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Abstract. Current works on multimodal facial expression recognition
typically require paired visible and thermal facial images. Although vis-
ible cameras are readily available in our daily life, thermal cameras are
expensive and less prevalent. It is costly to collect a large quantity of syn-
chronous visible and thermal facial images. To tackle this paired train-
ing data bottleneck, we propose an unpaired multimodal facial expres-
sion recognition method, which makes full use of the massive number
of unpaired visible and thermal images by utilizing thermal images to
construct better image representations and classifiers for visible images
during training. Specifically, two deep neural networks are trained from
visible and thermal images to learn image representations and expression
classifiers for two modalities. Then, an adversarial strategy is adopted
to force statistical similarity between the learned visible and thermal
representations, and to minimize the distribution mismatch between the
predictions of the visible and thermal images. Through adversarial learn-
ing, the proposed method leverages thermal images to construct better
image representations and classifiers for visible images during training,
without the requirement of paired data. A decoder network is built upon
the visible hidden features in order to preserve some inherent features
of the visible view. We also take the variability of the di↵erent images
transferability into account via adaptive classification loss. During test-
ing, only visible images are required and the visible network is used.
Thus, the proposed method is appropriate for real-world scenarios, since
thermal imaging is rare in these instances. Experiments on two bench-
mark multimodal expression databases and three visible facial expression
databases demonstrate the superiority of the proposed method compared
to state-of-the-art methods.

1 Introduction

Facial expression is one of the most important emotion communication channels
for human-computer interaction. Great progress has recently been made on facial
expression recognition due to its wide application in many user-centered fields.
Due to their ubiquity, visible images are widely used to build facial expression
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recognition systems. However, the light-sensitive property of the visible images
prevents researchers from constructing better facial expression classifiers. To
tackle this problem, researchers turn to thermal images, which record the tem-
perature distribution of the face and are not light sensitive. Therefore, combining
visible and thermal images could improve the facial expression recognition task.

The simplest method of multimodal facial expression recognition is feature-
level or decision-level fusion [1–4]. However, the unbalanced quantity of visible
and thermal images prevents us from applying this method in real-world scenar-
ios. It would be more practical to utilize thermal images as privileged information
[5] to assist the learning process of the visible classifier during training. During
testing, thermal images are unavailable and only visible images are used to make
predictions. Several works apply this learning framework and succeed in the task
of visible facial expression recognition [6–8]. One assumption of these works is
that the visible and thermal facial images must be paired during training. Since
collecting paired visible and thermal facial images is often difficult, requiring
paired data during training prevents the usage of the many available unpaired
visible and thermal images, and thus may degenerate the learning effect of the
visible facial expression classifier.

To address this, we propose an unpaired adversarial facial expression recog-
nition method. We tackle the unbalanced quantity of visible and thermal images
by utilizing thermal images as privileged information. We introduce adversarial
learning on the feature-level and label-level spaces to cope with unpaired training
data. Finally, we add a decoder network to preserve the inherent visible features.

2 Related Work

2.1 Learning with Privileged Information

Privileged information refers to extra information available during training, but
not testing. Exploring privileged information can improve the learning process
of the original classifier. Many different research fields have made progress by
leveraging privileged information. For example, Vapnik et al. [5] first introduced
privileged information to the support vector machine (SVM) algorithm, and
proposed the SVM+ algorithm. Wang et al. [9] proposed to utilize privileged
information as secondary features or secondary targets to improve classifier per-
formance. Sharmanska et al. [10] proposed to close the mismatch between class
error distributions in privileged and original data sets to address cross-data-set
learning. Niu et al. [11] proposed a framework called multi-instance learning with
privileged information (MIL-PI) for action and event recognition, which incor-
porated privileged information to learn from loosely labelled web data. Luo et

al. [12] proposed a graph distillation framework for action detection, which not
only transfers knowledge from the extra modalities to the target modality, but
also transfers knowledge from the source domain to the target domain. Garcia
et al. [13] proposed to learn a hallucination network within a multimodal-stream
network architecture by utilizing depth images as privileged information. They
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introduced an adversarial learning strategy that exploited multiple data modal-
ities at training.

