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Abstract. Multi-person pose estimation is a fundamental and challeng-
ing problem to many computer vision tasks. Most existing methods can
be broadly categorized into two classes: top-down and bottom-up meth-
ods. Both of the two types of methods involve two stages, namely, person
detection and joints detection. Conventionally, the two stages are imple-
mented separately without considering their interactions between them,
and this may inevitably cause some issue intrinsically. In this paper, we
present a novel method to simplify the pipeline by implementing per-
son detection and joints detection simultaneously. We propose a Double
Embedding (DE) method to complete the multi-person pose estimation
task in a global-to-local way. DE consists of Global Embedding (GE)
and Local Embedding (LE). GE encodes different person instances and
processes information covering the whole image and LE encodes the lo-
cal limbs information. GE functions for the person detection in top-down
strategy while LE connects the rest joints sequentially which functions
for joint grouping and information processing in A bottom-up strategy.
Based on LE, we design the Mutual Refine Machine (MRM) to reduce
the prediction difficulty in complex scenarios. MRM can effectively re-
alize the information communicating between keypoints and further im-
prove the accuracy. We achieve the competitive results on benchmarks
MSCOCO, MPII and CrowdPose, demonstrating the effectiveness and
generalization ability of our method.

1 Introduction

Human pose estimation aims to localize the human facial and body keypoints
(e.g., nose, shoulder, knee, etc.) in the image. It is a fundamental technique
for many computer vision tasks such as action recognition [1], human-computer
interaction [2, 3], person Re-ID [4] and so on.

*First two authors equally contributed to this work. Yan Ding is the corresponding
author: dingyan@bit.edu.cn
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Most of the existing methods can be broadly categorized into two classes:
top-down methods [5–13] and bottom-up methods [14–18]. As shown in Figure
1 (a), the top-down strategy first employs a human detector to generate person
bounding boxes, and then performs single person pose estimation on each indi-
vidual person. On the contrary, the bottom-up strategy locates all body joints in
the image and then groups joints to corresponding persons. Top-down strategy
is less efficient because the need to perform single person pose estimation on
each detected instance sequentially. Also, the performance of top-down strategy
is highly dependent on the quality of person detections. Compared to top-down
strategy, the complexity of bottom-up strategy is independent of the number
of people in the image, which makes it more efficient. Though as a faster and
more likely to be the real-time technique, the bottom-up methods may suffer
from solving an NP-hard graph partition problem [15, 14] to group joints to cor-
responding persons on densely connected graphs covering the whole image.

Fig. 1. Comparison between (a) existing two-stage strategy and (b) our Double Em-
bedding method for multi-person pose estimation. The proposed DE model implement
the person detection and joints detection parallel, overcoming the intrinsic problems
of existing two-stage based top-down and bottom-up strategies.

We analyze and try to bypass the disadvantages of these two conventional
strategies. The low efficiency of the top-down strategy comes from the indepen-
dent single person pose estimation on each person bounding box. For bottom-up
strategy, treating all the detected unidentified joints equally causes the high dif-
ficulty of joints grouping process. Both top-down and bottom-up strategy are
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two-stage structure with little interaction between the two stages. They both
suffer from the separation of person instance detection and joints detection.

To overcome this intrinsic limitation, we propose to implement person detec-
tion and joints detection simultaneously, and realize information communicating
between the two procedures to better utilize the structure information of human
body. The proposed approach is illustrated in Figure 1 (b). We observe that the
torso joints (shoulders and hips) are more stable than other limbs joints. With
much lower degree of freedom than limbs joints, torso joints can represent the
identity information to distinguish the different human instances well. We also
introduce the center joint of the human body. Center joint is calculated by the
average location of annotated joints. Together with the center joint point, torso
joints and center points compose the Root Joints Group (RJG). Based on this,
we categorize the rest joints on limbs into Adjacency Joints Group (AJG). In this
paper, we propose the Double Embedding method to simplify the pipeline and
improve the joints localization accuracy. The framework of the DE approach is
shown in Figure 2. Double Embedding consists of Global Embedding (GE) and
Local Embedding (LE). GE functions for the person instance separation process
through encoding the clustering information of RJG. We follow the associative
embedding method [18] to allocate 1D tags to each pixel related to the joints
in root joints group. Joints belong to the same person have similar tags while
joints belong to different instances have dissimilar tags.

