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Abstract. In recent years, supervised person re-identification (person
ReID) has achieved great performance on public datasets, however, cross-
domain person ReID remains a challenging task. The performance of
ReID model trained on the labeled dataset (source) is often inferior on
the new unlabeled dataset (target), due to large variation in color, reso-
lution, scenes of different datasets. Therefore, unsupervised person ReID
has gained a lot of attention due to its potential to solve the domain
adaptation problem. Many methods focus on minimizing the distribution
discrepancy in the feature domain but neglecting the differences among
input distributions. This motivates us to handle the variation between
input distributions of source and target datasets directly. We propose
a Second-order Camera-aware Color Transformation (SCCT) that can
operate on image level and align the second-order statistics of all the
views of both source and target domain data with original ImageNet
data statistics. This new input normalization method, as shown in our
experiments, is much more efficient than simply using ImageNet statis-
tics. We test our method on Market1501, DukeMTMC, and MSMT17
and achieve leading performance in unsupervised person ReID.

1 Introduction

Person re-identification (person ReID) is an important computer vision task,
which aims to identify the same person from a set of images captured under
different cameras [1]. The task of person ReID is very challenging due to the
large variation in camera viewpoint, lighting, resolution, and human pose etc.
In recent years, supervised person ReID has achieved great performance under
the single domain dataset [2–7, 4, 8–17]. State-of-the-art methods have achieved
over 95% top1 accuracy and nearly 90% in mAP. Existing researches in super-
vised single domain person ReID methods can be roughly grouped into three
categories: 1) transferring and improving powerful CNN architectures to per-
son ReID [2–7], where off-the-shelf feature extractors are used as parts of the
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network architecture; 2) designing more effective metrics [10–15]; 3) combining
priori into network architecture for fine-grained feature learning [4, 8, 9, 16, 17].

Despite supervised single domain person ReID has achieved great accuracy,
the performance of the model would drop dramatically when the model is ap-
plied to an unseen new dataset. In other words, the performance of ReID model
trained on the labeled source dataset (source) is often inferior on the new unla-
beled target dataset, which is due to the data-bias between these two datasets (or
two domains). As it is expensive to label the target datasets, many researchers
treat this task as an unsupervised domain adaptation (UDA) problem. Unfortu-
nately, many existing UDA solutions can not be simply applied to unsupervised
person ReID due to the differences in problem settings. Generally, UDA setting
requires the categories of source and target domain to be the same, or at least
to have overlap. However, in person ReID, the identities in source and target
datasets are totally different. In recent years, approaches that aim specifically
to improve the performance of unsupervised domain adaptation of person ReID
have been proposed [18–21]. We categorize these methods into two different set-
tings: direct transfer and progressive learning. In the direct transfer setting, most
of methods [19, 20] minimize the discrepancy of two domains by applying care-
fully designed loss functions. While in progressive learning [21], pseudo labels
are generated for training, and the model is trained in an iterative manner.

Although many methods focus on decreasing the domain discrepancy in the
feature level, there are very few methods working on the image level. Several
existing methods use generative adversarial networks [22] (GAN) to generate
new data that are similar to the target domain for training. For example, PT-
GAN [18] transfers the appearance of the labeled source dataset to the unlabeled
target dataset using generative adversarial networks (GAN). ECN [19] makes
fine-grained camera style transfer by utilizing the camera id information in the
target dataset. Camera sensor variation is pointed out in [23], and they use GAN
to generate domain-specific images for every view of the camera. Our proposed
method also works on image level, unlike previous works that use additional
GAN for data generation, we aim to minimize the discrepancy of datasets by
matching the camera-wise input distributions to the second-order ImageNet [24]
data statistics. We found that there are actually two “domain shift” steps in the
typical unsupervised person ReID. 1) ImageNet to the source: most methods in
person ReID would use a backbone network pre-trained on ImageNet, the in-
put distribution of ImageNet is usually different from the source dataset, which
means the first domain shift is from ImageNet to source dataset. 2) source to
target: the second step is domain shift from source dataset to target dataset.
To solve the domain shift problem mentioned above, we apply the camera-aware
color transformation, which matches every camera view individually to the Ima-
geNet statistics. This fine-grained color transformation boosts the performance
of ReID model in the cross-domain setting by a large margin. In addition, we
also apply a color equalization data augmentation to increase the adaptive abil-
ity of our trained model. As far as we know, it is the first time second-order
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color transformation and color equalization data augmentation are applied for
unsupervised person ReID. We summarize the contributions as follows:

