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Abstract. Visual tracking on unmanned aerial vehicles (UAVs) has en-
abled many new practical applications in computer vision. Meanwhile,
discriminative correlation filter (DCF)-based trackers have drawn great
attention and undergone remarkable progress due to their promising per-
formance and efficiency. However, the boundary effect and filter degra-
dation remain two challenging problems. In this work, a novel Adap-
tive Spatio-Temporal Regularized Correlation Filter (ASTR-CF) model
is proposed to address these two problems. The ASTR-CF can optimize
the spatial regularization weight and the temporal regularization weight
simultaneously. Meanwhile, the proposed model can be effectively opti-
mized based on the alternating direction method of multipliers (ADMM).
Experimental results on DTB70 and UAV123@10fps benchmarks have
proven the superiority of the ASTR-CF tracker compared to the state-
of-the-art trackers in terms of both accuracy and computational speed.

Keywords: UAV Tracking · Correlation Filter · Spatio-Temporal Reg-
ularization .

1 Introduction

The advance of visual tracking has provided UAV with the intriguing capability
for various practical applications. Differing from the generic tracking, UAV-based
tracking poses new challenges to the tracking problem, e.g., rapid changes in
scale and perspective, limited pixels in the target region, and multiple similar
disruptors [1].

Recently, discriminative correlation filter (DCF)-based trackers brought the
performance of tracking into a new level [2,3,4,5,6]. One of the prominent merits
that highlights the DCF-based trackers is that DCF is efficient in the training
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and detection stage as they can be transferred into the Fourier domain and
operated in element-wise multiplication, which is of significance for the real-time
tracking. However, it is still challenging to achieve high-performance tracking
for an arbitrary object in unconstrained scenarios. The main obstacles include
spatial boundary effect and temporal filter degeneration [6].

Learning DCF in the frequency domain comes at the high cost of learn-
ing from circularly shifted examples of the foreground target, thus it produces
the unwanted boundary effects. This dilemma has been alleviated to some extent
with additional pre-defined spatial constraints on filter coefficients. For example,
Danelljan et al. [7] introduced the Spatially Regularized Discriminative Correla-
tion Filters (SRDCF) to mitigate boundary effects. With the coefficient spatially
penalized according to their distance to the center, the tracker is expected to
focus on information near the center. Galoogahi et al. [8] multiplied the filter
directly with a binary matrix to generate real positive and negative samples for
model training. The aforementioned two spatial constraints are widely used in
the subsequent research works [9,10,11].

The appearance model of most DCF-based trackers is updated via a linear
interpolation approach and it cannot adapt to ubiquitous appearance change,
leading to filter degradation inevitably. Some attempts are made to tackle the
problem of filter degradation, e.g., training set management [12,13,14], temporal
restriction [15,16], tracking confidence verification [17,18] and over-fitting allevi-
ation [19]. Among them, the temporal regularization is proven to be an effective
way.

In this work, the problems of boundary effect and filter degradation are solved
by the proposed adaptive spatio-temporal regularized correlation filters (ASTR-
CF). Meanwhile, the ASTR-CF is applied to real-time UAV target tracking. We
compared our approach with state-of-the-art trackers on DTB70 and UAV123-
@10fps benchmarks. The results demonstrate that ASTR-CF outperforms state-
of-the-art trackers in terms of accuracy and computational speed.

2 Related work

Despite the great success of DCF in visual tracking, it remains a challenge to
achieve high performance tracking for an arbitrary object in unconstrained sce-
narios due to the intrinsic problems of spatial boundary effect and temporal filter
degradation [15]. To solve these problems, spatial regularization and temporal
regularization are introduced to the DCF framework successively.