GE encodes global information around the whole image, while LE focuses
on local information of each instance based on the global clues from GE. AGJ
is connected to identified RJG by corresponding displacement vector field en-
coded in LE. Basically, we take the center joint as the reference point. However,
the displacements from extremities joints (wrists and ankles) to center joint are
long-range displacements which are vulnerable to background noises. To opti-
mize the long-range displacement prediction [19], we further divide AGJ into
two hierarchies: the first level consists of elbows and knees, the second level con-
sists of wrists and ankles. AJG is connected sequentially from the second level
to first level and finally to torso joints in RJG which are identified. Long-range
displacements are factorized into accumulative short-range displacements tar-
geting on torso joints (hip joints and shoulder joints). Take the left ankle for
example, the displacement from ankle to center joint is long-range displacement
which is difficult to predict. To tackle this problem with better utilizing the body
structure information, we change the reference joint to left hip, and divide the
displacement from left ankle to left hip into shorter displacements: the displace-
ment from left ankle to left knee and the displacement from left knee joint to
left hip joint. Thus, AJG (limbs joints) are connected to RJG and identified in
sequence. As for facial joints (e.g., Eyes, nose, etc.), we localize them from pre-
dicted heatmaps and connect them with the long-range displacements targeting
on the center joint.

In addition, we design Mutual Refine Machine (MRM) to further improve
the joints localization accuracy and reduce the prediction difficulty in complex
scenarios such as pose deformation, cluttered background, occlusion, person over-
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lapping and scale variations. Based on hierarchical displacements and connec-
tion information encoded in LE, MRP refines the poor-quality predicted joints
by high-quality predicted neighboring joints.

We reduce the person detection task to identifying RJG with associative em-
bedding. This is essential to implement the person detection and joints detection
at the same time. This is essential to implement the person detection and the fol-
lowing joints detection and grouping at the same time. Avoiding the independent
single person pose estimation on each detected person bounding boxes makes the
method more efficient. Compared to directly processing all the unidentified joints
around the whole image, LE performs local inference with robust global affinity
cues encoded in GE, reducing complexity for joints identifying. Different with
the independence of two stages in previous two-stage strategy, GE and LE works
mutually to complete the person detection and joints detection parallel.

We implement DE with Convolutional Neural Networks (CNNs) based on
the state-of-the-art HigherHRNet[20] architecture. Experiments on benchmarks
MSCOCO [21], MPII [22] and CrowdPose [23] demonstrate the effectiveness of
our method.

The main contributions of the paper is summarized as follows:

– We attempt to simplify the pipeline for multi-person pose estimation, solving
the task in global-to-local way.

– We propose the Double Embedding method to implement person detection
and joints detection parallel, overcoming the intrinsic disadvantages caused
by two-stage structure.

– Our model achieves competitive performance on multiple benchmarks.

2 Related Works

Top-Down Multi-Person Estimation Top-down methods [5–13] first employ
object detection [24–27] to generate person instances within person bounding
boxes, and then detect the keypoints of each person by single person pose esti-
mation independently.

Mask R-CNN [9] adopts a branch for keypoints detection based on Faster
R-CNN [24]. G-RMI [8] directly divides top-down methods as two stages and
employs independent models for person detection and pose estimation. In [28],
Gkioxari et al. adopted the Generalized Hough Transform framework for person
instance detection, and then classify joint candidates based on the poselets. In
[29], Sun et al. proposed a part-based model to jointly detect person instances
and generate pose estimation. Recently, both person detection and single person
pose estimation benefit a lot from the thriving of deep learning techniques. Iqbal
and Gall [16] adopted Faster-RCNN [24] for person detection and convolutional
pose machine [30] for joints detection. In [11], Fang et al. used spatial transformer
network [31] and Hourglass network [13] for joints detection.

