 4 (2013) 545–550

20. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: Towards real-time object
detection with region proposal networks. In: Advances in Neural Information Pro-
cessing Systems (NIPS). (2015)

21. Yang, J., Lu, J., Batra, D., Parikh, D.: A faster pytorch implementation of faster
r-cnn. https://github.com/jwyang/faster-rcnn.pytorch (2017)

22. Smith, R.: An overview of the tesseract ocr engine. In: Ninth International Con-
ference on Document Analysis and Recognition (ICDAR 2007). Volume 2., IEEE
(2007) 629–633

23. Smith, R.: Tesseract open source ocr engine. https://github.com/tesseract-
ocr/tesseract (2019)

24. Santoro, A., Raposo, D., Barrett, D.G., Malinowski, M., Pascanu, R., Battaglia,
P., Lillicrap, T.: A simple neural network module for relational reasoning. In:
Advances in neural information processing systems. (2017) 4967–4976

25. Reddy, R., Ramesh, R., Deshpande, A., Khapra, M.M.: Figurenet: A deep learn-
ing model for question-answering on scientific plots. In: 2019 International Joint
Conference on Neural Networks (IJCNN), IEEE (2019) 1–8

26. Cao, Q., Liang, X., Li, B., Lin, L.: Interpretable visual question answering by rea-
soning on dependency trees. IEEE Transactions on Pattern Analysis and Machine
Intelligence (2019)

27. Kafle, K., Shrestha, R., Price, B., Cohen, S., Kanan, C.: Answering questions about
data visualizations using efficient bimodal fusion. arXiv preprint arXiv:1908.01801
(2019)

28. Subramanian, S., Trischler, A., Bengio, Y., Pal, C.J.: Learning general purpose
distributed sentence representations via large scale multi-task learning. In: Inter-
national Conference on Learning Representations. (2018)

29. Subramanian, S., Trischler, A., Bengio, Y., Pal, C.J.: Gensen.
https://github.com/Maluuba/gensen (2018)

30. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine learning 8 (1992) 229–256


