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Abstract. Deep learning-based scene text detection can achieve prefer-
able performance, powered with sufficient labeled training data. How-
ever, manual labeling is time consuming and laborious. At the extreme,
the corresponding annotated data are unavailable. Exploiting synthetic
data is a very promising solution except for domain distribution mis-
matches between synthetic datasets and real datasets. To address the
severe domain distribution mismatch, we propose a synthetic-to-real do-
main adaptation method for scene text detection, which transfers knowl-
edge from synthetic data (source domain) to real data (target domain).
In this paper, a text self-training (TST) method and adversarial text
instance alignment (ATA) for domain adaptive scene text detection are
introduced. ATA helps the network learn domain-invariant features by
training a domain classifier in an adversarial manner. TST diminishes
the adverse effects of false positives (FPs) and false negatives (FNs)
from inaccurate pseudo-labels. Two components have positive effects on
improving the performance of scene text detectors when adapting from
synthetic-to-real scenes. We evaluate the proposed method by transfer-
ring from SynthText, VISD to ICDAR2015, ICDAR2013. The results
demonstrate the effectiveness of the proposed method with up to 10%
improvement, which has important exploration significance for domain
adaptive scene text detection. Code is available at https://github.com/
weijiawu/SyntoReal_STD.

1 Introduction

Scene text detection and recognition[1–3] has received increasing attention due
to its numerous applications in computer vision. Additionally, scene text detec-
tion [4–8] has achieved great success in the last few decades. However, these
detection methods require manually labeling large quantities of training data,
which is very expensive and time consuming. Whereas several public bench-
marks [9–13] have already existed, they only covered a very limited range of
scenarios. In the real world, a specific application task usually requires the col-
lection and annotation of a new training dataset, and it is difficult, even impossi-
ble, to collect enough labeled data. Therefore, the expensive cost of labeling has
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Fig. 1. Examples of different datasets. The first row are from real ICDAR2013[9], IC-
DAR2015[10], and ICDAR2017 MLT[11], respectively. The second row is from Virtual
SynthText[14], VISD[15], and UnrealText[16]. There remains a considerable domain
gap between synthetic data and real data.

become a major problem for text detection applications based on deep learning
methods.

With the great development of computer graphics, an alternative way is to
utilize synthetic data, which is largely available from the virtual world, and
the ground truth can be freely and automatically generated. SynthText [14]
first provides a virtual scene text dataset and automatically generates synthetic
images with word-level and character-level annotations. Zhan etal. [15] equipped
text synthesis with selective semantic segmentation to produce more realistic
samples. UnrealText [16] provides realistic virtual scene text images via a 3D
graphics engine, which provides realistic appearance by rendering scene and text
as a whole. Although synthetic data offer the possibility of substituting for real
images in training scene text detectors, many previous works have also shown
that training with only synthetic data degrades the performance on real data due
to a phenomenon known as ”domain shift”. As shown in Fig. 1, unlike common
objects, text has more diversity of shapes, colours, fonts, sizes, and orientations
in real-world scenarios, which causes a large domain gap between synthetic data
and real data. Therefore, the performance of the model degrades significantly
when applying model learning only from synthetic data to real data.

To tackle the domain shift, we propose a synthetic-to-real domain adaptation
approach for scene text detection, which aims to efficiently improve the model
performance on real data by using synthetic data and unlabeled real data. In-
spired by [17] and [18], a text self-training(TST) method and an adversarial
text instance alignment(ATA) are proposed in our paper to reduce the domain
shift. Self-training has achieved excellent results for domain adaptive object de-
tection [19, 20] and semantic segmentation [21]. However, scene text detection
tasks with more diverse situations and complex backgrounds have not been ex-
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plored in this direction to the best of our knowledge. To better apply self-training
to scene text detection, TST is used to suppress the adverse impact of both false
positives and false negatives that occur in pseudo-labels. In addition, we first
utilize adversarial learning [18] help the model to learn discriminative features
of text. The contributions of our paper are as follows:

• We introduce text self-training (TST) to improve the performance of domain
adaptive scene text detection by minimizing the adverse effects of inaccurate
pseudo-labels.

• We propose adversarial text instance alignment (ATA) to help the model
learn domain-invariant features, which enhance the generalization ability of
the model.

• We first introduce a synthetic-to-real domain adaptation method for scene
text detection, which transfers knowledge from the synthetic data (source
domain) to real data (target domain).