Though these methods have achieved excellent performance, they suffer from
high time complexity due to sequential single person pose estimation on each
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person proposal. Differently, DE performs the person detection and joints detec-
tion parallel, which simplifies the pipeline.
Bottom-Up Multi-Person Pose Estimation Bottom-up methods [14–18] de-
tect all the unidentified joints in an image and then group them to corresponding
person instances.

Openpose [32] proposes part affinity field to represent the limbs. The method
calculates line integral through limbs and connects joints with the largest inte-
gral. In [18], Newell et al. proposed associate embedding to assign each joint
with a 1D tag and then group joints which have the similar tags. PersonLab [19]
groups joints by a 2D vector field in the whole image. In [33], Sven Kreiss et al.
proposed Part Intensity Field (PIF) to localize body parts and Part Association
Field (PAF) to connect body parts to form full human poses.

Nevertheless, the joints grouping cues of all these methods are covering the
whole image, which causes high complexity for joints grouping. Different with
the prior methods, global clues from GE reduce the search space for graph parti-
tion problem, avoiding high complexity of joint partition in bottom-up strategy.

Fig. 2. Overview of the Double Embedding (DE) model. For an image, we generate
two kinds of feature maps for Global Embedding (GE) and Local Embedding (LE). GE
and LE works parallel with information communicating to support each other. Based
on GE and LE, we design Mutual Refine Machine (MRM) to refine the low-quality
predicted joints which further improves the accuracy.
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3 Double Embedding Method

In this section, we present our proposed Double Embedding method. Figure 2
illustrates the overall architecture of the proposed approach.
Joints Feature Map For an image I , we generate two kinds of feature maps
from backbone network, one for Global Embedding (GE) and one for Local
Embedding (LE). We use JR = {JR1, JR2, ..., JRU} to denote Root Joints Group
(RJG), JRi is the i-th kind of joints in RJG for all N persons in image I , and U is
the number of joint categories in RJG. Similarly, we use JA = {JA1, JA2, ..., JAV }
to denote Adjacency Joints Group (AJG), JAi is the i-th kind of joints in AJG
for all persons in image I , and V is the number of joint categories in RJG.
For Global Embedding, let hGk ∈ RW×H(k = 1, 2, ..., U) denote the feature
map for the k-th kind of joint in Root Joints Group. For Local Embedding,
hLk ∈ RW×H(k = 1, 2, ..., V ) denotes the feature map for the k-th kind of joint
in AJG. The form and generation method of hGk and hLk are the same. To
simplify the description, we use hfk to represent both hGk and hLk.

It was pointed out that Directly regressing the absolute joint coordinates in
an image is difficult[34, 14]. We therefore use heatmap, a confidence map models
the joints position as Gaussian peaks. For a position (x, y) in image I , hfk(x, y)
is calculated by:

hfk(x, y) =

{

exp(−‖(x,y)−(xi

k
,yi

k
)‖2

2

σ2 ), (x, y) ∈ ℵi
k

0, otherwhise
(1)

In which σ is an empirical constant to control the variance of Gaussian distri-
bution, set as 7 in our experiments. (xi

k, y
i
k) denotes the i-th groundtruth joint

position in hfk. ℵi
k = (x, y)