All of the above works demonstrate the benefits of leveraging privileged in-
formation. However, all works except for Sharmanska et al.’s method [10] re-
quire paired privileged and original information during training. This require-
ment prevents the adoption of large-scale unpaired data to learn better features
and classifiers for the original information. Although Sharmanska et al.’s method
leveraged the unpaired data from the target label by forcing a similarity between
the classification errors of the privileged and original information, it didn’t ex-
plore the feature-level dependencies between privileged and original information.
Therefore, we propose to learn visible facial expressions classifier and leverage
adversarial learning to force statistical similarity between the visible and thermal
views.

2.2 Facial Expression Recognition

Facial expression recognition (FER) has remained as an active research topic
during the past decades. The main goal of FER is to learn expression-related
features that is discriminative and invariant to variations such as pose, illu-
mination, and identity-related information. Traditionally, previous works have
used handcrafted features to study facial expression recognition, including His-
tograms of Oriented Gradients (HOG) [14], Scale Invariant Feature Transform
(SIFT) [15], histograms of Local Binary Patterns (LBP) [16] and histograms of
Local Phase Quantization (LPQ) [17].

Recently, deep CNN based methods have been employed to increase the ro-
bustness of FER. Identity-Aware CNN (IACNN) [18] was proposed to enhance
FER performance by reducing the effect of identity related information with
the help of an expression-sensitive contrastive loss and an identity-sensitive con-
trastive loss. Cai et al. [19] transferred facial expressions to a fixed identity to
mitigate the effect of identity-related information. De-expression Residue Learn-
ing (DeRL) [20] utilized the cGAN to synthesize a neutral facial image of the
same identity from any input expressive image, while the person-independent
expression information can be extracted from the intermediate layers of the
generative model. Although these works mitigate the influence of inter-subject
variations, the light-sensitive property of the visible images prevents these works
from constructing robust facial expression classifiers under different illumination.

2.3 Multimodal Facial Expression Recognition

Early methods of multimodal facial expression recognition are based on strate-
gies including feature-level and decision-level fusions. For example, Sharma et

al. [2] concatenated the visible and thermal features and fed them into an SVM
to detect the pressure of people. Yoshitomi et al. [1] trained three classifiers
with voice features, visible images, and thermal images, and adopted decision-
level fusion. Wesley et al. [3] trained visible and thermal networks and fused
the outputs to make predictions for facial expression recognition. Wang et al.
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[4] adopted both feature-level and decision-level fusions to recognize facial ex-
pressions. All of the above works ignore the unbalanced quantity of visible and
thermal images. In fact, visible cameras are widely used in our daily life, while
thermal cameras are only available in laboratory environment. It prevents us
from applying the fusion method into real practice.

To address this problem, some researchers view thermal images as privi-
leged information, which is only required during training to help visible images
construct a better expression classifier. Unlike fusion methods, which depend
on visible and thermal representations containing complementary information,
using thermal images as privileged information allows for more robust visible
representations. Such visible representations contain unified and view-irrelevant
information, rather than complementary information, so only visible data is re-
quired during testing. Shi et al. [6] proposed a method of expression recognition
from visible images with the help of thermal images as privileged information.
They combined canonical correlation analysis (CCA) and SVM. Through CCA,
a thermal-augmented visible feature space is obtained. The SVM is used as the
classifier on the learned subspace. The shortcoming of this method is that the
learned subspace has no direct relation to the target label, since the subspace
and the classifier are trained separately. To address this, Wang et al. [7] proposed
to train two deep neural networks to extract feature representations from visible
and thermal images. Then, two SVMs were trained for classification. Training
of the deep networks and SVMs is integrated into a single optimization problem
through the use of a similarity constraint on the label space. The main drawback
of Wang et al.’s method is that the visible and thermal networks merely inter-
act with each other by means of the similarity constraint, which works on the
label space of the two views. There is still great freedom for the feature space
below, weakening the correlation between visible and thermal views. Pan et al.

[8] improved Wang et al.’s framework by introducing a discriminator to the hid-
den features of the two-view networks in order to learn view-irrelevant feature
representations and enhance the correlation of the visible and thermal networks
in the feature representations. Sankaran et al. [21] proposed cross-modality su-
pervised representation learning for facial action unit recognition. They used a
latent representation decoder to reconstruct thermal images from visible images.
The generated thermal images were applied to construct action unit classifier.

All of the above works require paired visible and thermal images during
training. However, it is impractical to collect a great number of paired images
in real-life scenarios. Fortunately, recent advances in adversarial learning allow
us to deal with multimodal data in terms of distributions rather than pair-wise
samples.