The proposed method is evaluated by extensive experiments for the scene
text detection transfer task(e.g., SynthText [14]→ICDAR2015 [10]). The ex-
perimental results demonstrate the effectiveness of the proposed approach for
addressing the domain shift of scene text detection, which has important explo-
ration significance for domain adaptive scene text detection.

2 Related Work

2.1 Scene Text Detection

Before the era of deep learning, SWT [22] and MSER [23] were two representative
algorithms for conventional text detection methods. SWT obtains information
about the text stroke efficiently, and MSER draws intensity stable regions as
text candidates. Based on convolutional neural network knowledge, scene text
detection [24, 25] has made great progress. EAST [8] performs very dense pre-
dictions that are processed using locality-aware NMS. PixelLink [26] detects
text instances by linking neighbouring pixels. PSENet [27] proposed a progres-
sive scale algorithm to gradually expand the predefined kernels for scene text
detection. In addition to the above methods based on strongly supervised learn-
ing, some weakly/semi-supervised methods are proposed to reduce the expan-
sive cost of annotation. WeText [28] trains a text detection model on a small
amount of character-level annotated text images, followed by boosting the per-
formance with a much larger amount of weakly annotated images at word line
level. WordSup [29] trains a character detector by exploiting word annotations
in rich, large-scale real scene text datasets. [30] utilizes the network pretrained
on synthetic data with full masks to enhance the coarse masks in a real image.

2.2 Domain Adaptation

Domain adaptation reduces the domain gap between training and testing data.
Prior works [31] estimated the domain gap and minimized it. Recent methods
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use more effective methods to reduce the domain gap, such as incorporating a
domain classifier with gradient reversal [18]. [32] addressed the domain shift
by training domain discriminators on the image level and instance level. [17]
introduced a weak self-training to diminish the adverse effects of inaccurate
pseudo-labels, and designed adversarial background score regularization to ex-
tract discriminative features. For scene text, the domain adaptation method [33]
converts a source-domain image into multiple images of different spatial views as
in the target domain. Handwriting recognition [34] proposes AFDM to elastically
warp extracted features in a scalable manner.

2.3 Self-Training

Prior works used self-training [35, 36] to compensate for the lack of categorical
information. [37] bridged the gap between the source and target domains by
adding both the target features and instances in which the current algorithm is
the most confident. [38] used three networks asymmetrically, where two networks
were used to label unlabeled target samples and one network was trained to
obtain discriminative representations. Other works [39, 40, 21] also showed the
effectiveness of self-training for domain adaptation. However, text detection still
requires further exploration in the self-training method due to a lack of previous
work.

3 Proposed Method

In this section, the problems caused by domain shifts are analysed. Furthermore,
we introduce the principle of TST and ATA, and how to use them for domain
adaptation. To evaluate our method, EAST [8] is adopted as the baseline.

3.1 Problem and Analysis

Although synthetic scene text data can be automatically generated with diversi-
fied appearance and accurate ground truth annotations, the model trained with
only synthetic data cannot be directly applied to real scenes since there exists a
significant domain shift between synthetic datasets and real datasets.

Viewing the problem from a probabilistic perspective is clearer. We refer to
the synthetic data domain as the source domain and the real data domain as the
target domain. The scene text detection problem can be viewed as learning the
posterior P (B|I), where I refers to the image features and B is the predicted
bounding-box of text instances. Using the Bayes formula, the posterior P (B|I)
can be decomposed as:

P (B|I) =
P (I|B) ∗ P (B)

P (I)
=

P (I|B)

P (I)
∗ P (B) . (1)

We make the covariate shift assumption in this task that the priori probability
P (B) is the same for the two domains. P (I|B) refers to the conditional proba-
bility of I, which means that the likelihood of learning true features given that
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Fig. 2. The network architecture with the corresponding optimization object. θ repre-
sents the parameters of EAST. A domain classifier (green) is added after the feature
extractor via a gradient reversal layer that multiplies the gradient by a certain nega-
tive constant during the backpropagation-based training. Ltask refers to the original
detection loss of EAST, and Ld is the loss of domain classifier.

the predicted result is true. We also consider that P (I|B) is the same for both
domains. Therefore, the difference in posterior probability is caused by the pri-
ori probability P (I). In other words, to detect text instances, the difference in
detection results is caused by domain change features. To improve the general-
ization ability, the model should learn more domain-invariant features, keeping
the same P (I) regardless of which domain the input image belongs.

