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Abstract. Active learning aims to address the paucity of labeled data
by finding the most informative samples. However, when applying to
semantic segmentation, existing methods ignore the segmentation diffi-
culty of different semantic areas, which leads to poor performance on
those hard semantic areas such as tiny or slender objects. To deal with
this problem, we propose a semantic Difficulty-awarE Active Learning
(DEAL) network composed of two branches: the common segmentation
branch and the semantic difficulty branch. For the latter branch, with
the supervision of segmentation error between the segmentation result
and GT, a pixel-wise probability attention module is introduced to learn
the semantic difficulty scores for different semantic areas. Finally, two ac-
quisition functions are devised to select the most valuable samples with
semantic difficulty. Competitive results on semantic segmentation bench-
marks demonstrate that DEAL achieves state-of-the-art active learning
performance and improves the performance of the hard semantic areas
in particular.
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1 Introduction

Semantic segmentation is a fundamental task for various applications such as
autonomous driving [1, 2], biomedical image analysis [3–5], remote sensing [6]
and robot manipulation [7]. Recently, data-driven methods have achieved great
success with large-scale datasets [8, 9]. However, tremendous annotation cost has
become an obstacle for these methods to be widely applied in practical scenarios.
Active Learning (AL) can be the right solution by finding the most informative
samples. Annotating those selected samples can support sufficient supervision
information and reduce the requirement of labeled samples dramatically.

Previous methods can be mainly categorized into two families: uncertainty-
based [10–13] and representation-based [14–16]. However, many works [10, 12,
14, 16] are only evaluated on image classification benchmarks. There has been
considerably less work specially designed for semantic segmentation. Traditional
uncertainty-based methods like Entropy [17] and Query-By-Committee (QBC)
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(a) Image (b) Semantic difficulty map

(c) GT (d) Predicted result (e) Error mask

Fig. 1: (a) Image from Cityscapes [8]. (b) Semantic difficulty map. The colder
color represents the easier semantic areas such as road, sky, and buildings. The
warmer color represents the harder semantic areas such as poles and traffic signs.
(c) GT. (d) Predicted result. (e) Error mask generated with (c) and (d) according
to Eq. (1). It’s a binary image, coloring for better visualization.

[18] have demonstrated their effectiveness in semantic segmentation [19, 20].
However, all of them are solely based on the uncertainty reflected on each pixel,
without considering the semantic difficulty and the actual labeling scenarios.

In this paper, we propose a semantic Difficulty-awarE Active Learning (DEAL)
method taking the semantic difficulty into consideration. Due to the class imbal-
ance and shape disparity, a noticeable semantic difficulty difference exists among
the different semantic areas in an image. To capture this difference, we adopt a
two-branch network composed of a semantic segmentation branch and a seman-
tic difficulty branch. For the former branch, we adopt the common segmentation
network. For the latter branch, we leverage the wrong predicted result as the
supervision, which is termed as the error mask. It’s a binary image where the
right and wrong positions have a value 0 and 1, respectively. As illustrated in
Fig. 1(e), we color these wrong positions for better visualization. Then, a pixel-
wise probability attention module is introduced to aggregate similar pixels into
areas and learn the proportion of misclassified pixels as the difficulty score for
each area. Finally, we can obtain the semantic difficulty map in Fig. 1(b).

Then two acquisition functions are devised based on the map. One is Difficulty-
aware uncertainty Score (DS) combining the uncertainty and difficulty. The other
is Difficulty-aware semantic Entropy (DE) solely based on the difficulty. Exper-
iments show that the learned difficulty scores have a strong connection with the
standard evaluation metric IoU. And DEAL can effectively improve the overall
AL performance and the IoU of the hard semantic classes in particular.

In summary, our major contributions are as follows: 1) Proposing a new AL
framework incorporating the semantic difficulty to select the most informative
samples for semantic segmentation. 2) Utilizing error mask to learn the semantic
difficulty. 3) Competitive results on CamVid [21] and Cityscapes [8].
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2 Related Work

AL for semantic segmentation The core of AL is measuring the informative-
ness of the unlabelled samples. Modern AL methods can be mainly divided into
two groups: uncertainty-based [10–13] and representation-based [14–16]. The lat-
ter views the AL process as an approximation of the entire data distribution and
query samples to increase the data diversity, such as Core-set [14] and VAAL
[15], which can be directly used in semantic segmentation. There are also some
methods specially designed for semantic segmentation, which can also be divided
into two groups: image-level [4, 11, 19, 22] and region-level [23, 24, 20].