Therefore, in this paper we propose a novel unpaired multimodal facial ex-
pression recognition method enhanced by thermal images through adversarial
learning. Specifically, we first learn two deep neural networks to map the un-
paired visible and thermal images to their ground truth labels. Then we intro-
duce two modality discriminators and impose adversarial learning on the feature
and label levels. This forces statistical similarity between the learned visible and
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Fig. 1. The framework of the proposed unpaired facial expression recognition method.

thermal representations and minimizes the distribution mismatch between pre-
dictions of the visible and thermal images. Because there may be a few unpaired
images that are significantly dissimilar across views, forcefully aligning them
may have deleterious effects on the visible expression classifier. To remedy this,
the variability of the different images transferability is taken into account via
adaptive classification loss. Finally, a decoder network is built upon the visible
hidden features in order to preserve some inherent features of the visible view.
During training, the two-view neural networks and the two discriminators are
optimized alternately, and the visible network is expected to be enhanced by
the thermal network with unpaired visible and thermal images. During testing,
the prediction of a visible testing image is given by the learned visible neural
network.

Compared to related work, our contribution can be summarized as follows: (1)
we are the first to tackle the task of facial expression recognition with unpaired
visible and thermal images. (2) We propose to close the distributions of the
unpaired visible and thermal data through adversarial learning at the feature and
label levels. Experimental results demonstrate the effectiveness of our proposed
method.

3 Problem Statement

Suppose we have two unpaired data setsDv =
n

x
(i)
v , y

(i)
v

oN1

i=1
andDt =

n

x
(i)
t , y

(i)
t

oN2

i=1
.

The first is the visible data set containing N1 training instances and the second
is the thermal data set containing N2 training instances. xv 2 R

dv and xt 2 R
dt

represent the visible and thermal images respectively, where dv and dt represent
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their dimensions. y 2 {0, 1, · · · ,K � 1} are the ground truth expression labels
of images. Our task is to learn a visible expression classifier by utilizing the two
unpaired data sets Dv and Dt during training phase. When testing a new visi-
ble image, the prediction is given by the learned visible expression classifier. No
thermal data is involved during the testing phase.

4 Proposed Method

The framework of the proposed unpaired multimodal facial expression recogni-
tion method is summarized in Figure 1. As shown in Figure 1, there are five
networks in the proposed method: the visible network fv : Rdv ! [0, 1]

K
with

parameter θv, the thermal network ft : Rdt ! [0, 1]
K

with parameter θt, the
discriminator in the image representation layer Dh : Rdh ! [0, 1] with parame-

ter θh, the discriminator in the label layer Dl : [0, 1]
K

! [0, 1] with parameter
θl and the decoder network fd : Rdh ! R

dv with parameter θd.
The visible and thermal networks capture the mapping functions from the

visible and thermal facial images to the expression labels. The two discrimina-
tors compete with the two-view networks, regularizing them in order to learn
the modal-irrelevant image representations and output similar predictions. Since
adversarial learning focuses on the statistical similarity of the learned represen-
tations and classification errors from two modalities, synchronous visible and
thermal imaging is not required. The decoder network ensures the preservation
of some inherent features of the visible view.

4.1 Basic Classification Loss for Two Views

We build duplicate neural networks for visible and thermal datasets respectively.
The output layers of the visible and thermal networks are K-way softmax lay-
ers. The outputs of the visible and thermal networks are denoted as ŷv = fv (xv)
and ŷt = ft (xt). Therefore, the supervised classification losses for two views are
Lv (yv, ŷv) and Lt (yt, ŷt) respectively, we use common cross-entropy loss. The
visible and thermal networks are first trained with their corresponding datasets.
Then we fix the parameters of thermal network, and fine-tuning the visible net-
work by exploiting thermal images as privileged information.

4.2 Adversarial Learning in Feature and Label Levels

After training the visible and thermal networks, the two-view networks are com-
bined and fine-tuned simultaneously. Since the visible and thermal training im-
ages are unpaired, we cannot adopt a pair-wise similarity constraint as in Wang
et al.’s work [7]. Motivated by He et al.’s work [22], we propose to build discrim-
inators in the feature and label levels in order to make full use of the thermal
data as privileged information.

