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Abstract. It is well-known that the single image super-resolution (SIS-
R) models trained on those synthetic datasets, where a low-resolution
(LR) image is generated by applying a simple degradation operator (e.g.,
bicubic downsampling) to its high-resolution (HR) counterpart, have lim-
ited generalization capability on real-world LR images, whose degrada-
tion process is much more complex. Several real-world SISR datasets
have been constructed to reduce this gap; however, their scale is relative-
ly small due to laborious and costly data collection process. To remedy
this issue, we propose to learn a realistic degradation model from the
existing real-world datasets, and use the learned degradation model to
synthesize realistic HR-LR image pairs. Specifically, we learn a group of
basis degradation kernels, and simultaneously learn a weight prediction
network to predict the pixel-wise spatially variant degradation kernel as
the weighted combination of the basis kernels. With the learned degra-
dation model, a large number of realistic HR-LR pairs can be easily
generated to train a more robust SISR model. Extensive experiments
are performed to quantitatively and qualitatively validate the proposed
degradation learning method and its effectiveness in improving the gen-
eralization performance of SISR models in practical scenarios.

1 Introduction

Single image super-resolution (SISR) aims to recover a high-resolution (HR)
image from its low-resolution (LR) observation, which is a highly valuable tech-
nique for improving the resolution and quality of digital photography. As a typ-
ical ill-posed inverse problem, SISR has been widely studied during the past
decades [1–6], yet it is still a challenging and active research topic. The tradi-
tional methods generally utilize powerful image priors [7–12] for SISR, and have
made remarkable progresses. However these handcrafted image priors are limited
in representing the complex image textures.

Benefitting from the rapid development and great success of deep convo-
lutional neural networks (CNNs) [13], recently SISR has witnessed significant
progresses by employing deep CNNs [14–24]. Most of the existing CNN based
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SISR models are trained on synthetic HR-LR image pairs, which are generated
by applying a simple degradation model (e.g., bicubic downsampling) to the HR
images [14, 15, 18, 19, 21, 23, 24]. However, the authentic HR to LR image degra-
dation process is much more complicated than these simple uniform downsample
operators. As a result, the SISR networks trained on such synthetic datasets have
low generalization capability to real-world LR images, largely limiting their value
in practical applications.

Efforts have been made to address the generalization problem of SISR models
[16, 25–27]. Zhang et al. [16] proposed to use multiple Gaussian kernels together
with additive white Gaussian noise to increase the diversity of HR-LR pairs, yet
the selection and combination of these kernels are very sensitive. Very recently,
researchers have started to construct real-world datasets by using digital cam-
eras to capture images of the same scene under different focal lengths [25–27].
Particularly, Cai et al. [27] carefully designed a registration algorithm to obtain
pixel-wise aligned HR-LR image pairs. The so-called RealSR dataset enables su-
pervised learning of SISR models, and the learned models demonstrate better
performance than previous ones on real-world scenarios. However, constructing
such datasets of real-world HR-LR pairs is laborious and costly, and the existing
datasets of this kind [25–27] are all limited in number of image pairs, diversity
of scenes and illuminating conditions. For example, the RealSR dataset contains
only 559 scenes in total, limiting the generalization capability of trained SISR
models to a wider range of scenarios.

While constructing real-world datasets of HR-LR image pairs, researchers
have also proposed to learn the image degradation process from unpaired HR
and LR images, and use the learned degradation model to generate HR-LR
image pairs for SISR model learning [28–31]. All these methods employ the
Generative Adversarial Network (GAN) [32] to learn the degradation process
by differentiating the distribution between generated LR and real LR images.
Unfortunately, training such a GAN with unpaired data is very difficult and
may not converge to the desired result. Moreover, using a network to model the
degradation from HR to LR images makes it hard to interpret the degradation
process, ignoring some prior knowledge on the image formation.