Image-level methods use the complete image as the sampling unit. [4] propose
suggestive annotation (SA) and train a group of models on various labeled sets
obtained with bootstrap sampling and select samples with the highest variance.
[11] employ MC dropout to measure uncertainty for melanoma segmentation.
[19] adopt QBC strategy and propose a cost-sensitive active learning method for
intracranial hemorrhage detection. [22] build a batch mode multi-clue method,
incorporating edge information with QBC strategy and graph-based representa-
tiveness. All of them are based on a group of models and time-consuming when
querying a large unlabeled data pool.

Region-level methods only sample the informative regions from images. [23]
combines the MC dropout uncertainty with an effort estimation regressed from
the annotation click patterns, which is hard to access for many datasets. [24]
propose ViewAL and use the inconsistencies in model predictions across view-
points to measure the uncertainty of super-pixels, which is specially designed
for RGB-D data. [20] model a deep Q-network-based query network as a rein-
forcement learning agent, trying to learn sampling strategies based on prior AL
experience. In this work, we incorporate the semantic difficulty to measure the
informativeness and select samples at the image level. Region-level method will
be studied in the future.

Self-attention mechanism for semantic segmentation The self-attention
mechanism is first proposed by [25] in the machine translation task. Now, it has
been widely used in many tasks [25–28] owing to its intuition, versatility and
interpretability [29]. The ability to capture the long-range dependencies inspires
many semantic segmentation works designing their attention modules. [30] use
a point-wise spatial attention module to aggregate context information in a self-
adaptive manner. [31] introduce an object context pooling scheme to better
aggregate similar pixels belonging to the same object category. [32] replace the
non-local operation [33] into two consecutive criss-cross operations and gather
long-range contextual information in the horizontal and vertical directions. [34]
design two types of attention modules to exploit the dependencies between pixels
and channel maps. Our method also uses the pixel-wise positional attention
mechanism in [34] to aggregate similar pixels.



4 S. Xie et al.

3 Method

Before introducing our method, we first give the definition of the AL problem.
Let (xa, ya) be an annotated sample from the initial annotated dataset Da and
xu be an unlabeled sample from a much larger unlabeled data pool Du. AL aims
to iteratively query a subset Ds containing the most informative m samples
{xu

1
, xu

2
, ..., xu

m} from Du, where m is a fixed budget.
In what follows, we first give an overview of our difficulty-aware active learn-

ing framework, then detail the probability attention module and loss functions,
finally define two acquisition functions.

3.1 Difficulty-aware Active Learning

To learn the semantic difficulty, we exploit the error mask generated from the
segmentation result. Our intuition is that these wrong predictions are what our
model “feels” difficult to segment, which may have a relation with the semantic
difficulty. Thus, we build a two-branch network generating semantic segmenta-
tion result and semantic difficulty map in a multi-task manner, best viewed in
Fig. 2. The first branch is a common segmentation network, which can be used
to generate the error mask. The second branch is devised to learn the semantic
difficulty map with the guidance of error mask. This two-branch architecture
is inspired by [13]. In their work, a loss prediction module is attached to the
task model to predict a reliable loss for xu and samples with the highest losses
are selected. While in our task, we dig deeper into the scene and analyze the
semantic difficulty of each area.