∣

∣

∥

∥(x, y)− (xi
k, y

i
k)
∥

∥

2
≤ τ is regressing area for each

joint to truncate the Gaussian distribution. Thus, we generate two kinds of fea-
ture map for GE and LE. Joints location of RJG and AJG are derived through
NMS process.
Global Embedding Global Embedding functions as a simpler person detec-
tion process, reduces person detection problem to identifying the RJG. We use
Associate Embedding for this process. The identification information in hGk is
encoded in 1D tag space Tk for k-th joint in RJG. Based on the pixel loca-
tion derived from peak detections in feature map hGk, corresponding tags are
retrieved at the same pixel location in Tk. Joints belonging to one person have
similar tags while tags of joints in different persons have obvious difference. Let
p = {p1, p2, ..., pN} denote theN persons containing in image I . GE can be repre-
sented as a function fGE : hGk → Tk. fGE learns to densely transform every pixel
in hGk to embedding space Tk. We use loc(pn,JRk)(n = 1, 2, ..., N, k = 1, 2, ..., U)
to denote the ground truth pixel location of the k-th kind of joint in RJG of n-th
person.

If U
′

joints are labeled, the reference embedding for the n-th person is the
average of retrieved tags of RJG in this person:

¯Tagn =
1

U ′

∑

k

Tk(loc(pn,JRk)) (2)
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To pull the tags of joints within an individual together, pull-loss computes the
squared distance between the reference embedding and the predicted embedding
for each joint.

Lpull =
1

NU ′

∑

n

∑

k

( ¯Tagn − Tk(loc(pn,JRk)))
2 (3)

To push the tags of joints in different persons, push-loss penalizes the refer-
ence embeddings that are close to each other. As the distance between two tags
increases, push-loss drops exponentially to zero resembling probability density
function of Gaussian distribution:

Lpush =
1

N2

∑

n

∑

n
′

exp{− 1

2σ2
( ¯Tagn − ¯Tagn′ )2} (4)

The loss to train the model as fGE is the sum of Lpull and Lpush:

LG =
1

NU ′

∑

n

∑

k

( ¯Tagn−Tk(loc(pn,JRk)))
2+

1

N2

∑

n

∑

n
′

exp{− 1

2σ2
( ¯Tagn− ¯Tagn′ )2}

(5)
Local Embedding Local Embedding performs local inference and builds the
connection clues between AJG and identified RJG. Relative position information
of hLk is encoded in displacement space Dk for k-th joint in AJG. For each joint
in AJG, we get its corresponding normed displacement to RJG from Dk at the
same position in hLk. We first build the basic displacement to connect to the
center joint. Basic displacement for the k-th joint in AJG of the n-th person is
represented as the 2D vector:

Diskn = (xr
n, y

r
n)− (xk

n, y
k
n) (6)

In which, (xr
n, y

r
n) is the location of the center joint in the n-th person. Be-

sides, we design the hierarchical displacement to connect the limbs joints to
corresponding torso joints. Compared to basic displacements directly targeting
on the center joint, hierarchical displacements are shorter ones which are more
robust and easier to predict. Normally, we use hierarchical displacements in in-
ference process. But if some intermediate joints are absent, we directly use the
long-range prediction to complete the inference.

The general displacement for joint A to joint B of n-th person is:

DisA2B
n = (xB

n , y
B
n )− (xA

n , y
A
n ) (7)

In some cases, we may use the property DisB2A
n = −DisA2B

n to get reverse
displacements of paired joints.

Local Embedding fLE : hLk → Dk maps each pixel in feature map hLk to
the embedding space Dk. For learning fLE , we build the target regression map
TA
n for the displacement vector from joint A (the k-th kind of joint in AJG) to

joint B of the n-th person as follows:

DA
k (x, y) =

{

Dis
(x,y)2(xB

n
,yB

n
)

n /Z, if(x, y) ∈ ℵA
k

0, otherwise
(8)