In the EAST [8] model, the image feature P (I) refers to the features output
from the backbone. Therefore, the feature map should be aligned between the
source domain and the target domain (i.e., Ps(I) = Pt(I)). To achieve this goal,
ATA is proposed to align the features, with more details in the next subsection.

3.2 Adversarial Text Instance Alignment

Motivated by [18], ATA is adopted to help the network learn domain-invariant
features. In the EAST model, the image features P (I) refer to the feature map
outputs of the backbone (i.e., 384, 1/32 features in Fig. 2). To align the features
P (I) between the source domain and target domain, a domain classifier is used
to confuse the feature domain.

In particular, the domain classifier is trained for each input image and pre-
dicts the domain label to which the image belongs. We assume that the model
works with input samples x ∈ X, where X is the some input space. yi denotes
the domain label of the i-th training image, with yi = 0 for the source domain
and yi = 1 for the target domain. pi(x) is the output of the domain classifier,
and we use cross entropy as the loss function:

Ld = −
∑

i

(yi × lnpi(x) + (1− yi)× ln1−pi(x)) . (2)
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To learn domain-invariant features, we optimize the parameters in an adver-
sarial way. The parameters of the domain classifier are optimized by minimizing
the above domain classification loss, and the parameters of the base network are
optimized by maximizing this loss. For more detail, the gradient reverse layer
(GRL) [18] is added between the backbone of EAST and the domain classifier,
and the sign of the gradient is reversed when passing through the GRL layer.

As shown in Fig. 2, both the feature pyramid network(FPN) and the back-
bone minimize the original loss Ltask of EAST at the training phase. Ltask

specifically denotes the score map loss and geometries loss in EAST [8]. Lt
task

refers to training with the pseudo-label in the target domain, and Ls
task denotes

training with the source domain. Thus, different training objectives for various
parameter spaces:





Lf = min(Lt
task(θf |x

t) + Ls
task(θf |x

s)− λLd(θ|(x
s, xt))) θf ∈ F ,

Ld = min(Ld(θd|(x
s, xt))) θd ∈ C ,

Lh = min(Lt
task(θh|x

t) + Ls
task(θh|x

s)) θh ∈ D ,

(3)

where F,C,D are the parameter spaces of the backbone, the domain classifier
and the FPN. The overall training objective is as follows:

L = Lf + Lh + λLd , (4)

where λ is the tradeoff parameter, we set it to 0.2 in all experiments. Through
optimizing the loss, the network can learn more text domain-invariant features,
transforming better from synthetic data to real data.

3.3 Text Self-Training

Previous works [21, 41] have shown the effectiveness of self-training. However,
two major problems for self-training still need to be explored further: false pos-
itives(FP) and false negatives(FN) occurred in pseudo-label. Incorrect pseudo-
labels will cause very serious negative effects to our networks. To overcome such
problems, TST is designed to minimize the adverse effects of FP and FN.

Reducing False Negatives. Inspired by [17], a weak supervision way is utilized
to minimize the effects of false negatives. The original score map loss in the
EAST [8] is

Ls = −
∑

i∈Pos

βY ∗logŶ −
∑

i∈Neg

(1− β)(1− Y ∗)(1− Ŷ ) , (5)

where Ŷ = Fs is the prediction of the score map, and Y ∗ is the ground truth.
While the network is optimized by backpropagation learning the loss of back-
ground (i.e., negative examples), FP occurring in pseudo-labels misleads the
network. We assume that FPs are mainly selected by hard negative mining,
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Fig. 3. Up: The framework of proposed text self-training. We utilize SWS to filter the
positive samples in pseudo-label for minimizing false positives, and select a third of
negative samples with low confidence as the final negative samples to minimize false
negatives. Down: We present sample space representation for pseudo-label. (a): False
negatives are effectively filtered out by weak training. (b): False positives are filtered
out by the standard deviation(σ) of the stroke width and SWS.

such as blurred text and unusual fonts similar to the background. To reduce
the adverse effects of FP, we ignore some background examples that have the
potential to be foregrounds with a confidence score.