In this paper, we model the image degradation process by using spatially
variant degradation kernels instead of a network, and propose to learn this model
from the HR-LR image pairs in the RealSR dataset instead of the unpaired
HR and LR images. It is widely agreed in literature [2, 1, 33, 16, 3] that the LR
image formation process can be formulated as first blurring the HR image with
a degradation kernel, followed by downsampling and noise addition, while in
real scenarios the degradation kernel is spatially variant, relating to the depth
and local content in the scene. Clearly, the pixel-wise degradation kernels are
the key to model the degradation process. One may propose to learn a network
to directly map the HR image to LR image, or propose to learn a network to
directly predict the pixel-wise degradation kernel. However, the learning space of
those two proposals can be too big for modeling the degradation process, while
they ignore the common knowledge of image degradation. Considering the fact
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that blurring kernels in an optical imaging system can be generally described
as bell-shaped smooth functions [34], we argue that the plausible degradation
kernels distribute in a small subspace, which can be approximated as a linear
combination of a group of basis kernels. Therefore, we propose to learn a group
of basis kernels as well as a weight prediction network to predict the combination
coefficients at each pixel.

An end-to-end learning scheme is designed to learn the basis kernels and
the weight prediction network from the RealSR dataset [27]. Once learned, our
degradation model takes an HR image as input, predicts the spatially variant
kernels at each location, and outputs the degraded LR image. In this way, we
can easily generate a large amount of realistic HR-LR image pairs using the HR
images on hand. Finally, we can train SISR models by using these synthetic yet
realistic HR-LR pairs. Experimental results show that the trained SISR models
achieve better generalization performance than the models trained only on the
RealSR dataset, owing to the enlarged training data of realistic HR-LR image
pairs. Our main contributions are summarized as follows:

– We propose to learn the LR image degradation process in a supervised man-
ner from a set of real-world HR-LR image pairs. Specifically, we learn spa-
tially variant degradation kernels by learning a group of basis kernels as well
as a pixel-wise weights prediction network.

– By using the learned degradation model to generate realistic HR-LR image
pairs, more robust SISR models can be trained, which exhibit higher gen-
eralization performance than previous SISR models and produce promising
visual quality for real-world LR images.

2 Related work

2.1 Single Image Super-resolution

Single image super-resolution (SISR) is an active topic in low-level vision, and a
plenty of works have been proposed in the past decades, including interpolation-
based [35], model-based [12, 10] and learning-based methods [14, 15, 17–21, 23,
24]. Traditional methods are usually limited in representing the complex image
local structures, while the recently developed deep CNN have shown great ad-
vantages in image structure representation and consequently improved much the
SISR performance [14, 15, 36, 19, 24, 23]. For example, Kim et al. [15] employed
the residual learning strategy to design the VDSR model with 20 convolutional
layers. Liu et al. [19] proposed to utilize contextual information by exploiting the
image non-locally correlation. Zhang et al. [23] proposed a very deep CNN with
over 400 layers, and improved much the SISR performance. Despite the great
success, most of the CNN based SISR models are trained on synthetic datasets,
where the LR images are generated by applying simple operators such as bicu-
bic downsampling to the HR images [14, 15, 17–21, 23, 24]. Unfortunately, the
real-world image degradation process is far more complex than bicubic down-
sampling. Such a gap between synthetic data and real data makes the trained
deep SISR models hardly be generalized to real-world LR images.



4 J. Xiao et al.

2.2 Real-world SISR

To solve the problem of real-world SISR, one intuitive way is to use a more
complex degradation process to simulate LR images. Zhang et al. [16] proposed
to use multiple Gaussian kernels with additive white Gaussian noise to simulate
LR images, whereas the selection of suitable kernels is difficult and ad hoc for
practical applications. Another recently popular solution is to employ the gener-
ative adversarial network (GAN) [32] with unsupervised learning. E.g., SRGAN
[22] is proposed to utilize adversarial loss to improve the perceptual quality of
images. While the GAN-based methods show some interesting results on SISR,
their results are not stable and often exhibit some unnatural visual artifacts.

Instead of simulating HR-LR image pairs, recently efforts have been devoted
to construct real-world SISR datasets. Qu et al. [37] proposed to use a beam
splitter to acquire paired HR-LR images. Kóhler et al. [38] used hardware binning
on camera sensor to generate LR images. However, these two datasets contain
very limited scenes, 31 in [37] and 14 in [38]. Very recently, DSLR cameras
have been used to construct real-world SISR datasets by capturing the same
scene under different focal lengths. Chen et al. [26] collected 100 image pairs
of printed postcards. Zhang et al. [25] constructed the SR-RGB dataset with
500 scenes, whereas the image pairs are not strictly aligned. To enable pairwise
learning, an image registration algorithm is proposed in [27] to carefully handle
the misalignment between HR and LR images caused in the data collection
process. The so-called RealSR dataset contains a set of aligned real-world HR-
LR image pairs, which allow direct pairwise training of SISR models. However,
the collection and processing of such a dataset is laborious and costly, and the
scale and diversity of RealSR dataset is relatively limited (559 scenes in total).