8 Yiming Xu, Jiaxin Li et al.

where ℵA
k = {(x, y)|‖(x, y) − (xA

n , y
A
n )‖2 ≤ τ}. The displacements are created

in ℵA
k which is the same as regression area in hLk. Z =

√
H2 +W 2 is the

normalization factor, with H and W denoting the height and width of the image.
The starting point A (xA

n , y
A
n ) is generated from peak detections in feature

map hLk, we get its corresponding displacement to joint B in Dk as DisA2B
n =

Dk((x
A
n , y

A
n )). The ending joint is obtained: (x

End
n , yEnd

n ) = (xA
n , y

A
n )+Z ·DisA2B

n .
Compared with the peak detections in hLB (containing the same category joints
as joint B for all persons in the image, including (xB

n , y
B
n )), it will be confirmed

that joint B is the ending joint of joint A. Accordingly, joint A is connected to
joints B, meaning they share the same identification. In this way, joints in AJG
are connected to RJG and identified.
Mutual Refine Machine We design the Mutual Refine Machine (MRM) to
reduce the prediction difficulty in complex scenes. For a low-quality predicted
joint, it can be refined by the neighboring high-quality joints. Based on the
displacements and connection information in LE, MRM realizes the information
communicating between paired joints. For n-th person, if prediction probability
of i-th joint in k-th kind of joints confidence map hfk((x

i
n, y

i
n)) is lower than its

neighboring paired joints {hfk′((xi′

n , y
i′

n ))}(in which hfk′((xi′

n , y
i′

n )) > 0.75), then
we refine the location of i-th joint with the weighted fusion of its neighboring
joints. Refined location is:

(

xi
n, y

i
n

)

refined
=

hfk((x
i
n, y

i
n))

Q
∗(xi

n, y
i
n)+

∑

i′

hfk′((xi′

n , y
i′

n ))

Q
∗((xi′

n , y
i′

n )+Disi
′2i
n )

(9)

Q = hfk((x
i′

n , y
i′

n )) +
∑

i′

hfk′((xi′

n , y
i′

n )) (10)

Training and inference To train our model, we adopt L2 loss LH for joint
confidence regression, smooth L1 loss [35] LD for displacements regression and
LG for GE. The total loss L for each image is the weighted sum of LH , LD and
LG:

L =

U+V
∑

x=1

LH(hfx, ĥfx) + α

V
∑

y=1

LD(Dy, D̂y) + β

U
∑

z=1

LG (11)

where ĥfx and D̂y denote the predicted joints confidence map and displacements
regression map. α and β are constant weight factor to balance three kinds of
losses, both set as 0.01. The overall framework of DE is end-to-end trainable via
gradient backpropagation.

The overall architecture of DE is illustrated in Figure 2. For an image, DE
generates two kinds of feature maps ĥGk and ĥLk. through performing NMS and
on them, we get predicted joints location of RJG and AJG. GE gives identifi-
cation tags for RJG and LE provides the connection relation to connect AJG
to RGJ. To better present the collaborative work of GE and LE, we add the
intermediate illustration. Connected pairs get identification information from
GE and joints in GE expand to all joints by connectivity in LE. Based on the
displacements and connectivity in LE, MRM refines the low-quality predicted
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joints. The final result is generated through the combination of refined results
from GE and LE.

4 Experiments

4.1 Experiment setup

Datasets We evaluate the proposed Double Embedding model on three widely
used benchmarks for multi-person pose estimation: MSCOCO [21] dataset, MPII
[22] dataset and CrowdPose [23] dataset.

The MSCOCO [21] dataset contains over 200, 000 images and 250, 000 per-
son instances labeled with 17 keypoints. COCO is divided into train/val/test-dev
sets with 57k, 5k and 20k images respectively. MPII [22] dataset contains 5,602
images of multiple persons. Each person is annotated with 16 body joints. Im-
ages are divided into 3,844 for training and 1,758 for testing. MPII also provides
over 28,000 annotated single-person pose samples. The CrowdPose[23] dataset
consists of 20,000 images, containing about 80,000 person instances. The train-
ing, validation and testing subset are split in proportional to 5:1:4. CrowdPose
has more crowded scenes than the COCO and MPII, and therefore is more chal-
lenging for multi-person pose estimation.
Data augmentation We follow the conventional data augmentation strategies
in experiments. For MSCOCO and CrowdPose datasets, we augment training
samples with random rotation ([−30◦, 30◦]), random scale ([0.75, 1.5]), ran-
dom translation ([40, 40]) and random horizontally flip to crop input images
to 640x640 with padding. For MPII dataset, random scale is set as ([0.7, 1.3])
while other augmentation parameters are set the same as MSCOCO and Crowd-
Pose datasets.
Evaluation metric For COCO and CrowdPose datasets, the standard evalua-
tion metric is based on Object Keypoint Similarity (OKS):