As illustrated in Fig. 2, the first branch can be any semantic segmentation
network. Assume S∗ is the output of softmax layer and Sp is the prediction
result after the argmax operation. With the segmentation result Sp and GT Sg,
the error mask Me can be computed by:

Me
k =

{

1 if Sp
k 6= S

g
k ,

0 otherwise,
(1)

where S
p
k and S

g
k denote the kth pixel value of the segmentation result and GT,

Me
k is the kth pixel value of the error mask.
The second branch is composed of two parts: a probability attention module

and a simple 1× 1 convolution layer used for binary classification. The softmax
output of the first branch S∗ is directly used as the input of the second branch,
which are C-channel probability maps and C is the number of classes. We denote
it as P ∈ RC×H×W and Pk is the probability vector for the kth pixel. Using prob-
ability maps is naive but accompanied with two advantages. First, pixels with
similar difficulty tend to have similar Pk. Second, pixels of the same semantic
tend to have similar Pk. Combined with a pixel-wise attention module, we can
easily aggregate these similar pixels and learn similar difficulty scores for them.
In our learning schema, the performance of the second branch depends much
on the output of the first branch. However, there is no much difference if we
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Fig. 2: Overview of our difficulty-aware active learning framework for semantic
segmentation. The first branch is a common semantic segmentation network.
The second branch is composed of a praobability attention module and a 1× 1
convolution. Da and Du are the annotated and unlabeled data, Ds is a subset
selected from Du. P and Q are the probability maps before and after attention.
Lseg and Ldif are the loss functions described in Eq. 3 and Eq. 4. DS and DE
strategies are detailed in Sec. 3.4.

branch these two tasks earlier and learn the independent features. We validate
this opinion in Sec. 5.2.

The semantic difficulty learning process can be imagined into two steps.
Firstly, we learn a binary segmentation network with the supervision of error
mask Me. Each pixel will learn a semantic difficulty score. Secondly, similar
pixels are aggregated into an area so that this score can be spread among them.
Finally, we can obtain the semantic difficulty map Md.

3.2 Probability Attention Module

In this section, we detail the probability attention module (PAM) in our task.
Inspired by [34], we use this module to aggregate pixels with similar softmax
probability. Given the probability maps P ∈ RC×H×W , we first reshape it to
P ∈ RC×K , where K = H × W . Then the probability attention matrix A ∈
RK×K can be computed with PTP and a softmax operation as below:

Aji =
exp(PT

i · Pj)
∑K

i=1
exp(PT

i · Pj)
,

Qj = γ

K
∑

i=1

(AjiPi) + Pj ,

(2)
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(a) Error inside the object (b) Error on the object boundary

Fig. 3: Two typical errors in semantic segmentation. The right and wrong areas
are in blue and red, best viewed in color.

where Aji is the ith pixel’s impact on jth pixel, Pj is the original probability
vector of the jth pixel and Qj is the one after attention, γ is a learnable weight
factor. Finally, we can get the probability maps Q ∈ RC×H×W after attention.

Let’s take the segmentation result of the two bicyclists in Fig. 2 to explain
the role of PAM as it reflects two typical errors in semantic segmentation: (1)
error inside the object (the smaller one b1); (2) error on the object boundary (the
larger one b2), as shown in Fig. 3. Assume our attention module can aggregate
pixels from the same object together, the right part of the object learns 0 while
the wrong part learns 1. Since b1 has a larger part of wrong areas, it tends to
learn larger difficulty scores than b2. Similar to objects, pixels from the same
semantic, such as road, sky and buildings can also learn similar difficulty scores.
Ablation study in Sec. 5.1 also demonstrates that PAM can learn more smooth
difficulty scores for various semantic areas.

Some traditional methods also employ the softmax probabilities to measure
the uncertainty, such as least confidence (LC) [35], margin sampling (MS) [36]
and Entropy [17]. The most significant difference between our method and these
methods is that we consider difficulty at the semantic level with an attention
module, rather than measuring the uncertainty of each pixel alone. QBC [18]
can use a group of models, but it still stays at the pixel level. To clearly see the
difference, we compare our semantic difficulty map with the uncertainty maps
of these methods in Fig. 4. The first row are uncertainty maps generated with

Image LC MS Entropy QBC

Ours LC + Ours MS + Ours Entropy + Ours QBC + Ours

Fig. 4: First row: Image from Cityscapes [8] and traditional uncertainty maps.
Second row: Our semantic difficulty map and difficulty-aware uncertainty maps.
The warmer color means the higher uncertainty.
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these methods, which are loyal to the uncertainty of each pixel. For example,
some pixels belonging to sky can have the same uncertainty with traffic light and
traffic sign. Supposing an image has many pixels with high uncertainty belonging
to the easier classes, it will be selected by these methods. While our semantic
difficulty map (first in the second row) can serve as the difficulty attention and
distinguish more valuable pixels. As illustrated in the second row, combined
with our difficulty map, the uncertainty of the easier semantic areas like sky is
suppressed while the harder semantic areas like traffic sign is reserved.