2.3 Degradation Model Learning

To diminish the domain gap between synthetic and real HR-LR image pairs,
another line of work aims to learn the image degradation process and uses it
to generate more realistic HR-LR image pairs. Bulat et al. [29] proposed to use
a generator to learn how to degrade from HR to LR, and a discriminator to
distinguish between synthetic LR and real LR images. Manuel et al. [28] further
improved the generator to learn on image high frequency layers. However, train-
ing a GAN is very difficult and may not always converge to the desired result,
and the above GAN based degradation learning methods do not exploit the pri-
or knowledge of image formation process in an optical imaging system. In this
paper, we model the image degradation process by spatially variant degrada-
tion kernels, and propose a supervised learning scheme to learn the degradation
model from existing real-world SISR datasets.

3 The Proposed Method

In this section, we first formulate the LR image degradation model based on the
real-world LR image formation process. We then present how to learn the pixel-
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wise degradation models. Finally, we present how to use the learned degradation
models to generate realistic HR-LR datasets for training real-world SISR models.

3.1 Formulation of Image Degradation Model

Denote by IH an HR image and by IL its LR counterpart. In literature [2, 1, 33,
16, 3], the image degradation from an HR image to an LR image can be generally
represented as

IL = (IH ∗ k)↓d + v, (1)

where “∗” is the convolution operator, k is the degradation kernel, ↓d is the
downsampling operator, and v is the random observation noise. The goal of
SISR is to recover the underlying HR image IH given its LR observation IL.

Most of existing SISR works [14, 15, 18, 19, 21, 23, 24] assumes that the degra-
dation kernel k is uniform, i.e., spatially invariant, over the whole image. Par-
ticularly, they apply the bicubic kernel to HR images to simulate the HR-LR
image pairs, and then use those pairs to train SISR models. Whereas in real-
world SISR problems, the degradation kernel is much more complex, correlating
with the depth and local content of the scene [27]. Therefore, the degradation
kernel is typically non-uniform and spatially variant. At each location (i, j), the
kernel may vary, and we use ki,j to denote the per-pixel degradation kernel. The
spatially variant image degradation from HR to LR can be formulated as:

IL(i, j) = IHi,j ⊙ ki,j + v(i, j), (2)

where IHi,j denotes a local image window centered at (i, j) with the same size as
kernel ki,j , and “⊙” is the inner product operator.

From Eq. 2, one can see that the key to model the real-world image degrada-
tion process is how to predict the pixel-wise degradation kernel ki,j . One intuitive
idea is to learn a CNN from the available HR-LR pairs (e.g., the RealSR dataset
[27]) to predict the kernel ki,j ; however, the learning space of a CNN can be too
big for the kernels and the network can be over-fitted by the limited training
data. On the other hand, the predicted kernel may have poor interpretability
since they may not accord with our prior knowledge on the image degradation
process (please refer to our ablation study in Sec. 4.3 for more discussions). It
is commonly agreed that the degradation kernels in an optical imaging system
can be generally described as bell-shaped smooth functions [34]. This means
that the plausible degradation kernels are not arbitrary but actually fall into a
small subspace, which can be spanned by a group of basis kernels. Denote by
Φ = {φ1, ,φM} the set of M basis kernels. We propose to approximate the
pixel-wise degradation kernel ki,j as a weighted combination of Φ as follows:

ki,j ≈
∑M

m=1
Ci,j(m)φm, (3)

where φm is the mth basis kernel and Ci,j represents the combination weight
vector at location (i, j). The above formulation constrains the kernels in a sub-
space which can be more easily learned, especially when the available training
dataset (e.g., RealSR) is not very big.
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Fig. 1. Overview of the proposed approach for degradation model learning. A group
of basis kernels Φ are learned together with a weight prediction network F, which
are used to generate the pixel-wise degradation kernels. The LR image is obtained by
applying the pixel-wise degradation kernels to the HR image.