Negative examples for EAST are a pixel map, a pixel is more likely to be con-
sidered a negative pixel while the corresponding confidence score higher. Thus,
we choose a part of the negative sample pixels(e.g., Neg/3) that have the low-

est confidence score as the final negative examples, which is denoted as N̂eg in
Fig. 3(red line). The corresponding mathematical expression is N̂eg = ηNeg,
where η is set to 1/3 in all experiments. For those pixels that have a high confi-
dence score, the network does not optimize this part loss. Finally, the modified
loss function is defined as

Lsw = −
∑

i∈Pos

βY ∗

i logŶ −
∑

i∈N̂eg

(1− β)(1− Y ∗

i )(1− Ŷ ) . (6)

Reducing False Positives. Corresponding to false negatives, false positives
also cause serious interference to the network. Some patterns and designs in
natural scenes are extremely easy to identify as text, which leads to inaccurate
pseudo-labels. Replacing Supporting Region-based Reliable Score(SRRS) in [17],
we propose a more reasonable Stroke Width Score(SWS) that utilizes the Stroke
Width Transform(SWT) [22] to evaluate the predicted boxes of text instances.
On the one hand, SRRS is not applicable to EAST based on segmentation. SRRS
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in [17] is define as:

SRRS(r∗) =
1

Ns

Ns∑

i=1

IoU(ri, r
∗) · P (c∗|ri) (7)

The EAST is a segmentation-based method without FPN, the text instances
with small area have less supporting boxes (i.e.,ri) than that with big area,
which leads to the extremely unbalanced supporting boxes number (i.e.,Ns). On
the other hand, SWT is more reasonable for eliminating non-text regions, and
similar previous works [42, 13] have shown its effectiveness.

SWT is a local image operator that computes the most likely stroke width
for each pixel. The output of the SWT is a n ∗ m matrix where each element
contains the width of the stroke associated with the pixel. Specifically, each pixel
on the boundary of the stroke is connected with the opposite side of the stroke
in the direction of the gradient, and the width of the connecting line is the
width of the stroke for the pixel. SWS assesses the predicted boxes by utilizing
the information of the corresponding stroke width, and eliminates part of the
non-text regions, as shown in Fig. 3(blue line).

For a typical text region, the variance in stroke width is low since text tends
to maintain a fixed stroke width. We denote the set of stroke widths in the vth
predicted box as W v

n and the stroke width of the uth pixel as wv
u ∈ W v

n . The
standard deviation is as follows:

σv =

√√√√ 1

N

N∑

u=1

(wv
u − µv)2 , (8)

where µv is the mean stroke width in the vth predicted box. Therefore, each
box has a standard deviation(σ) about the stroke width, and we choose reliable
boxes with an upper threshold(ǫ1). In addition, we further filter boxes by SWS:

SWSv =
wv

σ2
v

, (9)

wv is the most common stroke width value for the vth predicted box. By thresh-
olding the score with a lower threshold ǫ2, the boxes are further selected. Fig. 3
(b) shows that part of the FP is filtered out by SWS and σ.

4 Experiments

The proposed method is evaluated by transferring a scene text detector from
synthetic datasets to real datasets. We adopt several pure synthetic data and
real scene data (i.e., SynthText [14] and ICDAR2015 [10]).

4.1 Dataset and Experimental Settings

Pure Synthetic Datasets. SynthText [14] is a large-scale dataset that contains
about 800K synthetic images. These images are created by blending natural im-
ages with text rendered with random fonts, sizes, colours, and orientations, thus
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Table 1. The performance of different models on Syn2Real scene text detection dataset
for SynthText/VISD→ICDAR2015 transfers. UL refers to the unlabeled data. * denotes
the performance reported in UnrealText [16]. † refers to our testing performance.

Method Source → Target(UL) Annotation
Detection Evaluation/%

Precision Recall F-score

PAN [43] SynthText→ICDAR2015 Word 0.659 0.469 0.548

EAST [8]∗ SynthText→ICDAR2015 Word - - 0.580

EAST [8]† SynthText→ICDAR2015 Word 0.721 0.521 0.605

CCN [44] SynthText→ICDAR2015 Character - - 0.651

EAST+Ours SynthText→ICDAR2015 Word 0.690 0.670 0.680

EAST [8]∗ VISD→ICDAR2015 Word - - 0.643

EAST [8]† VISD→ICDAR2015 Word 0.640 0.652 0.645

EAST+Ours VISD→ICDAR2015 Word 0.748 0.727 0.738

these images are quite realistic. Verisimilar Image Synthesis Dataset(VISD) [15]
contains 10 k images synthesized with 10 k background images. Thus, there are
no repeated background images for this dataset.

Real Datasets. ICDAR2015 [10] is a multi-oriented text detection dataset for
English text that includes 1,000 training images and 500 testing images. Scene
text images in this dataset were taken by Google Glasses without taking care of
positioning, image quality, and viewpoint. ICDAR2013 [9] was released during
the ICDAR 2013 Robust Reading Competition for focused scene text detection,
consisting of high-resolution images, 229 for training and 233 for testing, con-
taining texts in English.