Let av and at represent the activations of the visible and thermal data in
a certain hidden layer. The learning objective of the feature-level discriminator
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Dh(a; θh) is to classify the source of the activations as accurately as possible.
The visible network serves as a generator which tries to fool the discriminator.
We treat the visible view as a positive class and the thermal view as a negative
class. The minimax objective can be formulated as follows:

min
θv

max
θh

Eav∼Pav
logDh (av) + Eat∼Pat

log (1�Dh (at)) (1)

Adversarial learning is introduced in the feature level to reduce the statistical
gap between the visible and thermal views and learn view-irrelevant features.
At the label level, we also introduce adversarial learning because the tasks of
facial expression recognition from visible and thermal views are highly correlated.
Therefore, the decision-making behaviour of the two-view networks should be
similar. The learning objective is formulated as Eq. 2.

min
θv

max
θl

Eŷv∼Pŷv
logDl (ŷv) + Eŷt∼Pŷt

log (1�Dl (ŷt)) (2)

In addition to minimizing the classification errors, the learning objective of
the visible network is to fool the two discriminators into making mistakes, so its
loss function in the feature and label space can be formulated as Eq. 3 and 4.

Lh(θv) = � logDh (at) (3)

Ll(θv) = � logDl (ŷt) (4)

4.3 Visible Reconstruction Loss

Although we introduce a feature-level discriminator in order to learn view-
irrelevant feature representations, some inherent features of the original two
views may be missing during adversarial learning. We want to preserve some
inherent features of the visible view to learn a highly performing visible facial
expression classifier. To this end, we set a decoder network fd upon the visible
hidden features av and force the visible network fv to learn some feature rep-
resentations which can be decoded into the original visible images. The decoder
network outputs a reconstructed image x̂v = fd(av), which has the same size as
the original visible image xv. Then we evaluate the difference between x̂v and
xv using mean squared error as shown in Eq. 5.

1Lr(θv) = kxv � fd (av)k
2

(5)

4.4 Adaptive Classification Loss Adjustment

Since there may be a few unpaired visible and thermal images that are signifi-
cantly dissimilar with each other, and forcefully aligning these images may intro-
duce irrelevant knowledge to the visible network. Therefore, we utilize the feature

1 This term should be written as Lr(θv, θd). In fact, the decoder network can be viewed
as a branch of the visible network. We omit the θd for convenience.
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discriminator’s output ph = Dh(av) and label discriminator’s output pl = Dl(ŷv)
to generate attention values to alleviate these effects. In information theory, the
entropy function is an uncertainty measure defined as H(p) = �

P

j pj log pj ,
which we can use to quantify the transferability. We thus utilize the entropy
criterion to generate the attention value for each image as:

w = 1 + (H(ph) +H(pl))/2 (6)

Embedding the attention value into the cross entropy loss of visible network
Lv (yv, ŷv), the adaptive classification loss can be formulated as:

La (yv, ŷv) = wLv (yv, ŷv) (7)

4.5 Overall Loss Function

The loss function of the visible networks is defined as Eq. 8.

L(θv) = La + λ1Lh + λ2Ll + λ3Lr (8)

where λ1, λ2 and λ3 are hyper-parameters, controlling the weights of feature-
level adversarial loss, label-level adversarial loss and reconstruction loss respec-
tively.

4.6 Optimization

The visible and thermal networks play the role of “generator” in the proposed
framework. The optimization procedures of the feature-level and label-level dis-
criminators are mutually independent. Therefore, we can apply alternate opti-
mization steps, as in the original GAN framework [23].

5 Experiment

5.1 Experimental Conditions

We perform our experiments on multimodal databases containing visible and
thermal facial images. Currently, available databases include the NVIE database
[24], the MAHNOB Laughter database [25], and the MMSE database [26]. The
NVIE database is unsuitable for deep learning due to a limited number of training
instances. We also perform experiments on facial expression databases containing
visible facial images, i.e., CK+ [27], Oulu-CASIA [28] and MMI [29] databases.

The MAHNOB Laughter database consists of audio, visible videos, and ther-
mal videos of spontaneous laughter from 22 subjects captured while the subjects
watched funny video clips. Subjects were also asked to produce posed laughter
and to speak in their native languages. We cannot conduct expression recogni-
tion on this database because it only provides visible and thermal images for
laughter. In our experiment, two sub-data sets were used: the laughter versus
speech data set (L vs S) which contains 8252 laughter images and 12914 speech
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images, and the spontaneous laughter versus posed laughter data set (L vs PL)
which contains 2124 spontaneous laughter images and 1437 posed laughter im-
ages. Following the same experimental conditions as Wang et al.’s work [7], a
leave-one-subject-out cross validation methodology is adopted. Accuracy and
F1-score are used for performance evaluation.