2.1 Spatial regularization

Learning DCF in the frequency domain produces unwanted boundary effects
which reduce the tracking performance. [7,15]. To alleviate the boundary effect
problem, SRDCF [7] stimulates the interest in spatial regularization which al-
locates more energy for the central region of a filter using a predefined spatial
weighting function. A similar idea has been pursued through pruning the training
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samples or learned filters with a predefined mask [20,21,22]. A common charac-
terization of the approaches above is that they are all based on a fixed spatial
regularization pattern, decreasing the ambiguity emanating from the background
and resulting in a relatively large search window for tracking. Different from the
aforementioned approaches, Dai et al. [11] proposed an Adaptive Spatially Reg-
ularized Correlation Filters (ASRCF) model, which could estimate an object-
aware spatial regularization and obtain more reliable filter coefficients during
the tracking process.

2.2 Spatio-temporal regularization

Most of DCF-based trackers updated the appearance model via a linear inter-
polation approach, but it cannot adapt to ubiquitous appearance changes. To
address this problem, Li et al. [15] introduced a temporal regularization mod-
ule to SRDCF and incorporated both spatial and temporal regularization into
DCF. The improved version, named as STRCF, is a rational approximation of
the full SRDCF formulation on multiple training images, and can also be ex-
ploited for simultaneous DCF learning and model updating. Although STRCF
has achieved competent performance, it remains two limitations. (i) The fixed
spatial regularization failing to address appearance variation in the unforesee-
able aerial tracking scenarios. (ii) The unchanged temporal penalty strength µ

(set as 15 in [15]) is not general in all kinds of situations.
In this work, a novel Adaptive Spatio-Temporal Regularized Correlation Fil-

ters (ASTR-CF) model was proposed to estimate an object-aware spatial regu-
larization and context-aware temporal regularization. The overall procedure of
the tracking process is shown in Fig. 1. Meanwhile, the ADMM algorithm is
directly introduced to solve the ASTR-CF model making it more generic.

3 ASTR-CF

3.1 Objective function of ASTR-CF

CF: The original multi-channel CF model in the spatial domain aims to minimize
the following objective function [4],

E(H) =
1

2

∥∥∥∥∥y −
K∑

k=1

xk ∗ hk

∥∥∥∥∥

2

2

+
1

2

K∑

k=1

∥∥hk
∥∥2
2
. (1)

Here, xk ∈ R
T×1(k = 1, 2, 3, . . . ,K) and hk ∈ R

T×1(k = 1, 2, 3, . . . ,K) denote
the extracted feature with length T in the t-th frame and filter trained in the
t-th frame respectively. The vector y ∈ R

T×1 is the desired response (i.e., the
Gaussian-shaped ground truth) and ∗ denotes the convolution operator. H =[
h1, h2, . . . , hK

]
is the matrix representing the filters from all the K channels.

The original CF model suffers from periodic repetitions on boundary posi-
tions caused by circulant shifted samples, which inevitably degrades the tracking
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Fig. 1. Tracking framework based on the proposed ASTR-CF. In the training stage, a
training patch is cropped at the estimated location of the target at the t-th frame. We
extract the feature (HOG [23] and Color Names [24]) maps combined with prior filters
and w to train the current filter. At the (t + 1)-th frame, the trained filter is used to
produce a response map, based on which the target is located.

performance. To solve this problem, several spatial constraints have been intro-
duced to alleviate unexpected boundary effects. The representative methods are
SRDCF [7] and STRCF [15].

SRDCF: The SRDCF method [7] introduces a spatial regularization to penalize
the filter coefficients with respect to their spatial locations and the objective
function is formulated as,

E(H) =
1

2

∥∥∥∥∥y −
K∑

k=1

xk ∗ hk

∥∥∥∥∥

2

2

+
1

2
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∥∥w̃ ⊙ hk
∥∥2
2
. (2)

Here, w̃ is a negative Gaussian-shaped spatial weight vector to make the learned
filters have a high response around the center of the tracked object. However,
although SRDCF is effective in suppressing the adverse boundary effects, it also
increases the computational burden due to the following two reasons. (i) The
failure of exploiting circulant matrix structure. (ii) The large linear equations
and Gauss-Seidel solver. More implementation details are refer to [7].