– We propose to use the color transformation as a pre-processing step to com-
pensate for the color changes in unsupervised person ReID in both source
domain and target domain, which is a fine-grained camera-aware color trans-
formation that can handle camera color shift and statistics changes of differ-
ent cameras. It is easy to implement, fast and simple, and there is no need
for tedious parameter tuning.

– We propose to use color equalization augmentation in cross-domain person
ReID. This augmentation could ease the differences in the input distribution
of different datasets.

– We conduct extensive experiments and ablation studies on several popular
person ReID benchmarks including Market1501 [25], DukeMTMC-ReID [26],
MSMT17 [18] to demonstrate the effectiveness of proposed color transfor-
mation and data augmentation solution and achieve leading performance in
these datasets.

2 Related works

2.1 Supervised person ReID

In recent years, state-of-the-art supervised person ReID methods have achieved
over 95% top1 accuracy in large-scale public datasets. Researchers have been
working on novel network structures [2–4, 7], combining other human body prior
in the training process [9, 27, 28, 8], more efficient loss functions [10, 29–31, 6, 32,
33, 11, 2] etc. For example, Sun et al. [3] used CaffeNet and ResNet as backbone
networks. Chen et al. [27] developed a multi-scale network architecture with a
saliency-based feature fusion. Zhou et al. [28] built a part-based CNN to extract
discriminative and stable features for body appearance. Shi et al. [11] trained
their network using triplet loss with hard positive pairs mining. Although these
methods perform well on the single domain dataset, when directly test the model
trained from the source dataset on the new unlabeled target dataset, the per-
formance of the model would drop dramatically. This performance gap has led
many researchers to cross-domain person ReID or unsupervised person ReID.

2.2 Unsupervised domain adaptation

Unsupervised domain adaptation (UDA) [34–36] aims to transfer knowledge from
a labeled source dataset to an unlabeled target dataset. Many UDA methods fo-
cus on the feature domain and try to decrease the discrepancy of source and
target feature distributions. For example, Gretton et al. [34] minimize the dif-
ference between the means of features from two domains. Sun et al. [35] learn a
linear transformation that aligns the mean and covariance of feature distribution
between source and target domain. Ganin et al. [36] propose a gradient reversal
layer and integrate it into a deep neural network for minimizing the classification
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loss while maximizing domain confusion loss. Chen et al. [37] propose a high-
order moment matching between two domains in feature space. Some existing
works try to generate pseudo-labels on the target set and utilize this information
for training. For example, Sener et al. [38] infer the labels of unsupervised target
data points in a k-NN graph and jointly train a unified deep learning framework
in an end-to-end fashion. Saito et al. [39] propose to assign pseudo-labels to
unlabeled target samples based on the predictions from two classifiers trained
on source samples and one network is trained by the samples to obtain target
discriminative representations. However, these methods assume the class labels
are the same across domains, which is not true in person ReID. In addition,
they were not designed to address the camera shifts in ReID problem. Therefore
they can not achieve good performance in unsupervised person ReID and some
of them can not be applied to this problem.