The MMSE database consists of 3D dynamic imaging, 2D visible videos, ther-
mal videos, and physiological records from 140 subjects induced by 10 emotion
tasks. We use the same images as Yang et al.’s work [20], they semi-automatically
select 2468 frames from 72 subjects (45 female and 27 male) on four tasks based
on the FACS codes, which contains 676 happiness images, 715 surprise images,
593 pain images and 484 neutral images. A 10-fold cross validation is performed,
and the split is subject independent. Accuracy and Macro-F1 are used for per-
formance evaluation.

The CK+ database contains 593 video sequences collected from 123 subjects.
Among them, 327 video sequences with 118 subjects are labeled as one of seven
expressions, i.e., anger, contempt, disgust, fear, happiness, sadness and surprise.
We use the last three frames of each sequence with the provided label, which
results in 981 images. A 10-fold cross-validation is performed, and the split is
subject independent. Accuracy is used for performance evaluation.

The Oulu-CASIA database contains data captured under three different il-
lumination conditions. During the experiment, only the data captured under
strong illumination condition with the VIS camera is used. The Oulu-CASIA
VIS has 480 video sequences taken from 80 subjects, and each video sequence
is labeled as one of the six basic expressions. The last three frames of each se-
quence are selected, a 10-fold subject-independent cross validation is performed.
Accuracy is used for performance evaluation.

The MMI database consists of 236 image sequences from 31 subjects. Each
sequence is labeled as one of the six basic facial expressions. We selected 208
sequences captured in frontal view. We selected three frames in the middle of
each sequence as peak frames and associated them with the provided labels. This
results a dataset with 624 images. A 10-fold subject-independent cross validation
is performed. Accuracy is used for performance evaluation.

On all databases, we crop the facial regions from the visible and thermal
images with the help of landmark points and resize the facial regions to 224⇥224.
We use ResNet-34 [30] as the basic architecture for the visible and thermal
networks. The last layer of 1000 units in the original ResNet-34 is replaced by
fully connected layers with K units. The last layer of the “conv3 x”2, with a
dimension of 28⇥ 28⇥ 128, is selected to add feature-level adversarial learning
and build the decoder network. The learning rate of the discriminator is 10−4,
and the learning rates of the two-view networks start from at 2⇥ 10−3 and use
cosine annealing strategy.

In order to evaluate the influence of each proposed loss function, we con-
duct a series of ablation experiments to verify our methods when images are
unpaired. Firstly, a standard ResNet-34 is trained as baseline using only visible

2 See Table 1 in the original ResNet paper [30].
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Table 1. Experimental results on the MAHNOB Laughter and MMSE databases.

Scenario Methods
L vs PL L vs S MMSE

Acc F1 Acc F1 Acc F1

single
view

visible neural network [7] 93.98 92.08 83.97 87.01 88.74 89.01
ResNet 93.93 93.44 85.77 88.96 90.62 90.21

paired
images

SVM2K [7] 91.40 88.52 72.40 77.61 83.01 82.73
DCCA+SVM [7] 86.42 81.17 65.07 72.29 72.36 71.97
DCCAE+SVM [7] 86.44 82.21 68.29 74.91 81.30 80.94

Wang et al.’s method [7] 94.14 92.30 85.54 88.38 92.18 91.96
Pan et al.’s method [8] 95.77 94.51 90.23 91.77 93.15 92.88

unpaired
images

Lv+Lh 95.80 94.57 88.60 90.98 92.99 92.78
Lv+Ll 95.63 94.33 88.35 90.91 92.87 92.75

Lv+Lh+Ll 96.43 95.38 90.08 92.16 93.82 93.78
La+Lh+Ll 96.73 95.88 90.72 92.54 94.92 94.79

Ours:La+Lh+Ll+Lr 96.92 96.02 91.62 93.54 95.83 95.74

Table 2. Experimental results on the CK+, Oulu-CASIA and MMI databases.