3.3 Loss Functions

Loss of Semantic Segmentation To make an equitable comparison with other
methods, we use the standard cross-entropy loss for the semantic segmentation
branch, which is defined as:

Lseg(S
∗, Sg) =

1

K

K
∑

k=1

ℓ(S∗

k , S
g
k) +R(θ), (3)

where S∗

k and S
g
k are the segmentation output and ground truth for pixel k, ℓ(·)

is the cross-entropy loss, K is the total pixel number, and R is the L2-norm
regularization term.

Loss of Semantic Difficulty For the semantic difficulty branch, we use an
inverted weighted binary cross-entropy loss defined below, as there is a consid-
erable imbalance between the right and wrong areas of error mask.

Ldif (M
d,Me) = −

1

K

K
∑

k=1

λ1M
e
k log(M

d
k ) + λ2(1−Me

k)log(1−Md
k ),

λ1 =

∑K

k 1(Me
k = 0)

K
,λ2 = 1− λ1,

(4)

where Md
k and Me

k are the difficulty prediction and error mask ground truth for
pixel k, 1(·) is the indicator function, and λ1 and λ2 are dynamic weight factors.

Final Loss Our final training objective is a combination of Eq. 3 and Eq. 4,
which is computed as:

L = Lseg + αLdif , (5)

where α is a weight factor and set to 1 in the experiments.

3.4 Acquisition Functions

Samples from Du are usually ranked with a scalar score in AL. However, semantic
segmentation is a dense-classification task, many methods output a score for
each pixel on the image, including our semantic difficulty map. Thus, it’s quite
significant to design a proper acquisition function. Below are two functions we
have designed.
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(a) Image (b) GT (c) Semantic difficulty map

(d) Level 1 (e) Level 2 (f) Level 3 (g) Level 4 (h) Level 5 (i) Level 6

Fig. 5: Quantified difficulty levels. Semantics in (a) are quantified into 6 difficulty
levels based on (c). (d) Level 1: road. (e) Level 2: vegetation. (f) Level 3: sidewalk
and a part of bus. (g) Level 4: traffic light and the rear window of bus. (h) Level
5: boundaries of poles. (i) Level 6: poles. The background of images in (d-i) is
in dark blue, representing pixels not falling in the corresponding level.

Difficulty-aware uncertainty Score (DS) Assume M c is the uncertainty
map generated with traditional methods like Entropy, we can define the equation
below to make each pixel aware of its semantic difficulty.

SDS =
1

K

K
∑

k=1

M c
k ·Md

k , (6)

where M c
k and Md

k are the uncertainty score and difficulty score of the kth pixel,
K is the total pixel number, SDS is the average difficulty-aware uncertainty score
for selecting samples with the highest uncertainty.

Difficulty-aware semantic Entropy (DE) This acquisition function is in-
spired by the laddered semantic difficulty reflected on Md. Usually, pixels from
the same semantic area have almost the same semantic difficulty scores, best
viewed in Fig. 5(c). In this example, we quantify the difficulty of pixels in Fig.
5(a) into 6 levels in Fig. 5(d-i), with difficulty scores gradually increasing from
level 1 to level 6. Generally, if we quantify the difficulty in an image into L levels,
the difficulty entropy acquisition function can be defined below to query samples
with more balanced semantic difficulty, which can be viewed as a representation-
based method at the image scale.