2.3 Unsupervised person ReID

Recently, works specifically focus on unsupervised person ReID have been pro-
posed to tackle the scalability problem. Several methods utilize GAN to generate
new data that looks similar to target domain for training. For example, Wei et
al. [18] transfer the appearance of labeled source dataset to the unlabeled tar-
get dataset using cycle GAN [40]. Zhong et al. [19] make fine-grained camera
style transfer by utilizing the camera id information in the target dataset. Some
works use additional attribute information for cross-domain knowledge transfer.
For instance, Wang et al. [41] propose to learn an attribute-semantic and identity
discriminative feature representation space for the target domain. They utilize
attribute information of person to bridge the source and target domain. Cross-
camera scenes variation in person ReID is significant in many ways including
image resolution, color, and viewpoints changes. These variants lead to a huge
discrepancy in image statistics of images captured by different cameras. Existing
methods handle cross-camera scene variation by camera-to-camera alignment at
image level [19, 20] or feature level [42]. Zhong et al. [20] try to use GAN to gener-
ate different camera style images of the target dataset. Wu et al. [43] consider the
domain shift among different cameras and propose to keep cross camera-aware
similarity consistency and intra-camera similarity preservation by minimizing
two consistency loss. UPR [44] adjusts images’ hue, saturation, lightness, and
contrast to enhance the adaptation ability of models by data augmentation. Dif-
ferent from previous works, we propose a second-order color transform method
that focuses on the distribution of input images. Besides, color equalization aug-
mentation is used to make model less sensitive to the data distribution changes.

3 Proposed method

As we mentioned in Section 1, we noticed that the DNNs’ backbone model used
for person ReID are usually pre-trained on ImageNet to obtain better perfor-
mance. However, the input statistics of source and target ReID datasets (e.g.
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Market1501, DukeMTMC) are different from ImageNet. Therefore, matching
the color statistics of the source and target ReID dataset with ImageNet would
reduce the domain discrepancy. Another observation is that the image distribu-
tion of camera views are inconsistent due to the camera sensor variation. As we
can see from Fig. 1, the color of the clothes of the same person looks different
under different camera views. The color mean statistic of six cameras in Mar-
ket1501 in Fig. 2 shows that there are clear differences in input color distribution
of different cameras. This observation motivates us to make color statistics of
all the cameras be the same. More specifically, we use a linear transformation to
match the first-order statistics (mean) and second-order statistics (covariance)
of input images with ImageNet statistics.

Fig. 1. Samples of color changes of different camera views of Market1501. The column
1-6 and 7-12 are sampled from camera view 1 to 6 respectively. As we can see the
camera view 6 (column 6,12) is very different from other camera views.

3.1 Color Statistics Calculation

For color matching of different camera views, we need to obtain the statistics
of datasets. Due to the limitation of computation resources, we cannot load the
whole dataset into memory to make the full computation, especially for the large
scale dataset (e.g. ImageNet). Therefore, we adopt an incremental computation
method. Suppose Xk ∈ R

m×n×3 the k-th input image of training dataset, m×n
is the size of input images and 3 is the number of channels (i.e. R,G and B), and
xijk ∈ R

3 denotes the color vector of a pixel in image Xk. We use the following
incremental rules to obtain the color mean and covariance of input images:

Sk[x] = Sk−1[x] +
∑

i,j

xijk,

Sk[xxT ] = Sk−1[xxT ] +
∑

i,j

xijkx
T
ijk,

Nk = Nk−1 +mn

(1)



6 W. Xiang et al.

Fig. 2. Color mean statistic of different camera views on Market1501. It is clear that
the scale and shape of color mean statistic distribution are different among various
camera views.

where Sk[x] and Sk[xxT ] is the incremental statistics of the first k images,
respectively, Nk is the number of pixels of the first k images, and S0[x] and
S0[xxT ] is a zero vector and matrix, respectively, and N0 = 0. After we obtain
the final statistics S[x] and S[xxT ] of all input images, the mean and covariance
matrix are:

µ =
1

N
S[x], Σ =

1

N
S[xxT ]− µµ

T (2)

We can use these incremental rules to get mean and covariance of input im-
ages without occupying too much memory. Because we only need to save Sk[x],
Sk[xxT ], Nk and current image Xk at every step.