STRCF: The STRCF model [15] introduces a spatial-temporal regularized mod-
ule to CF and the objective function is formulated as,

E(H) =
1

2
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∥∥∥∥∥
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∥∥2
2
. (3)
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Here, xk ∈ R
T×1(k = 1, 2, 3, . . . ,K) is the extracted feature with length T

in frame t. hk,hk
t−1 ∈ R

T×1(k = 1, 2, 3, . . . ,K) denote the filter of the t-th
channel trained in the k-th and (t-1)-th frame respectively. As for regularization,
the spatial regularization parameter w̃ is imitated from SRDCF [7] to decrease
boundary effect, and temporal regularization(the third term in Eq. (3), is firstly
proposed to restrict filter’s variation by penalizing the difference between the
current and previous filters.

However, as aforementioned, the spatial regularization and temporal penalty
strength of STRCF [15] are fixed. Therefore, it fails to address the appearance
variation in the unforeseeable aerial tracking scenarios.

Our Objective Function: Motivated by the discussions above, we propose a
novel ASTR-CF method to learn effective multi-channel CFs, and our objective
function is defined as follows,

E(H,w, µ) =
1

2

∥∥∥∥∥y −
K∑

k=1

xk ∗ hk

∥∥∥∥∥

2

2

+ (
λ1

2

K∑

k=1

∥∥w ⊙ hk
∥∥2
2
+

λ2

2
‖w − w̃‖22)+

(
µ

2

K∑

k=1

∥∥hk − hk
t−1

∥∥2
2
+

1

2
‖µ− µ̃‖22

)
.

(4)

Here, the first term is the ridge regression term that convolves the training data
X =

[
x1,x2, . . . ,xK

]
with the filter H =

[
h1,h2, . . . ,hK

]
to fit the Gaussian-

distributed ground truth y. The second term introduces an adaptive spatial
regularization on the filter H. The spatial weight w requires to be optimized to
approximate a reference weight w̃. This constraint introduces prior information
on w and avoids model degradation. λ1 and λ2 are the regularization parameters
of the second terms. The third term introduces an adaptive temporal regulariza-
tion, where µ̃ and µ denote the reference and optimized context-aware temporal
regularization parameter respectively [6]. µ̃ is denoted as ,

µ̃ =
ζ

1 + log (ν||Π||2 + 1)
, ‖Π‖2 ≤ φ. (5)

Here, Π =
[∣∣Π1

∣∣ , |Π2|, · · ·
∣∣ΠT

∣∣] denotes the response variations. ζ and ν denote
hyper parameters.

3.2 Optimization of ASTR-CF

We express the objective function i.e., Eq. (4), in the frequency domain using
Parseval’s theorem, and convert it into the equality constrained optimization
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form,

E(H, Ĝ,w, µ) =
1

2

∥∥∥∥∥ŷ −
K∑

k=1

x̂k ⊙ ĝk

∥∥∥∥∥

2

2

+
λ1

2

K∑

k=1

∥∥w ⊙ hk
∥∥2
2
+

λ2

2
‖w − w̃‖22 +

µ

2

K∑

k=1

∥∥ĝk − ĝk
t−1

∥∥2
2
+

1

2
‖µ− µ̃‖22,

s.t., ĝk =
√
TFhk, k = 1, . . . ,K.

(6)

Here, Ĝ =
[
ĝ1, ĝ2, . . . , ĝK

] (
ĝk =

√
TFhk, k = 1, 2, . . . ,K

)
is an auxiliary vari-

able matrix. The symbol ∧ denotes the discrete Fourier transform form of a
given signal, and F is the orthonormal T × T matrix of complex basis vectors
to map any T dimensional vectorized signal into the Fourier domain. The model
in Eq. (6) is bi-convex, and can be minimized to obtain a local optimal solution
using ADMM [25]. The augmented Lagrangian form of Eq. (6) can be formulated
as,

L(H, Ĝ,w, µ, V̂) =E(H, Ĝ,w, µ) +
γ

2

K∑

k=1

∥∥∥ĝk −
√
TFhk

∥∥∥
2

2
+

K∑

k=1

(
v̂k
)T (

ĝk−
√
TFhk

)
.