SDE = −

l=L
∑

l=1

Kl

K
log(

Kl

K
), (7)

where Kl is the number of pixels falling in the lth difficulty level, K is the total
pixel number, L is the quantified difficulty levels, SDE is the difficulty-aware
semantic entropy for selecting samples with more balanced semantic difficulty.
Our full algorithm of DEAL is shown in Algorithm 1.
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Algorithm 1: Difficulty-aware Active Learning Algorithm

Input: Da, Du, budget m, AL query times N , initialized network parameter Θ

Input: iterations T , weight factor α, quantified difficulty levels L (optional)
Output: Da, Du, Optimized Θ

1: for n = 1, 2, ..., N do
2: Train the two-branch difficulty learning network on Da

3: for t = 1, 2, ..., T do
4: Sample (xa, ya) from Da

5: Compute the segmentation output S∗ and result Sp

6: Obtain Me according to Eq. 1
7: Compute the difficulty prediction Md

8: Compute Lseg, Ldif , L according to Eq. 3, Eq. 4, Eq. 5
9: Update Θ using gradient descent

10: end for
11: Rank xu based on Eq. 6 or Eq. 7
12: Select Ds with top m samples
13: Annotate Ds by oralces
14: Da ← Da +Ds

15: Du ← Du −Ds

16: end for
17: return Da, Du, Optimized Θ

4 Experiments and Results

In this section, we first describe the datasets we use to evaluate our method
and the implementation details, then the baseline methods, finally compare our
results with these baselines.

4.1 Experimental Setup

Datasets We evaluate DEAL on two street scene semantic segmentation datasets:
CamVid [21] and Cityscapes [8]. For Cityscapes, we randomly select 300 samples
from the training set as the validation set, and the original validation set serves
as the test set, same to [15]. The detailed configurations are list in Table 1. For
each dataset, we first randomly sample 10% data from the training set as the
initial annotated dataset Da, then iteratively query 5% new data Ds from the
remaining training set, which serves as the unlabeled data pool Du. Considering
samples in the street scenes have high similarities, we first randomly choose a
subset from Du, then query m samples from the subset, same to [37].

Table 1: Evaluation datasets.
Dataset Classes Train Valid Test Initial labeled Budget Image Size

CamVid [21] 11 370 104 234 40 20 360× 480

Cityscapes [8] 19 2675 300 500 300 150 688× 688
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Implementation Details We adopt the Deeplabv3+ [38] architecture with a
Mobilenetv2 [39] backbone. For each dataset, we use mini-batch SGD [40] with
momentum 0.9 and weight decay 5e−4 in training. The batch size is 4 and 8
for CamVid and Cityscapes, respectively. For all methods and the upper bound
method with the full training data, we train 100 epochs with an unweighted
cross-entropy loss function. Similar to [38], we apply the “poly” learning rate
strategy and the initial learning rate is 0.01 and multiplied by (1− iter

max iter
)0.9.

To accelerate the calculation of the probability attention module, the input of
the difficulty branch is resized to 80×60 and 86×86 for CamVid and Cityscapes.

4.2 Evaluated Methods

We compare DEAL with the following methods. Random is a simple baseline
method. Entropy and QBC are two uncertainty-based methods. Core-set and
VAAL are two representation-based methods. DEAL (DS) and DEAL (DE) are
our methods with different acquisition functions.

– Random: each sample in Du is queried with uniform probability.
– Entropy (Uncertainty): we query samples with max mean entropy of all

pixels. [13] and [20] have verified this method is quite competitive in image
classification and segmentation tasks.

– QBC (Uncertainty): previous methods designed for semantic segmentation,
like [4, 11, 22, 23], all use a group of models to measure uncertainty. We use
the efficient MC dropout to represent these methods and report the best
performance out of both the max-entropy and variation-ratio acquisition
functions.

– Core-set (Representation): we query samples that can best cover the entire
data distribution. We use the global average pooling operation on the encoder
output features of Deeplabv3+ and get a feature vector for each sample. Then
k-Center-Greedy strategy is used to query the most informative samples, and
the distance metric is l2 distance according to [14].

– VAAL (Representation): as a new state-of-the-art task-agnostic method,
the sample query process of VAAL is totally separated from the task learner.
We use this method to query samples that are most likely from Du and then
report the performance with our task model.

– DEAL (DS): out method with DS acquisition function. We employ Entropy
uncertainty maps in our experiments.

– DEAL (DE): out method with DE acquisition function. The quantified
difficulty levels L are set 8 and 10 for CamVid and Cityscapes, respectively.