Implementation Details. In all experiments, we used EAST [8] as a base
network. Following the original paper, inputs were resized to 512× 512, and we
applied all augmentations used in the original paper. The network was trained
with a batch input composed of 12 images, 6 images from the source domain, and
the other 6 images from the target domain. The Adam optimizer was adopted
as our learning rate scheme. All of the experiments used the same training strat-
egy: (1) pretraining the network for 80 k iterations with ATA to learn domain-
invariant features and (2) the pretrained model is used to generate corresponding
pseudo-label(i.e.,pseudo-bounding box label and negative sample map) for each
image in the target domain, then fine-tuning the pretrained model with gener-
ated pseudo-labels. In the process of generating pseudo-labels, we set ǫ1 and ǫ2
to 3.0 and 0.30 for stroke width elimination parameters. All of the experiments
were conducted on a regular workstation (CPU: Intel(R) Core(TM) i7-7800X
CPU @ 3.50 GHz; GPU: GTX 2080Ti).

4.2 Performance Comparison and Analysis

Synthetic→ICDAR2015 Transfer. Table 1 summarizes the performance
comparisons for synthetic→ICDAR2015 transfer task. The EAST model as the



10 W. Wu et al.

Table 2. The performance of different models on Syn2Real scene text detection dataset
for SynthText/VISD→ICDAR2013 transfers. UL refers to the unlabeled data. * denotes
the performance reported in UnrealText [16]. † refers to our testing performance.

Method Source → Target(UL) Annotation
Detection Evaluation/%

Precision Recall F-score

EAST [8]∗ SynthText→ICDAR2013 Word - - 0.677

EAST [8]† SynthText→ICDAR2013 Word 0.669 0.674 0.671

EAST+Ours SynthText→ICDAR2013 Word 0.805 0.765 0.784

EAST [8]∗ VISD→ICDAR2013 Word - - 0.748

EAST [8]† VISD→ICDAR2013 Word 0.783 0.705 0.742

EAST+Ours VISD→ICDAR2013 Word 0.830 0.781 0.805

baseline training with source-only had an unsatisfactory F-score(60.5% using
SynthText and 64.5% using VISD), which can be regarded as a lower bound with-
out adaptation. By combining with the proposed method, the F-score achieved
a 68.0% and 73.8% respectively, making 7.5% and 9.3% absolute improvements
over the baseline. GCN [44] based on character annotation led to a performance
improvement over that based on word annotation. However, the performances of
GCN were still lower than our method, which utilizes self-training and adversar-
ial learning. The experiment indicates the efficient performance of the proposed
method in alleviating the domain discrepancy over the source and target data.

Synthetic→ICDAR2013 Transfer. To further verify the effectiveness of our
proposed method, we conducted experiments by using ICDAR2013 as the target
domain for the synthetic→real scene text detection transfer task. The experimen-
tal results are reported in Table 2. Specifically, for the SynthText→ICDAR2013
transfer task, compared with the baseline EAST training with source-only, we
achieved an 11.3% performance improvement. Similar to synthetic→ICDAR2015
transfer experiment, VISD was also used as the source domain in the comparison
experiment. After using ATA and TST, the proposed method achieved a 6.3%
performance improvement over the baseline EAST, which exhibits the effective-
ness of the method for reducing the domain shift. Note that for fair comparison,
except for adding ATA and TST, the base network and experimental settings of
the proposed method were the same as the baseline EAST.

ICDAR2013→ICDAR2015 Transfer. Table 3 shows the performance for
ICDAR2013→ICDAR2015 Transfer task. The annotations of ICDAR2013 are
rectangular boxes while that of ICDAR2015 are rotated boxes, which limits the
transfer performance. However, comparing with the baseline EAST training with
source-only, we achieved an 7.6% performance improvement.

4.3 Ablation Study

Component Analysis. To verify the effectiveness of the proposed method,
we conducted ablation experiments for Syn2Real transfer task on four datasets:
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Table 3. Ablation study for the proposed Syn2Real scene text detection transfer.
’Baseline’ denotes training only with labeled data in the source domain. N denotes the
increase in the F-score compared with the baseline training with source-only. UL refers
to the unlabeled data. ’F-target’ denotes pretrain in source domain and fine-tuning
with original pseudo-bounding box in target domain.