Scenario Methods CK+ Oulu-CASIA MMI

single
view

LBP-TOP [16] 88.99 68.13 59.51
HOG 3D [14] 91.44 70.63 60.89

ResNet 94.80 84.58 74.04
IACNN [18] 95.37 - 71.55
DeRL [20] 97.30 88.00 73.23

IF-GAN [19] 95.90 - 74.52

unpaired
images

Lv+Lh 96.64 86.81 77.56
Lv+Ll 96.33 86.67 77.40

Lv+Lh+Ll 97.15 87.85 78.04
La+Lh+Ll 97.86 88.40 78.68

Ours:La+Lh+Ll+Lr 98.37 89.11 79.33

images. Another ResNet-34 is also trained using thermal images and is fixed as
guidance later. Secondly, the methods with feature-level adversarial learning Lh,
label-level adversarial learning Ll and both of them are trained for comparison.
Thirdly, the method with Lh, Ll and adaptive classification loss La is trained.
Finally, our proposed method which combines La, Lh, Ll and Lr is trained.

Note that the visible and thermal training images on the MAHNOB and
MMSE databases are all paired. Since we want to conduct unpaired experiment,
the most intuitive way is doing cross-dataset experiment. However these two
databases have different expression categories, we can’t conduct cross-dataset ex-
periment directly. Therefore, in order to simulate the unpaired scenario, we ran-

domly sample visible and thermal training samples {x
(i)
v , y

(i)
v }mi=1 and {x

(i)
t , y

(i)
t }mi=1

from visible and thermal train set of the same database, and ensure they come
from disjoint partitions. On the facial expression databases that only contain
visible images, we use the thermal images from MMSE database as privileged
information.
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5.2 Experimental Results and Analysis

Experimental results are shown in Table 1 and 2. From the tables, we can find
the following observations:

Firstly, adopting the introduced losses from the feature and label spaces
both lead to a great improvement comparing with the the single-view baseline
using ResNet. Specifically, the acc/f1 of Lv+Lh and Lv+Ll are 1.87%/1.13%,
1.70%/0.89% higher than ResNet on the L vs PL data set, 2.83%/2.02%, 2.58%/
1.95% higher than ResNet on the L vs S data set, 2.37%/2.57%, 2.25%/2.54%
higher than ResNet on the MMSE database. The experimental results on the
visible facial expression databases, i.e., CK+, Oulu-CASIA and MMI database,
show similar trend. Current methods cannot utilize unpaired data, so only one
data view can be used. However, our method effectively explores both visible
and thermal data to achieve superior results.

Secondly, our method can combine the strengths of adversarial loss from
feature and label space to achieve better performance. For example, Lv+Lh+Ll

outperforms Lv+Lh and Lv+Ll by 0.83%/1.00% and 0.95%/1.03% of acc/f1
on the MMSE database. Other databases have similar results, which indicate
the different privileged informations will not cause the inter-view discrepancy.
Guidance in both feature and label spaces can help visible classifier to learn
more robust feature representations and make better predictions.

Thirdly, our approach can reduce the irrelevant knowledge impact of some
dissimilar visible and thermal images. To be specific, the method of La+Lh+Ll is
0.71%, 0.55% and 0.64% better than Lv+Lh+Ll on the CK+, Oulu-CASIA and
MMI database. The experimental results demonstrate our introduced adaptive
classification loss can highlight transferable images and reduce negative trans-
formation.

Fourthly, our proposed method achieves the best performance by using fea-
ture adversarial loss, label adversarial loss, adaptive classification loss and re-
constructed loss together. Thermal images are used as privileged information to
reduce the statistical gap between the visible and thermal views in both fea-
ture and label levels during training. However, adversarial learning focuses on
learning view-irrelevant features and may discard the original information of the
visible images. Our method adds a decoder network upon the visible feature
space, forcing the visible network to preserve inherent features of the visible
view. Specifically, the accuracy of our method is 3.57%, 4.53% and 5.29% higher
than the baseline using ResNet on the CK+, Oulu-CASIA and MMI database.
The experimental results demonstrate that both feature-level and label-level ad-
versarial learning are effective for exploring the dependencies between visible
and thermal images, and the decoder network is able to preserve the inherent
features of the visible view during adversarial learning.

5.3 Comparison to Related Methods

Comparison to Multimodal FER Methods. As shown in Table 1, our
method achieves better performance than three traditional multimodal learning
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methods, i.e., SVM2K, DCCA+SVM, and DCCAE+SVM. On the L vs S data
set, the accuracy of our method is 19.22%, 26.55%, and 23.33% higher than
those of SVM2K, DCCA+SVM, and DCCAE+SVM, respectively. SVM2K can
be viewed as a shallow version of the ResNet method that includes a similarity
constraint. DCCA and DCCAE are learned with an unsupervised objective. Our
method is based on the deep convolutional neural network and is learned in an
end-to-end manner, resulting in superior accuracy.