OKS =

∑

i exp(−d2i /2s
2k2i )δ(vi > 0)

∑

i δ(vi > 0)
(12)

where di is the Euclidean distance between the predicted joints and ground
truth, vi is the visibility flag of the ground truth, s is the object scale, and ki is
a per-keypoint constant that controls falloff. The standard average precision and
recall scores are shown as: AP 50(AP at OKS = 0.50), AP 75, AP (the mean of
AP scores at 10 positions, OKS = 0.50, 0.55, . . . , 0.90, 0.95;APM for medium
objects, APL for large objects, and AR at OKS = 0.50, 0.55, . . . , 0.90, 0.955.

For MPII dataset, the standard evaluation metric is PCKh (head-normalized
probability of correct keypoint) score. A joint is correct if it falls within al pixels
of the groundtruth position, where α is a constant and l is the head size that
corresponds to 60% of the diagonal length of the ground-truth head bounding
box. The PCKh@0.5 (α = 0.5) score is reported.
Implementation For COCO dataset, we use standard validation set for abla-
tion studies while use test-dev set to compare with other state-of-the-art meth-
ods. or CrowdPose dataset, we use CrowdPose train and val set to train our
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model, and use test set for validation. For MPII dataset, following [36], we
randomly select 350 groups of multi-person training samples as the validation
dataset and use the remaining training samples and all single-person images
as train dataset. We use the Adam optimizer [37]. For COCO and CrowdPose
datasets, the base learning rate is set to 1e-3, and dropped to 1e-4 and 1e-5 at
the 200th and 260th epochs respectively. We train the model for a total of 300
epochs. For MPII dataset, we initialize learning rate by 1e-3. We train the model
for 260 epochs and decrease learning rate by a factor of 2 at the 160th, 180th,
210th, 240th epoch. Following [HigherHRNet-30], we adopt flip test for all the
experiments.

Table 1. Comparison with state-of-the-arts on COCO2017 test-dev dataset. Top: w/o
multi-scale test. Bottom: w/ multi-scale test.

Method AP AP
50

AP
75

AP
M

AP
L

w/o multi-scale test

CMU-Pose[17]† 61.8 84.9 67.5 57.1 68.2
RMPE[11] 61.8 83.7 69.8 58.6 67.6
Associate Embedding[18] 62.8 84.6 69.2 57.5 70.6
Mask-RCNN[9]† 63.1 87.3 68.7 57.8 71.4
G-RMI[8]† 64.9 85.5 71.3 62.3 70.0
PersonLab[19] 66.5 88.0 72.6 62.4 72.3
PifPaf[33] 66.7 - - 62.4 72.9
SPM[36] 66.9 88.5 72.9 62.6 73.1
HigherHRNet[38] 68.4 88.2 75.1 64.4 74.2
CPN[12]† 72.1 91.4 80.0 68.7 77.2
DoubleEmbedding(Ours) 69.7 88.4 76.9 65.8 75.1

w/ multi-scale test

Hourglass[18] 65.5 86.8 72.3 60.6 72.6
Associate Embedding[18] 65.5 86.8 72.3 60.6 72.6
PersonLab[19] 68.7 89.0 75.4 64.1 75.5
HigherHRNet[38] 70.5 89.3 77.2 66.6 75.8
DoubleEmbedding(Ours) 71.6 89.5 78.6 68.8 76.0