3.2 Mean and Covariance Matching

Given the statistics µ and Σ for input images of training dataset and the target
statistics µ0 and Σ0, we need to find a linear transformation to make the first
and second order statistics of transformed pixel the same as target statistics.
The pixel x is transformed as: x′ = Ax + b, where A is a 3 × 3 matrix and
b is a 3-vector. We need to find proper A and b to satisfy E[x′] = µ0 and
E[x′x′T ]− µ

2
0 = Σ0, then we can obtain the following conditions:

Aµ+ b = µ0

AΣAT = Σ0

(3)

The solution for A and b are not unique under this conditions. There remain
a family of solutions. Suppose the eigenvalue decomposition for Σ and Σ0 is
Σ = UΛUT and Σ0 = U0Λ0U

T
0 , Then we have

A = U0Λ
1

2

0 QΛ
−

1

2UT

b = µ0 −Aµ

(4)
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where Q is any orthogonal matrix (i.e. QQT = I). Therefore, we can choose a
proper orthogonal matrix Q to get a specific solution. The most two common
choices for Q is I and UT

0 U, and their corresponding solution for A are A =

U0Λ
1

2

0 Λ
−

1

2UT and A = U0Λ
1

2

0 U
T
0 UΛ

−
1

2UT , respectively. In our experiments,
we use the second choice for Q.

3.3 Transformation for Different Cameras

In order to reduce the difference of color distribution among different cameras,
we use a linear transformation for the images from one camera to make color
statistics the same as images from ImageNet. Suppose we have obtained the mean
and covariance of the images from different cameras according to Eq. (1) and
(2), and we use {µc}

C
c=1 and {Σc}

C
c=1 to denote the color mean and covariance

matrix of images from C cameras, and use µI and ΣI to denote the color mean
and covariance matrix of image from ImageNet. Then we adopt the Eq. (4) to
get the linear transformation parameters {A}Cc=1 and {b}Cc=1 for images from
different cameras:

Ac = UIΛ
1

2

I U
T
I UcΛ

−
1

2

c UT
c

bc = µI −Acµc, c = 1, 2, ..., C,
(5)

where Σc = UcΛcU
T
c and ΣI = UIΛIU

T
I . Therefore, for a pixel x from the

c-th camera, the input pixel for the backbone DNNs is x′ = Acx + bc. Af-
ter making the color statistics of images from all cameras the same as that of
images from ImageNet, we also need to use the same normalization parame-
ters (mean and variance of each channel) as that used in training ImageNet for
input images. This normalization method can be viewed as simple linear trans-
formation so it can be fused with color transformation. We use the diagonal
matrix A0 = Diag{ 1

σr
, 1
σg

, 1
σb
} and b0 = [µr, µg, µb]

T to denote the normaliza-

tion transformation parameters. Then, the fused linear transformation for c-th
camera changes to:

x′ = A′

cx+ b′

c,

A′

c = A0Ac,

b′

c = A0bc + b0.

(6)

We only need to compute and save the parameters A′

c and b′

c for each cameras,
and it can work as a pre-processing step in network training.

3.4 Progressive unsupervised learning

Progressive unsupervised learning is an effective paradigm used in [21, 45] to
boost the performance of unsupervised person ReID. We first train a base net-
work on the labeled source dataset, then we follow the training strategy in [21]
and conduct the progressive training on target training set in an iterative man-
ner. The overall framework can be seen in Fig. 3.
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Fig. 3. Pipeline of our training framework. We use Market1501 (6 camera views) as
source dataset, DukeMTMC (8 camera views) as target dataset in this figure. After
training base network using transformed source data, pseudo-labels are generated from
transformed target data with base network. Then progressive learning is applied to
train the model in an iterative manner.

Base network training. We use ResNet50 as the backbone network for a fair
comparison, as it is used by most of the state-of-the-art methods. We follow the
training strategy and network structure in [45] to fine-tune on the ImageNet
pre-trained model. We discard the last fully connected (FC) layer and add two
FC layer. The output of the first FC layer is 2,048-dim, followed by batch nor-
malization [46], ReLU. The output of the second FC layer is the identity number
in the labeled training set. As mentioned in the previous section, we add a pre-
processing step to make our model invariant to color statistic changes.

Progressive learning. Inspired by previous ReID work [47, 21], we adopt a
clustering-training iterative strategy, and both global and local features are con-
sidered in the iterative training process. We denote the unlabeled image on the
target training set to be Ii, after feeding the input image to the base network,
the output feature could then be denoted Xi, which is a H × W × C feature
map. Besides global feature map Xi, we further split the Xi into upper body
and lower body feature maps Xi

up, X
i
low ∈ R

H
2
×

W
2
×C . The feature maps are then

average pooled to feature vector f i
g, f

i
up and f i

low. To keep the model consistency
with the pre-trained model, we add a 2048-dim FC layer after fg to get fe.