Compared to state-of-the-art multimodal FER works, i.e., Wang et al.’s
method [7] and Pan et al.’s method [8], our method achieves better performance
by exploiting unpaired images. For example, on the L vs PL data set, the ac-
curacy of our method is 2.78% and 1.15% higher than those of Wang et al.’s
method and Pan et al.’s method, respectively. Wang et al.’s method requires
paired visible and thermal images during training, and the similarity constraint
is imposed on the predictions of the two-view networks in order to make them
similar. Our method achieves the same goal without this constraint by learn-
ing with unpaired images in an adversarial manner. Pan et al.’s method also
requires paired images and used adversarial learning in the feature spaces of the
visible and thermal views. However, some important information of the visible
view may be missing. Our method incorporates a decoder network to ensure
the preservation of the original information of the visible view, leading to more
robust visible feature representations.

Comparison to Visible FER Methods. As shown in Table 2, our method
get better results than the state-of-the-art FER methods which only use vis-
ible images. To be specific, our method is 3.00%, 1.07% and 2.47% higher
than IACNN [18], DeEL [20] and IF-GAN [19] on the CK+ database, 7.78%,
6.10% and 4.81% higher than these methods on the MMI database. IACNN
used expression-sensitive contrastive loss to reduce the effect of identity infor-
mation, DeEL extracted the information of the expressive component through
de-expression procedure, IF-GAN transferred facial expression to a fixed identity
to mitigate the effect of identity-related information. Although these works con-
centrate on extracting the discriminative expressive feature, our method takes
full advantage of the thermal images as privileged information to train more
robust classifiers.

5.4 Evaluation of Adversarial Learning

To further evaluate the effectiveness of adversarial learning, we visualize the
distributions of visible and thermal views. Figure 2 displays the visualization of
data from the feature and label spaces with and without adversarial learning on
the L vs PL data set. Specifically, we project the hidden feature representations
onto a 2D space with t-SNE [31] and plot them on a two-dimensional plane.
Predictions of visible and thermal views are plotted in a histogram. In Figure
2(a), feature points of visible and thermal views are separate, as feature-level
adversarial learning is not used. Introducing adversarial learning on the feature
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space leads to feature points that are mixed together, as shown in Figure 2(b).
Similarly, when comparing Figures 2(c) and 2(d), the distributions of visible
and thermal predictions become closer in the latter figure, demonstrating the
effectiveness of reducing the statistical gap between visible and thermal views
via adversarial learning.

(a) without feature-level ad-
versarial learning

(b) with feature-level adver-
sarial learning

(c) without label-level ad-
versarial learning

(d) with label-level adver-
sarial learning

Fig. 2. Visualization of the visible and thermal distributions on the laughter versus
posed laughter data set of the MAHNOB Laughter database.

reconstructedreconstructedoriginal original

Fig. 3. Comparison between the original facial images and the reconstructed facial
images on the MMSE database.
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5.5 Visualization of the Decoder Network

As elaborated in Section 4.3, a decoder is built upon the visible feature space
and the reconstruction loss is included in the overall loss. Thus, we can visualize
the outputs of the decoder network, i.e., the reconstructed facial images, to see
what the decoder learns. The visualization of the original and reconstructed
facial images on the MMSE database is shown in Figure 3. We can see that the
original and reconstructed facial images are nearly identical, indicating that the
inherent features of the visible view are preserved during adversarial learning.

6 Conclusions

In this paper, we propose an unpaired facial expression recognition method that
utilizes thermal images as privileged information to enhance the visible classi-
fier. Two deep neural networks are first trained with visible and thermal images.
Two discriminators are introduced and compete with the two-view networks in
the feature and label space to reduce the statistical gap between the learned
visible and thermal feature representations and close the distributions between
the predictions of the visible and thermal images. Furthermore, a decoder net-
work is built upon the visible hidden features in order to preserve some inherent
features of the visible view during adversarial learning. Experimental results
on benchmark expression databases demonstrate that our method can achieve
state-of-the-art performance on the task of facial expression recognition.
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