† indicates top-down methods

4.2 Results on COCO dataset

Comparison with state-of-the-arts In Table 1, we compare our proposed
model with other state-of-the-arts methods on COCO2017 test-dev dataset. We
test the run time of single-scale inference, the proposed method realizes the
balance on speed and accuracy. We achieve the competitive accuracy which out-
performs most existing bottom-up methods. Compared to the typical top-down
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method CPN[12], we narrow the gap to top-down method in accuracy with less
complexity. This demonstrates the effectiveness of DE on multi-person pose es-
timation.
Ablation analysis We conduct ablation analysis on COCO2017[21] validation
dataset without multi-scale test. We evaluate the impact of the introduced hier-
archical short-range displacements that factorize the basic displacements. Also,
the effect of MRM is studied. MRM is implemented based on the hierarchical
displacements, so MRM is non-existent without hierarchical displacements. Re-
sults are shown in Table 2. which shows that with basic displacements only, DE
achieves 69.3% mAP. By introducing hierarchical displacements, performance
improves to 70.7% mAP with 1.3% mAP increasing. Based on the hierarchical
displacements, MRM further improve 0.9% mAP. The result shows the effective-
ness of hierarchical displacements and MRM.

Table 2. Ablation experiments on COCO validation dataset.

Model Settings Pose Estimation

Basic Dis. Hierar Dis. MRM AP AP
50

AP
75

AP
M

AP
L

X 69.3 87.0 75.9 65.1 76.6
X X 70.7 88.1 76.8 66.5 76.4
X X X 71.6 88.3 77.5 66.9 77.8

In addition, we analyze the impact of the hyper-parameter τ which decides
the regression area for joints confidence map and displacements in Section 3. We
observe the performance of proposed model as τ varies from 1 to 20. As shown
in Figure 3, the performance monotonically improves as τ increases from 1 to 7.
When 7 < τ < 10, performance remains unchanged as τ increases. When τ > 10,
performance drops as τ increases. This can be explained by the distribution of
positive samples of the dataset. When τ increases in the range between 1 and 7,
positive samples increase and larger effective area of joints is counted in joints
confidence and displacements regression in training. When τ increases between
7 and 10, effective information and background noise increases with equivalent
effect. When τ > 10, more background noise is countered as positive samples,
regression area of joints overlaps with each other as τ keeps increasing. Smaller
τ means less complexity, thus we set τ = 7 for balancing the accuracy and
efficiency.
Qualitative results Qualitative results on COCO dataset are shown in the top
row of Figure 4. The proposed model performs well in challenging scenarios, e.g.,
pose deformation (1st and 2nd examples), person overlapping and self-occlusion
(3rd example), crowded scene (4nd example), and scale variation and small-scale
prediction (5st example). This presents the effectiveness of our method.
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Fig. 3. Studies on hyper-parameter τ , which decides the regression area for joints
confidence map and displacements.

Table 3. Comparison with state-of-the-arts on the full testing set of MPII dataset.

Method Head Sho Elb Wri Hip Knee Ank Total Time[s]

lqbal and Gall[16] 58.4 53.9 44.5 35.0 42.2 36.7 31.1 43.1 10
Insafutdinov et al.[15] 78.4 72.5 60.2 51.0 57.2 52.0 45.4 59.5 485
Levinkov et al.[15] 89.8 85.2 71.8 59.6 71.1 63.0 53.5 70.6 -
Insafutdinov et al.[39] 88.8 87.0 75.9 64.9 74.2 68.8 60.5 74.3 -
Cao et al.[32] 91.2 87.6 77.7 66.8 75.4 68.9 61.7 75.6 0.6
Fang et al.[11] 88.4 86.5 78.6 70.4 74.4 73.0 65.8 76.7 0.4
Newell and Deng[13] 92.1 89.3 78.9 69.8 76.2 71.6 64.7 77.5 0.25
Fieraru et al.[40] 91.8 89.5 80.4 69.6 77.3 71.7 65.5 78.0 -
SPM[36] 89.7 87.4 80.4 72.4 76.7 74.9 68.3 78.5 0.058
DoubleEmbedding (Ours) 91.9 89.7 81.6 74.9 79.8 75.8 71.5 80.7 0.21

Table 4. Ablation experiments on MPII validation dataset.