After generating features of all target training set, we then apply DBSCAN [48]
to cluster and generate pseudo-label yig, y

i
up and yilow for each sample, respec-

tively. Re-ranking [49] is also applied to generate a more reliable distance matrix.
We use these pseudo-labels as supervised information to train the model on the
target training set. We apply hard triplet loss function to fine-tune the model,
and the formula can be represented as follows:
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Lt =
∑

i∈P×K

[max ‖f i
a − f i

p‖
2
2

︸ ︷︷ ︸

hardest positive

−

hardest negative
︷ ︸︸ ︷
∥
∥f i

a − f i
n

∥
∥
2

2
+m]+ (7)

where P is the identity number, K is the number of samples per identity, f i
a

represents anchor feature vector, f i
p stands for positive feature vector, f i

n stands
for negative feature vector, m is the margin. This formula aims to make largest
positive distance smaller than smallest negative distance by margin m. We apply
hard triplet loss on both global and local features, the whole loss function can
be represented as:

L = Lt (fg, yg) + Lt (fup, yup) + Lt (flow, ylow) + Lt (fe, yg) (8)

We also apply identity dictionary strategy proposed in [21] and randomly
sample an identity in each cluster group as the identity agent. The pseudo-label
of other samples would then be decided by the feature distance to the identity
agent. This leads to new pseudo label set yn−g, yn−up, yn−low. We apply the same
hard triplet loss in Eq. 8 on these new labels. The overall loss function becomes:

L =Lt (fg, yg) + Lt (fup, yup) + Lt (flow, ylow) + Lt (fe, yg)

+ Lt (fg, yn−g) + Lt (fup, yn−up) + Lt (flow, yn−low) + Lt (fe, yn−g)
(9)

The clustering and training process is kept several times until iterations.

Fig. 4. Samples of color equalization augmentation of different views of Market1501.
The first row are originals, the second row are the images after color equalization.

Color equalization augmentation. Color equalization is a simple yet efficient
technique for image visual effect enhancement. It equalizes the image histogram
and improves the contrast by effectively spreading out the most frequent intensity
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values, i.e., stretching out the intensity range of the image. In person ReID,
the contrast of images is inconsistent among different camera views. Therefore,
using equalization augmentation would ease the inconsistency and improve the
generalization ability. The visual effect of color equalization can be seen from
Fig. 4. As we can see, the images after color equalization are lighter and feel
more constant among different views. Our implementation of color equalization
augmentation is based on the Python Image Library(PIL) 3, which applies the
library function ImageOps.equalize(). In all our experiments, we set the color
equalization augmentation probability to 0.5.

4 Experiments

4.1 Implementation details

Baseline training. As described in Section 3.4, we first train a baseline model
on the source dataset with the color transformation layer. We resize all the
input images to 256×128. For data augmentation, we employ random cropping,
flipping, random erasing [50], and our proposed color equalization. For hard
triplet mining, in each mini-batch, we randomly selected P = 4 identities and
sampled K = 8 images for each identity from the training set, so that the mini-
batch size is 32. And in our experiment, we set the margin parameter to 0.5.
During training, we use the Adam [51] with weight decay 0.0005 to optimize the
parameters for 150 epochs. The initial learning rate is set to 3×10−4 and decays
to 3× 10−5 after 100 epochs.

Unsupervised training. For unsupervised training, we follow the same data
augmentation strategy and triplet loss setting. And we decrease the initial learn-
ing rate from 3 × 10−4 to 6 × 10−5 and change the training epoch from 150 to
70. Besides, the whole framework is trained for 30 iterations.