3.2 Degradation Model Learning

From Eq. (3), one can see that the learning of pixel-wise kernels ki,j is turned into
the learning of basis kernels Φ and the weight vectors Ci,j . The basis kernels are
global to all image regions, while the weights depend on the image local contents.
We propose to use a network to predict the weights and learn it simultaneously
with the basis kernels from some real-world HR-LR dataset.

Our degradation model learning (DML) approach is illustrated in Fig. 1.
With the HR image IH as input, a CNN F with parameters Θ is learned to
predict the weights, i.e., C = F(IH |Θ), where C is the set of weight vectors Ci,j .
The basis kernels φm are also learned so that the kernels ki,j can be predicted
according to Eq. (3). The predicted degradation kernels are applied to the HR

image IH to output the predicted LR image, denoted by Î
L
. Suppose there are

N pairs of HR-LR training images, the learning objective can be formulated as

min
Φ,Θ

∑N

n=1
||Î

L

n − ILn ||
2
2. (4)

We learn the basis kernels Φ and weight prediction network F in an end-to-end
manner by using the RealSR dataset [27].

We design the weight prediction network F following an encoder-decoder
structure. It takes an HR image as input and outputs a weight vector at each
location. To embrace large receptive field, we use a max pooling layer for fea-
ture down-sampling, and employ the bilinear upsampling layer to increase the
feature resolution and ensure pixel-wise outputs. Convolutional layer with filters
of size 3 × 3 is used, and ReLU is used as the activation function. To output
the per-pixel weights, we use sigmoid function after the last convolutional layer
for normalization. The whole network can be easily optimized by the SGD or
ADAM optimizer. Examples of the learned kernels, the visualization of the pre-
dicted weight maps and more discussions will be provided in the ablation study
(see Section 4.3).
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3.3 SISR Model Learning

Once the basis kernels Φ and the weight prediction network F are learned by
using the DML approach presented in Section 3.2, we can use them to synthesize
HR-LR image pairs by using a set of collected HR images as inputs. However,
directly using the synthesized LR images to train SISR models is problematic. As
described in Eqs. (1) and (2), the real-world LR images are usually corrupted by
a certain amount of noise. However, the training objective in Eq. (4) encourages
to generate a noise-free LR image since the random noise is hard to predict. If
we use the synthesized clean LR images to train the SISR model and then apply
the model to real-world noisy LR data, the noise will be exaggerated and lead
to unpleasant visual artifacts.

To address this issue and further diminish the gap between synthetic and real

LR images, we add random noise to the synthesized LR image Î
L

n according to
the LR image formulation process described in Eq. (1). Without additional in-
formation on the imaging system (e.g., sensors, lens), we simply assume additive
white Gaussian noise (AWGN) and empirically set the noise level as σ = 5.

Finally, we collect a set of high quality images as the HR set, and use the
learned degradation model together with AWGN to generate synthetic yet re-
alistic HR-LR image pairs. These image pairs are used to train the SISR mod-
el. In this paper, we adopt two representative SISR network architectures, a
lightweight network VDSR [15] and a deeper network RCAN [23], to validate
the proposed DML method.

4 Experimental Results

4.1 Experiment setup

We carry out both quantitative and qualitative experiments to demonstrate the
effectiveness of our proposed DML method for SISR model training. Considering
that there are a few issues to be validated and explained, here we summarize
how we set up the experiments for a better understanding of our work.

– In Section 4.2, we introduce the training dataset and the testing dataset in
our experiments, as well as some implementation details of our algorithm.

– Section 4.3 conducts some ablation studies. First, we discuss the selection
of the number of basis kernels in DML. Then we compare our DML with
another two potential solutions to synthesize HR-LR pairs. One is to learn
a CNN to directly map an HR image to an LR one, and another is to learn
a CNN to predict the pixel-wise degradation kernel.

– In Section 4.4 we demonstrate that our DML can result in more robust real-
world SISR performance. We first use the RealSR dataset [27], where aligned
real-world HR-LR pairs are available so that PSNR/SSIM/LPIPS indices can
be computed, to perform quantitative experiments. We then use other real-
world data out of the training dataset to perform qualitative experiments,
which are to demonstrate that our DML can improve the robustness and
generalization performance of real-world SISR models.
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4.2 Datasets and implementation details

Datasets. There are three types of datasets required to validate the performance
of DML in degradation process learning and SISR model training.