Model Settings Pose Estimation

Basic Dis. Hierar Dis. MRM Head Sho Elb Wri Hip Knee Ank Total

X 92.1 88.4 78.3 68.9 77.5 73.6 63.7 77.5
X X 92.3 89.2 79.8 71.3 78.1 74.8 66.2 78.8
X X X 92.3 90.1 81.2 72.6 79.0 75.7 67.1 79.7
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4.3 Results on MPII dataset

Table 3 shows a comparison of the proposed method with state-of-the-arts meth-
ods on MPII dataset. The proposed model obtains 80.7% mAP achieving com-
petitive result among other bottom-up methods. In addition, we conduct the
ablation study on MPII validation dataset to verify MRM and the hierarchi-
cal displacements compared with the basic displacements. As shown in table 4,
DE improves from 77.5% mAP to 78.8% mAP by introducing hierarchical dis-
placements. Moreover, on wrists and ankles are significant from 68.9% to 71.3%
mAP and 73.6% to 74.8% mAP, respectively. Indicating the effectiveness of hier-
archical displacements to factorize the long-range displacements. MRM further
improves 1.1% mAP based on hierarchical displacements.

Qualitative results on MPII are shown in the middle row of Figure 4, demon-
strating the good performance and robustness of our model in complex scenes
such as person scale variations (1st example), large pose deformation (2nd and
3rd examples) and small-scale prediction (3rd example).

4.4 Results on CrowdPose dataset

Table 5. Comparison with state-of-the-arts on CrowdPose test dataset.

Method AP AP
50

AP
75

AP
M

AP
L

AP
H

Openpose[17] - - - 62.7 48.7 32.3
Mask-RCNN†[9] 57.2 83.5 60.3 69.4 57.9 45.8
AlphaPose†[11] 61.0 81.3 66.0 71.2 61.4 51.1
SPPE†[23] 66.0 84.2 71.5 75.5 66.3 57.4
HigherHRNet[38] 67.6 87.4 72.6 75.8 68.1 58.9
HRNet†[41] 71.7 89.8 76.9 79.6 72.7 61.5
DoubleEmbedding (Ours) 68.8 89.7 73.4 76.1 69.5 60.3

† indicates top-down methods

Table 5 shows experimental results on CrowdPose. The proposed model
achieves 68.8% AP which outperforms the existing bottom-up methods. but the
performance is still lower than the state-of-the-art top-down method, HRNet
which has intrinsic advantage in accuracy due to its processing flow. However,
it narrows the accuracy gap between other bottom-up methods and top-down
methods with less complexity. The performance on CrowdPose dataset indicates
the robustness of our method in crowded scene.

Qualitative results on CrowdPose dataset are shown in the bottom row of
Figure 4. The result verifies the effectiveness of our model in complex scenes, e.g.,
ambiguity pose and small-scale prediction (1st example), self-occluded (2nd ex-
ample), cluttered background (3rd example) and person overlapping and crowded
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scene (4th example).

Fig. 4. Qualitative results on MSCOCO dataset (top), MPII dataset (middle) and
CrowdPose dataset (bottom).

5 Conclusion

In this paper, we propose the Double Embedding (DE) method for multi-person
pose estimation. Through Global Embedding (GE) and Local Embedding (LE),
we achieve parallel implementation of person detection and joints detection,
overcoming the intrinsic disadvantages of the conventional two-stage strategy on
multi-person pose estimation. GE reduces the person instance detection problem
to identifying a group of joints and LE connects and identifies the rest joints
hierarchically. Based on LE, we design Mutual Refine Machine (MRM) to further
enhance the performance for dealing with complex scenarios. We implement DE
based on CNNs with end-to-end learning and inference. Experiments on three
main benchmarks demonstrate the effectiveness of our model. DE achieves the
competitive results among existing bottom-up methods and narrows the gap to
the state-of-the-art top-down methods with less complexity.
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