4.2 Ablation Study

Effectiveness of camera-aware color transformation. We investigate the
influences of different normalization and color transformation strategy. The “Base-
line” method applies the mean and standard deviation of ImageNet, which is
used by most of the methods. As listed in Table 1, using domain-specific mean
and deviation “MD” outperforms using ImageNet statistics by around 3−4% in
mAP/top1 when transferred from DukeMTMC to Market1501. While camera-
aware first-order normalization Cfirst improves 1.9% mAP and 1.8% top1 ac-
curacy over “MD” when tested from D→M. This shows the effectiveness of
camera-aware normalization, even though it is a simple first-order method, it
can still largely boost the performance. Our proposed Csecond achieves the best
performance and outperforms other methods by a large margin. We use C to
represent Csecond for convenience in the experiments below.

3 http://www.pythonware.com/products/pil/
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Table 1. Comparison of using different color transformation methods. “Baseline” de-
notes using ImageNet image statistics for normalization. “MD” stands for using mean
and std for normalization. “Cfirst” stands for using each camera view’s mean and stan-
dard deviation of source and target datasets for input normalization. “Csecond” stands
for using the proposed second-order camera-aware color transformation.

Method
DukeMTMC → Market1501 Market1501 → DukeMTMC
mAP Top1 Top5 Top10 mAP Top1 Top5 Top10

Baseline 20.3 46.5 65.4 72.4 15.9 29.0 45.2 52.3
Baseline + MD 23.1 50.1 67.0 73.8 16.8 29.9 45.3 50.9
Baseline + Cfirst 25.0 51.9 68.2 74.6 19.8 35.5 51.3 57.5
Baseline + Csecond 30.6 58.2 74.0 80.1 21.9 38.5 55.1 62.3

In Table 2 we can see that with camera-aware color transformation, we im-
prove the performance by 10.3% and 15.4% in mAP and rank-1 accuracy compar-
ing to baseline when the model is transferred from DukeMTMC to Market1501.
Similarly, when the model is trained on Market1501 and tested on DukeMTMC,
the performance gain becomes 6.0% and 9.5% in mAP and rank-1 accuracy,
respectively. Moreover, color transform keeps boosting the performance when
combined with progressive learning. It can further improve the performance by
5.9% in mAP and 4.6% in rank-1 accuracy when transfer from DukeMTMC to
Market1501, which show its strong adaptive ability.

Effectiveness of equalization augmentation. We conduct an ablation study
to prove the effectiveness of equalization data augmentation in Table 2. This aug-
mentation could relieve the lighting differences between different camera views.
From Table 2, we can see that with the color equalization augmentation the per-
formance is improved by 8.6% and 11.9% in mAP and top1 accuracy comparing
to “Baseline” when the model is transferred from DukeMTMC to Market1501.
When the model is trained on Market1501 and tested on DukeMTMC, the per-
formance gain becomes 8.5% and 13.9% in mAP and top1 accuracy, respectively.
Moreover, when we combine color equalization and camera-aware color trans-
formation, the performance would further be improved by around 2% in top1
accuracy and 1− 2% in mAP.

Effectiveness of progressive unsupervised learning. We perform several
ablation studies to prove the effectiveness of progressive unsupervised learning
(PUL) as listed in Table 2. Specifically, comparing “Baseline + C + E” with
“Baseline + C + E + P”, we improve the performance by 35.5% and 28.4% in
mAP and rank-1 accuracy when the model is transferred from DukeMTMC to
Market1501. Similarly, when the model is trained on Market1501 and tested on
DukeMTMC, the performance gain becomes 35.0% and 32.3% in rank-1 accuracy
and mAP, respectively. Although the progressive unsupervised learning and di-
rect transfer have a huge performance gap, our proposed method can constantly
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Table 2. Comparison of various methods on the target domains. When tested on
DukeMTMC-reID, Market-1501 is used as the source and vice versa. “Baseline” means
directly applying the source-trained model on the target domain. “Baseline+x” means
using “x” method upon baseline model. “E” means trained with color equalization aug-
mentation. “C” denotes camera-aware color transformation. “P” stands for progressive
learning methods.