– The first one is the RealSR [27] dataset (version 2), which contains aligned
HR-LR image pairs of 559 scenes collected by two cameras with 3 zooming
factors: ×2, ×3 and ×4. We follow [27] to split the RealSR dataset into 459
scenes for training and the remaining 100 for testing. We use the training
part of this dataset to train our degradation model by the method described
in Section 3.2, and use the testing part to quantitatively evaluate the per-
formance of DML and its application to real-world SISR.

– Once the degradation model is learned, we can apply it to an HR image
dataset to generate synthetic HR-LR pairs. We construct an HR dataset by
combining the Flickr2K dataset [24] and Internet images, containing 3150
images in total. The Flickr2k dataset has 2650 high quality images of vari-
ous scenes, whose resolution is mostly 1500× 2000. To diminish the effect of
compression artifacts, we downsample those Flickr2k images by a factor of
2 after Gaussian smoothing (with scale σ = 1). We also download 500 raw
images of 4K resolution from [39], and then apply the PhotoShop Camer-
aRaw tool to them so that uncompressed high quality RGB images of 4K
resolution are obtained.

– The third dataset is to validate the effectiveness of DML for real-world SISR.
We use the SR-RGB dataset [25] which consists of real-world LR images and
their unaligned HR counterparts obtained by optical zoom of DSLR. Since
the HR and LR images are not aligned, the PSNR/SSIM/LPIPS measures
can not be calculated but the HR images can be used as references for visual
comparison.

Implemention Details. We set the size of basis kernels to be learned as 15×15
for all zooming scales ×2, ×3, and ×4. The basis kernels are randomly initial-
ized, and then normalized to have summation 1 for further updating. The weight
prediction network is initialized using the Xavier initializer [40]. In the training
of both DML and SISR networks, we convert the RGB images to YCbCr color
space, and train or test on the Y channel. Images are cropped into 192 × 192
patches for training of all models. Left-right and up-down flips are used for da-
ta augmentation. The Adam optimizer [41] with the default parameter setting
(β1 = 0.9, β2 = 0.999) is used as the optimizer. We train DML and SISR mod-
els using fixed learning rate of 1e−4 for 100K and 300K iterations, respectively.
The batch size is set as 16 in DML training. As for SISR models, we adopt
two representative network architectures: VDSR [15] and RCAN [23]. We im-
plement RCAN with 100 convolutional layers. The batch size is set as 16 and 2,
respectively, for training VDSR and RCAN models.

4.3 Ablation study

We conduct ablation studies to investigate the following two issues of DML: (1)
selection of the number of basis kernels in DML; and (2) comparison of DML
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Table 1. Evaluation of the quality of generated LR images and super-resolved HR
images by using the RealSR [27] dataset. The best and second results are highlighted
in red and blue, respectively.

Method
Generated LR Super-resolved HR

×2 ×3 ×4 ×2 ×3 ×4
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

DML (N=4) 37.82 0.9862 36.46 0.9848 35.61 0.9840 33.23 0.9544 30.09 0.9150 28.50 0.8856
DML (N=8) 37.93 0.9864 36.54 0.9850 35.75 0.9842 33.32 0.9552 30.18 0.9157 28.60 0.8864
DML (N=16) 37.90 0.9863 36.51 0.9849 35.73 0.9841 33.28 0.9548 30.16 0.9153 28.58 0.8859

DirectNet 37.70 0.9864 36.33 0.9843 35.50 0.9838 33.13 0.9539 30.01 0.9144 28.42 0.8853
DirectKPN 37.77 0.9863 36.35 0.9844 35.56 0.9836 33.16 0.9545 30.06 0.9147 28.48 0.8860

with the other two potential HR-LR pair synthesis approaches. We train our
DML and its variants on the training set (459 image pairs) of RealSR [27], and
use the testing set of RealSR to evaluate the quality of generated LR images
and the quality of super-resolved HR images. PSNR and SSIM are used as the
quantitative metrics.