4.3 Experimental Results

The mean Intersection over Union (mIoU) at each AL stage: 10%, 15%, 20%,
25%, 30%, 35%, 40% of the full training set, are adopted as the evaluation metric.
Every method is run 5 times and the average mIoUs are reported.
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(a) AL in CamVid (b) AL in Cityscapes

Fig. 6: DEAL performance on CamVid [21] and Cityscapes [8]. Every method is
evaluated by the average mIoU of 5 runs. The dashed line represents the upper
performance we can reach compared with the full training data.

Results on CamVid Fig. 6(a) shows results on a small dataset CamVid. Both
DEAL (DS) and DEAL (DE) outperform baseline methods at each AL stage.
We can obtain a performance of 61.64% mIoU with 40% training data, about
95% of the upper performance with full training data. Entropy can achieve good
results at the last stage. However, it’s quite unstable and depends much on
the performance of current model, making it behave poorly and exceeded by
Random at some stages. On the contrary, DEAL (DS) behaves better with the
difficulty attention. QBC has a more stable growth curve as it depends less on
the single model. Representation-based methods like VAAL and Core-set behave
much better at earlier stages like 15% and 20%. However, Core-set lags behind
later while VAAL still works well. Also, the experiment results suggest that the
data diversity is more important when the entire dataset is small.

Results on Cityscapes Fig. 6(b) shows results on a larger dataset Cityscapes.
The budget is 150 and all methods have more stable growth curves. When the
budget is enough, Entropy can achieve better performance than other baseline
methods. Consistently, with semantic difficulty, both DEAL (DS) and DEAL
(DE) outperform other methods. Table 2 shows the per-class IoU for each
method at the last AL stage (40% training data). Compared with Entropy, our
method are more competitive on the difficult classes, such as pole, traffic sign,
rider and motorcycle. For representation-based methods, the gap between Core-
set and VAAL is more obvious, suggesting that Core-set is less effective when the
input has a higher dimension. And VAAL is easily affected by the performance
of the learned variational autoencoder, which introduces more uncertainty to the
active learning system. If continue querying new data, our method will reach the
upper performance of full training data with about 60% data.
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Table 2: Per-class IoU of and mIoU [%] on Cityscapes original validation set with
40% training data. For clarity, only the average of 5 runs are reported, and the
best and the second best results are highlighted in bold and underline bold.

Method Road
Side-
walk

Build-
ing

Wall Fence Pole
Traffic
Light

Traffic
Sign

Vege-
tation

Terrain

Random 96.03 72.36 86.79 43.56 44.22 36.99 35.28 53.87 86.91 54.58
Core-set 96.12 72.76 87.03 44.86 45.86 35.84 34.81 53.07 87.18 53.49
VAAL 96.22 73.27 86.95 47.27 43.92 37.40 36.88 54.90 87.10 54.48
QBC 96.07 72.27 87.05 46.89 44.89 37.21 37.57 54.53 87.51 55.13

Entropy 96.28 73.31 87.13 43.82 43.87 38.10 37.74 55.39 87.52 53.68
DEAL (DS) 96.21 72.72 86.94 46.11 44.22 38.18 37.62 55.66 87.34 55.62
DEAL (DE) 95.89 71.69 87.09 45.61 44.94 38.29 36.51 55.47 87.53 56.90

Sky
Pedes-
trian

Rider Car Truck Bus Train
Motor-
cycle

Bicycle mIoU

Random 91.47 62.74 37.51 88.05 54.64 61.00 43.69 30.58 55.67 59.79
Core-set 91.89 62.48 36.28 87.63 57.25 67.02 56.59 29.34 53.56 60.69
VAAL 91.63 63.44 38.92 87.92 50.15 63.70 52.36 35.99 54.97 60.92
QBC 91.87 63.79 38.76 88.04 53.88 65.92 54.32 32.68 56.15 61.29

Entropy 92.05 63.96 38.44 88.38 59.38 64.64 50.80 36.13 57.10 61.46
DEAL (DS) 92.10 63.92 40.39 87.87 59.85 67.32 52.30 38.88 55.44 62.04
DEAL (DE) 91.78 64.25 39.77 88.11 56.87 64.46 50.39 38.92 56.69 61.64