Method
DukeMTMC → Market1501 Market1501 → DukeMTMC
mAP Top1 Top5 Top10 mAP Top1 Top5 Top10

Baseline 20.3 46.5 65.4 72.4 15.9 29.0 45.2 52.3
Baseline + E 28.9 58.4 74.6 80.1 24.4 42.9 58.8 65.2
Baseline + C 30.6 58.2 74.0 80.1 21.9 38.5 55.1 62.3
Baseline + C + E 32.4 61.9 77.8 83.6 25.4 44.7 60.7 67.1

Baseline + P 62.0 82.0 92.7 94.9 54.9 71.8 82.9 86.0
Baseline + E + P 65.5 84.6 93.8 95.6 57.5 75.1 84.6 88.0
Baseline + C + E + P 67.9 86.6 94.5 96.9 60.4 76.0 85.0 88.9

improve the performance under these two settings. With progressive learning,
camera-aware color transformation and color equalization augmentation achieve
the best overall performance.

4.3 Comparison with State-of-the-arts

In this section, we compare the proposed Second-order Camera-aware Color
Transformation (SCCT) with state-of-the-art unsupervised learning methods on
Market1501, DukeMTMC in Table 3. SCCT outperforms existing approaches
with a clear advantage. In particular, our model outperforms the best published
method SSG [21] by almost 9.7% on mAP when testing on Market1501 and
DukeMTMC-reID dataset.

Results on Market1501 On Market-1501, we compare our results with state-
of-the-art methods including Bag-of-Words (BoW) [25], local maximal occur-
rence (LOMO) [52], UMDL [53], PUL [54] and CAMEL [55], PTGAN [18],
SPGAN [56], TJ-AIDL [41], ARN [57], UDAP [45], MAR [58], PDA-Net [59],
PAST [60], SBSGAN [61], CASCL [43] and SSG [21]. Methods that trained on
target training set with clustering and pseudo-label (UDAP, PAST, SSG) always
obtain higher results than other methods. Therefore, we show the performance
of SCCT in two different settings. When tested under direct transfer setting, our
SCCT-DIRECT outperforms many complicated state-of-the-art direct transfer
methods including TJ AIDL, SBSGAN, and HHL. TJ AIDL use additional at-
tribute label information from source data. SBSGAN use additional JPPNet
to obtain foreground masks. While SCCT-DIRECT only apply linear camera-
aware color transformation and color equalization augmentation. We believe if
combined with SCCT, these methods would further boost performance. When
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comparing with progressive learning methods, SCCT-PUL achieves rank-1 accu-
racy = 86.6% and mAP = 67.9%, which outperforms unsupervised version SSG
in [21] by 6.6% and 9.6%.

Results on DukeMTMC A similar improvement can also be observed when
we test it on the DukeMTMC dataset. Although the camera view discrepancy in
DukeMTMC is not as large as Market1501, SCCT can still significantly improve
the model performance over the Baseline. Specifically, we achieve mAP = 60.4%,
top1 accuracy = 76.0%, top5 accuracy = 85.0% and top10 accuracy = 88.9%
by unsupervised learning. Compared with the best unsupervised method, our
result is 7.0%/3.0%/4.6%/5.7% higher on mAP and top1/top5/top10 accuracy.
Therefore the superiority of our camera-aware color transformation methods
with color equalization augmentation can be concluded.

Table 3. Comparison of proposed approach with state-of-the-arts unsupervised domain
adaptive person re-ID methods on Market1501 and DukeMTMC dataset.

Method
DukeMTMC → Market1501 Market1501 → DukeMTMC
mAP Top1 Top5 Top10 mAP Top1 Top5 Top10