Number of basis kernels. We first study the suitable number of basis kernels
in our DML. By using the training part of the RealSR dataset, we learn N=4,
8, 16 basis kernels and their associated weight predict networks. We then apply
the learned models to the HR images in the testing part of the RealSR dataset
to generate LR images. By comparing the synthesized and real LR images, we
compute and list the PSNR/SSIM results in Table 1. One can see that by in-
creasing the number from N=4 to N=8, better LR generation performances can
be achieved, whereas the performance of using N=16 basis kernels is slightly
worse than N=8. This means that the underlying degradation process can be
well approximated by using N=8 basis kernels.

We visualize the learned 8 basis kernels for different zooming factors in Fig.
2. One can see that with the increase of zooming factor from 2 to 4, the kernels
becomes more dispersed and complex, which are in accordance with our common
knowledge of image degradation process. We also visualize the basis coefficients
predicted by our weight prediction network in Fig. 3. One can see that the
learned network can adaptively assign different weights to the kernels according
to the scene content and image local structure to generate realistic LR images.

Since our final goal is to improve the SISR performance via DML, it is also
necessary to test the effect of N on the final SISR results. We apply the learned
DML models to our collected HR image dataset (see Sec. 4.2) to synthesize 3150
HR-LR images pairs, which are then used to train a VDSR super-resolution
model. By applying the trained VDSR model to the LR images in the RealSR
testing set, we compute the PSNR/SSIM indices of the super-resolved HR im-
ages. Table 1 lists the results. One can see that N=8 again achieves the best
results for real-world SISR. Therefore, we set N=8 for DML in our experiments.

Comparison with other HR-LR pair synthesis strategies. Besides the
proposed DML, there are two other intuitive strategies to synthesize HR-LR
image pairs. One is to learn a CNN that directly maps an HR image to an LR
one, denoted as DirectNet, and the other is to learn a kernel prediction network
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Fig. 2. Visualization of the learned degradation basis kernels by our DML (N=8)
model. The left, middle and right 4 columns represent the basis kernels for SR zooming
factors ×2, ×3 and ×4, respectively.

Fig. 3. Visualization of the predicted combination weights of the basis kernels by our
DML method for zooming factor ×2. The leftmost image is the input HR image, and
the right 8 images visualize the predicted weights corresponding to each basis kernels
(refer to Fig. 2 for the 8 kernels). The brighter intensity denotes larger weight. One
can see that our weight prediction network can adaptively assign different weights
according to the scene content and local structures.

[42] to predict the degradation kernel, denoted as DirectKPN. To validate the
advantages of our proposed DML method, we implement these two strategies
by using the same backbone (with the same hyper-parameters) of the weight
prediction network in our DML for fair comparison. For DirectNet, we implement
it using the residual learning strategy [15] for better convergence. All the three
competitors are trained on the training set of RealSR [27], and tested on the
RealSR testing set. PSNR and SSIM are used as quantitative measures.

We first evaluate the performance of the three strategies on LR image genera-
tion. The results are listed in Table 1. One can see that DML performs constantly
better than DirectNet or DirectKPN on all the three zooming factors, with an
improvement of 0.23dB and 0.20dB in PSNR, respectively. This shows that DML
can generate more realistic LR images, owing to our proposed strategy of learn-
ing basis kernels and predicting pixel-wise combination weights. Besides, it is
observed that DirectKPN performs slightly better than DirectNet. This shows
that by taking into account the image degradation process, better LR genera-
tion performance can be achieved by learning to predict pixel-wise kernels than
directly predicting LR image pixels.

We then evaluate their effectiveness on improving SISR. We apply the three
LR image generation models to the collected HR image dataset, synthesizing
3150 HR-LR images pairs by each model. We add small AWGN to those HR-LR
pairs (refer to Section 3.3 for details), and train three VDSR models. Final-
ly, we apply these three VDSR models to the LR images in the testing part of
the RealSR dataset, and obtain the super-resolved HR images. The PSNR/SSIM
results are listed in Table 1. One can see that the VDSR network trained on syn-
thetic HR-LR pairs generated by our DML method, performs constantly better
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Kernels by DML

Kernels by DirectKPN

Kernels by DML

Kernels by DirectKPN

DirectNet DirectKPN DML HR (×2) DirectNet DirectKPN DML HR (×4)

Fig. 4. Visualization of predicted degradation kernels by DML and DirectKPN. One
can see that the degradation kernels predicted by DML vary with the image local
content, whereas the kernels predicted by DirectKPN are simple and rather uniform
across the whole image. We also show the SISR results of the VDSR models trained
on the synthetic HR-LR pairs by DML, DirectNet and DirectKPN. One can see that
the model based on DML can recover more details with less artifacts.