5 Ablation Study

5.1 Effect of PAM

To further understand the effect of PAM, we first visualize the attention heatmaps
of the wrong predictions in Fig. 7. For each row, three points are selected from
error mask and marked as {1, 2, 3} in Fig. 7(a,b,c). In the first row, point 1 is
from road and misclassified as bicyclist, we can observe that its related classes
are bicyclist, road and sidewalk in Fig. 7(d). Point 2 is from buildings and mis-
classified as bicyclist, too. Point 3 is from sign symbol and misclassified as tree,
we can also observe its related semantic areas in Fig. 7(f).

(a) GT (b) Prediction (c) Error mask (d) Attention 1 (e) Attention 2 (f) Attention 3

Fig. 7: Attention heatmaps of three selected wrong predicted pixels on CamVid
[21]. (a) GT. (b) Prediction. (c) Error mask. (d,e,f) Attention heatmaps of the
three selected points, which are marked as {1,2,3} in (a,b,c). The warmer color
means the more dependency.
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Image without PAMwith PAM

(a) Semantic difficulty maps with/o PAM (b) AL in Cityscapes with/o PAM

Fig. 8: Ablation study on PAM. (a) The first column are images from CamVid
[21], the second and third columns are semantic difficulty maps learned with and
without PAM. (b) DEAL performance on Cityscapes [8] with and without PAM.
We report the mean and standard deviation of 5 runs and the average entropy
of class distributions of all AL stages.

Then we conduct an ablation study by removing PAM and directly learning
the semantic difficulty map without the attention among pixels. The qualitative
results are shown in Fig. 8(a). Basically, without the long-range dependencies,
pixels of the same semantic can learn quite different scores because the learned
score of each pixel is more sensitive to its original uncertainty. Combined with
PAM, we can learn more smooth difficulty map, which is more friendly to the
annotators since the aggregated semantic areas are close to the labeling units in
the real scenario. Also, we compare this ablation model with our original model
on Cityscapes in Fig. 8 (b). DEAL with PAM can achieve a better performance
at each AL stage. DEAL without PAM fails to find samples with more balanced
semantic difficulty, which makes it get a lower entropy of class distributions.

5.2 Branch Position

In this section, we discuss the branch position of our framework. In our method
above, the semantic difficulty branch is simply added after the segmentation
branch. It may occur to us that if the segmentation branch performs poorly, the
difficulty branch will perform poorly, too. These two tasks should be separated
earlier and learn independent features. Thus, we modify our model architecture
and branch out two tasks earlier at the boarder of encoder and decoder based
on the Deeplabv3+[38] architecture, as shown in Fig. 9(a). Also, we compare
the AL performance on Cityscapes with both architectures in Fig. 9(b). The
performance of the modified version is slightly poor than the original version
but still competitive with other methods. However, this modified version requires
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Difficulty
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(a) Modified model architecture (b) AL in Cityscapes

Fig. 9: Ablation study on branch position. (a) Modified model architecture. (b)
DEAL performance on Cityscapes with different model architectures. DEAL
(branch) is the modified version. We also report the mean and standard deviation
of 5 runs and the average entropy of class distributions of all AL stages.

more computations, while our original version is simple yet effective and can be
easily plugged into any segmentation networks.

6 Conclusion and Future Work

In this work, we have introduced a novel Difficulty-awarE Active Learning (DEAL)
method for semantic segmentation, which incorporates the semantic difficulty to
select the most informative samples. For any segmentation network, the error
mask is firstly generated with the predicted segmentation result and GT. Then,
with the guidance of error mask, the probability attention module is introduced
to aggregate similar pixels and predict the semantic difficulty maps. Finally, two
acquisition functions are devised. One is combining the uncertainty of segmenta-
tion result and the semantic difficulty. The other is solely based on the difficulty.
Experiments on CamVid and Cityscapes demonstrate that the proposed DEAL
achieves SOTA performance and can effectively improve the performance of hard
semantic areas. In the future work, we will explore more possibilities with the
semantic difficulty map and apply it to region-level active learning method for
semantic segmentation.
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