Method TST ATA Source→Target(UL)
Detection Evaluation/%

Improv.
Precision Recall F-score

Baseline

SynthText→ICDAR2015

0.721 0.521 0.605 -
F-target 0.666 0.535 0.594 -

Ours
X 0.693 0.605 0.646 N4.1%

X 0.682 0.610 0.640 N3.5%
X X 0.690 0.670 0.680 N7.5%

Baseline

VISD→ICDAR2015

0.640 0.652 0.645 -

Ours
X 0.702 0.688 0.695 N5.0%

X 0.713 0.670 0.691 N4.6%
X X 0.748 0.727 0.738 N9.3%

Baseline

SynthText→ICDAR2013

0.669 0.674 0.671 -

Ours
X 0.715 0.707 0.711 N4.0%

X 0.736 0.721 0.729 N5.8%

X X 0.805 0.765 0.784 N11.3%

Baseline

VISD→ICDAR2013

0.783 0.705 0.742 -

Ours

X 0.794 0.720 0.755 N1.3%

X 0.802 0.751 0.776 N3.4%
X X 0.830 0.781 0.805 N6.3%

Baseline

ICDAR13→ICDAR2015

0.513 0.398 0.448 -

Ours
X 0.546 0.459 0.505 N5.7%

X 0.560 0.441 0.493 N4.5%

X X 0.563 0.490 0.524 N7.6%

SynthText, VISD, ICDAR2015, and ICDAR2013. Table 3 shows the experimen-
tal results. For the SynthText→ICDAR2015 transfer task, the F-scores increased
by 4.1% and 3.5% respectively, after using the TST and ATA. In addition, our
method produced a higher recall rate of up to eight percent than the base-
line, which shows the effectiveness of this approach on improving the robust-
ness of the model. By combining both components, the F-score of the proposed
method achieved a 68.0%, a 7.5% absolute improvement over the baseline. The
VISD→ICDAR2015 transfer task exhibited better performance since VISD has
a more realistic synthesis effect. In particular, the F-score using our method
reached 73.8%, making the absolute improvement over the corresponding base-
line 9.3%. For SynthText/VISD→ICDAR2015 transfers, the improved perfor-
mances are also significant. We achieved a 11.3% performance improvement us-
ing SynthText and 6.3% performance improvement using VISD.

Parameter Sensitivity on TST. To explore the influence of threshold pa-
rameters (i.e., ǫ1 and ǫ2) on SWS, we conducted several sets of comparative
experiments, and the results shown are in Table 4. Threshold parameter ǫ1 was
utilized to filter the predicted box since we considered the standard deviation
of the stroke width in the text region close to zero in an ideal situation. The
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Table 4. Model results for different values of ǫ1 and ǫ2 in Text Self-training(TST).

ǫ2 ǫ1

Detection Evaluation/%
ǫ1 ǫ2

Detection Evaluation/%

Precision Recall F-score Precision Recall F-score

-

- 0.597 0.561 0.580

-

- 0.597 0.561 0.580

2 0.636 0.543 0.581 0.20 0.621 0.556 0.586
3 0.634 0.563 0.596 0.30 0.623 0.554 0.586
4 0.612 0.565 0.588 0.40 0.645 0.550 0.594

O
u

rs

(a) SynthText-to-ICDAR2013 Transfer (b) SynthText-to-ICDAR2015 Transfer 

S
o
u
rc

e-o
n
ly

Fig. 4. Examples of detection results for different models. The first row is the results
of the baseline training with only source domain. The second row is the results of using
the proposed method.

network trained with ǫ1 = 3 showed better performance than the others, and the
results were not sensitive to the parameters. Similar to ǫ1, three different values
0.2, 0.3, 0.4 were adopted to verify the parameter sensitivity of ǫ2, and the result
shows that the value(0.3) of ǫ2 was reasonable.

Qualitative Analysis. Fig. 4 shows four examples of detection results for
synthetic-to-real transfer tasks. The exemplars show that the proposed method
improves the robustness of the model.

5 Conclusions

In this paper, we first introduced a synthetic-to-real domain adaptation method
for scene text detection, which transfers knowledge from synthetic data to real
data. The proposed TST effectively minimizes the adverse effects of FNs and
FPs for pseudo-labels, and the ATA helps the network to learn domain-invariant
features in an adversarial way. We evaluated the proposed method on several
common synthetic and real datasets. The experiments showed that our approach
makes a great improvement for synthetic-to-real transfer text detection task.
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