LOMO [52] 8.0 27.2 41.6 49.1 4.8 12.3 21.3 26.6
BOW [25] 14.8 35.8 52.4 60.3 8.3 17.1 28.8 34.9
UMDL [53] 12.4 34.5 52.6 59.6 7.3 18.5 31.4 37.4
PTGAN [18] - 38.6 - 66.1 - 27.4 - 50.7
PUL [54] 20.5 45.5 60.7 66.7 16.4 30.0 43.4 48.5
SPGAN [56] 22.8 51.5 70.1 76.8 26.2 46.4 62.3 68.0
CAMEL [55] 26.3 54.5 - - - - - -
SPGAN+LMP [56] 26.7 57.7 75.8 82.4 26.2 46.4 62.3 68.0
TJ AIDL [41] 26.5 58.2 74.8 81.1 23.0 44.3 59.6 65.0
SBSGAN [61] 27.3 58.5 - - 30.8 53.5 - -
HHL [20] 31.4 62.2 84.0 27.2 46.9 61.0 66.7
CASCL [43] 35.5 65.4 80.6 37.8 86.2 59.3 73.2 77.8
ARN [57] 39.4 70.3 80.4 86.3 33.4 60.2 73.9 79.5
MAR [58] 40.0 67.7 81.9 - 48.0 67.1 79.8 -
ECN [19] 43.0 75.1 87.6 91.6 40.4 63.3 75.8 80.4
PDA-Net [59] 47.6 75.2 86.3 90.2 45.1 63.2 77.0 82.5
UDAP [45] 53.7 75.8 89.5 93.2 49.0 68.4 80.1 83.5
PAST [60] 54.6 78.4 - - 54.3 72.4 - -
SSG [21] 58.3 80.0 90.0 92.4 53.4 73.0 80.6 83.2

SCCT-DIRECT 32.4 61.9 77.8 83.6 25.4 44.7 60.7 67.1
SCCT-PUL 67.9 86.6 94.5 96.9 60.4 76.0 85.0 88.9

Results on MSMT17 We further validate the effectiveness of our proposed
Second-order Camera-aware Color Transformation (SCCT) and color equaliza-
tion augmentation on MSMT17 [18] dataset as listed in Table 4. Using color
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Table 4. Experiments on MSMT17 dataset. “Baseline” denotes using ImageNet image
statistics for normalization. “C” stands for using the proposed second-order camera-
aware color transformation. “E” means applying color equalization augmentation.

Method
DukeMTMC → MSMT17 Market1501 → MSMT17
mAP Top1 Top5 Top10 mAP Top1 Top5 Top10

Baseline 5.6 17.0 27.0 32.2 2.8 8.7 15.6 19.7
PTGAN [18] 3.3 11.8 - 27.4 2.9 10.2 - 24.4
ECN [19] 10.2 30.2 41.5 46.8 8.5 25.3 36.3 42.1
TAUDL [62] 12.5 28.4 - - - - - -
UTAL [63] 13.1 31.4 - - - - - -

Baseline + C 7.1 21.7 32.2 37.8 4.1 12.6 21.1 25.5
Baseline + E 12.1 33.8 48.0 54.0 7.2 21.8 33.8 39.4
SCCT-DIRECT 13.2 37.8 51.2 57.0 8.3 23.6 36.0 42.1

transformation can boost the performance by 1.5% on mAP and 4.7% on top1
accuracy comparing to the baseline model when transferring from DukeMTMC
to MSMT17. Similarly, it improves 1.3% on mAP and 3.9% on top1 accuracy
when transferring from Market1501 to MSMT17. Color equalization boosts the
performance even larger on these datasets. On DukeMTMC to MSMT17, it im-
proves the baseline method by 6.9% in mAP and 15.8% on top1 accuracy. On
Market1501 to MSMT17, it surpasses baseline by 4.4% on mAP and 13.1% on
top1. When color transformation and color equalization are combined, it achieves
13.2%/37.8% on DukeMTMC to MSMT17 and 8.3%/23.6 on Market1501 to
MSMT17, which is very significant as it outperforms or achieves similar per-
formances with many state-of-the-art methods (e.g. ECN [19], TAUDL [62],
UTAL [63]) with simple image-level color transformation and augmentation.

5 Conclusions

In this work, we proposed camera-aware second-order color transformation for
person ReID, which can reduce the discrepancy of source and target data caused
by the input distribution, constantly improve performance on direct transfer set-
ting and progressive learning settings. It is a novel input normalization method,
which is often neglected by previous unsupervised person ReID methods. It is
simple to implement and can be easily combined with many existing state-of-the-
art methods. We also investigate the color equalization data augmentation under
the unsupervised person ReID setting, which is very effective and can boost the
generalization ability of the ReID model. Extensive experimental results demon-
strate that the performance of our approach outperforms the state-of-the-arts
by a clear margin.
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