(around 0.15dB in PSNR) than those trained on pairs generated by DirectNet or
DirectKPN. This validates the superiority of DML to DirectNet and DirectKPN
on improving SISR performance. Our DML method can generate realistic LR
images with a smaller gap to real-world LR images, therefore leading to better
SISR results than DirectNet and DirectKPN.

We visualize the pixel-wise degradation kernels predicted by our DML and
DirectKPN in Fig. 4 (note that DirectNet does not predict kernels). One can see
that predicted degradation kernels by DML vary with the image local content,
whereas the degradation kernels predicted by DirectKPN are simple and rather
uniform across the whole image. This is probably because when we directly learn
the pixel-wise degradation kernel, the solution space is too large so that Direc-
tKPN can only converge to a simple solution, resulting in uniform kernels for
an input image. In contrast, our DML strategy can effectively reduce the kernel
space and thus result in a more robust adaptive degradation kernel prediction
model. We also visualize the SISR results by the three degradation models in
Fig. 4. It can be seen that our DML based SISR method exhibits better visual
quality with more details and less artifacts.

4.4 Experiments on Real-World SISR

As discussed in the Introduction section, the goal of our DML is to synthesize
realistic HR-LR image pairs to supplement the limited number of real-world HR-
LR pairs so that more robust SISR models can be trained. To validate whether
this goal is achieved by our DML method, in this section we use VDSR [15] (20
layers) and RCAN [23] (100 layers) as two representative SISR models to per-
form extensive SISR experiments. By using the HR image dataset we collected,
we synthesized 3150 HR-LR pairs via the learned DML model, and denote this
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Table 2. Evaluation of SISR performances on the RealSR [27] dataset by models
trained using different training data. The best, second and third results for each SISR
network architecture are highlighted in red, blue and yellow, respectively.

SISR
Training dataset

LPIPS ↓ PNSR ↑ SSIM ↑

model ×2 ×3 ×4 ×2 ×3 ×4 ×2 ×3 ×4

VDSR

RealSR 0.141 0.224 0.291 33.60 30.53 28.92 0.957 0.919 0.887
Syn-DSGAN 0.145 0.240 0.309 32.47 29.57 27.20 0.949 0.908 0.851
Syn-DML 0.137 0.218 0.284 33.32 30.18 28.60 0.955 0.916 0.886
RealSR+Syn-DSGAN 0.151 0.234 0.289 33.35 30.13 28.56 0.954 0.915 0.885
RealSR+Syn-DML 0.124 0.198 0.267 33.50 30.37 28.86 0.957 0.918 0.889

RCAN

RealSR 0.141 0.227 0.283 33.91 30.86 29.26 0.960 0.924 0.896
Syn-DSGAN 0.148 0.239 0.319 32.45 29.78 27.95 0.948 0.916 0.877
Syn-DML 0.131 0.210 0.265 33.38 30.29 28.66 0.956 0.918 0.887
RealSR+Syn-DSGAN 0.143 0.230 0.288 33.50 30.56 28.80 0.956 0.920 0.888
RealSR+Syn-DML 0.123 0.195 0.242 33.73 30.61 28.99 0.958 0.921 0.891
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Fig. 5. Visual comparison of the competing SISR models on RealSR [27] dataset with
SR scale ×4. The first and second rows of each example are super-resolved patches by
VDSR and RCAN networks, respectively, which are trained on different training data.

dataset by Syn-DML. Note that recently a GAN based HR-LR pair synthesis
method called DSGAN [28] was developed. We finetuned this model on the Real-
SR dataset, and applied it to our HR image dataset to synthesize another dataset
of HR-LR pairs, denoted by Syn-DSGAN. Therefore, we can train variants of
VDSR/RCAN models by using: only RealSR, only Syn-DSGAN, only Syn-DML,
the combination of RealSR and DSGAN, and the combination of RealSR and
Syn-DML dataset, resulting in a total of 10 SISR models.

We evaluate the 10 VDSR/RCAN models on two real-world datasets. One is
the testing set of RealSR [27]. Since the aligned HR-LR pair are available, we can
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Fig. 6. Qualitative comparison of competing SISR methods on the SR-RGB [25]
dataset with SR scale ×4. The first and second rows of each example show the re-
sults of VDSR and RCAN models, respectively, trained on different datasets.

compute the PSNR/SSIM/LPIPS indices to perform quantitative evaluation.
Another is the SR-RGB dataset [25], which consists of many LR images and
their unaligned HR counterparts. Qualitative visual comparisons can be made
on it for the different SISR models. Wed like to stress that the testing on the
second dataset is more important (though qualitative) because it is independent
of the RealSR dataset, part of whose samples are used to train the DML and
VDSR/RCAN models. The testing results on the SR-RGB [25] dataset can more
faithfully reflect the generalization capability of competing SISR models than
those on the RealSR dataset.
Results on the RealSR dataset [27]. We apply the competing VDSR/RCAN
models to the testing set of RealSR, and the PSNR/SSIM/LPIPS indices are
shown in Table 2. Note that LPIPS is a perceptual index that measures the
perceptual quality of images (lower the better). We can have the following find-
ings. First, the VDSR/RCAN models trained on Syn DML achieve better LPIPS
score in all cases than the models trained on RealSR. This validates the effec-
tiveness of our model in improving perceptual quality by synthesizing realistic
HR-LR image pairs. Second, the VDSR/RCAN models trained on the Syn-DML
dataset achieve comparable but slightly inferior PSNR/SSIM indices to the mod-
els trained on RealSR. This is not a surprise because the training and testing
data for the latter model are from the same source. Third, SISR models trained
on Syn-DML perform significantly better (about 1dB) than those trained on
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Syn-DSGAN, which demonstrates the superiority of our DML method to the
GAN based DSGAN [28]. Last, by combining RealSR with the synthetic dataset
for training, better quantitative results can be achieved than training using only
synthetic dataset. Particularly, the VDSR model (×4) trained on RealSR+Syn-
DML achieves even high SSIM scores than the model trained on RealSR.

In Fig. 5, we compare the visual quality of super-resolved HR images by the
ten SISR models. One can see that models trained on Syn-DML and RealSR+Syn-
DML can effectively recover more image details with more pleasant perceptual
quality than the trained using only the RealSR dataset. In particular, the mod-
els trained on RealSR+Syn-DML achieve the best visual quality. This validates
that our DML method can largely improve the generalization performance of
real-world SISR models by synthesizing realistic HR-LR pairs for training.

Results on the SR-RGB dataset [25]. The SR-RGB dataset contains real-
world HR and LR images of the same scene, which are however not well aligned.
Though it is hard to compute PSNR/SSIM metrics, the HR images in this
dataset can be well used a reference for visual comparison of SISR methods.
Since the SR-RGB dataset was constructed independently of the RealSR dataset
by using different cameras and lens, the results can more fairly demonstrate the
generalization capability of an SISR model to real-world scenarios.

In Fig. 6, we visualized the super-resolved HR images on SR-RGB dataset
[25] by the ten VDSR/RCAN models trained on different training datasets. One
can see that models trained on RealSR dataset can only moderately recover
some details. Models trained on Syn-DSGAN produce severe artifacts. Benefit-
ting from the enlarged realistic training data, SISR models trained on Syn-DML
can produce visually pleasing results with more fine-grained details. Particularly,
the models trained on combined RealSR+Syn-DML deliver the best perceptu-
al quality of super-resolved HR images. The experiments on SR-RGB dataset
demonstrate that the SISR models trained by our DML method can be effective-
ly generalized to real-world applications. More visual comparisons can be found
in our supplementary file.

5 Conclusions

In this paper we proposed to tackle the generalization problem of real-world
SISR models by synthesizing realistic HR-LR pairs. To achieve this goal, we
first learned an image degradation model from real-world HR-LR image pairs.
Specifically, we learned a set of basis degradation kernels together with a weight
prediction network. The degradation kernel at any location was estimated as the
linear combination of the basis kernels using the weights predicted by the weight
prediction network. The learned degradation model was then used to synthesize
3150 HR-LR image pairs covering various scenes for SISR model training. Our
extensive analyses and experiments showed that the proposed degradation model
learning method can effectively improve the generalization performance of SISR
models to real-world applications.
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