(7)

Here, V is the Lagrange multiplier, and V̂ is the corresponding Fourier trans-
form. By introducing sk = 1

γ
vk, the optimization of Eq. (7) is equivalent to

solving,

L(H, Ĝ,w, µ, Ŝ) = E(H, Ĝ,w, µ) +
γ

2

K∑

k=1

∥∥∥ĝk −
√
TFhk + ŝk

∥∥∥
2

2
. (8)

Then, the ADMM algorithm is adopted by alternately solving the following
subproblems.

Subproblem H: If Ĝ,w, µ and Ŝ are given, the optimal H∗ can be obtained
as,

hk∗

= argmin
hk

{
λ1

2

∥∥w ⊙ hk
∥∥2
2
+

γ

2

∥∥∥ĝk −
√
TFhk + ŝk

∥∥∥
2

2

}

=
[
λ1W

TW + γT I
]−1

γT
(
gk + sk

)

=
γT
(
gk + sk

)

λ1(w ⊙w) + γT
.

(9)

Here, W = diag (w) ∈ R
T×T . Eq. (9) shows that the solution of hk merely

requires the element-wise multiplication and the inverse fast Fourier transform
(i.e.,gk = 1√

T
FTĝk and sk = 1√

T
FTŝk).
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Subproblem Ĝ: If H, w, µ, and Ŝ are given, the optimal Ĝ∗ can be estimated
by solving the optimization problem as,

Ĝ∗ =argmin
Ĝ





1

2

∥∥∥∥∥y −
K∑

k=1

x̂k ⊙ ĝk

∥∥∥∥∥

2

2

+
µ

2

K∑

k=1

∥∥ĝk − ĝk
t−1

∥∥2
2
+

γ

2

K∑

k=1

∥∥∥ĝk −
√
TFhk + ŝk

∥∥∥
2

2

}
.

(10)

However, it is difficult to optimize Eq. (10) due to its high computation com-
plexity. Thus, we consider processing on all channels of each pixel to simplify
our formulation written by,

V∗
j (Ĝ) = argmin

Vj(Ĝ)

{
1

2

∥∥∥ŷj − Vj(X̂)TVj(Ĝ)
∥∥∥
2

2
+

µ

2

∥∥∥Vj(Ĝ)− Vj

(
Ĝt−1

)∥∥∥
2

2
+

γ

2

∥∥∥Vj(Ĝ) + Vj(Ŝ)− Vj(
√
TFH)

∥∥∥
2

2

}
.

(11)

Here, Vj(X̂) ∈ C
K×1 denotes the values of all K channels of X̂ on pixel j,

(j = 1, 2, . . . ,T). Then, the analytical solution of Eq. (11) can be obtained as,

V∗(Ĝ) =
1

µ+ γ

[
I− Vj(X̂)Vj(X̂)T

µ+ γ + Vj(X̂)TVj(X̂)

]
ρ, (12)

here,

ρ = Vj(X̂)ŷj + µ
[
Vj

(
Ĝt−1

)]
+ γ

[
Vj(

√
TFH)− Vj(Ŝ)

]
. (13)

The derivation of Eq. (12) uses the Sherman Morrsion formula,

(
A+ uvT

)−1
= A−1 − A−1uvTA−1

1 + vTA−1u
. (14)

Here, u and v are two column vectors and uvT is a rank-one matrix.

Solving w: If H, Ĝ, µ and Ŝ are fixed, the closed-form solution regrading w
can be determined as,

w∗ = argmin
w

{
λ1

2

K∑

k=1

∥∥w ⊙ hk
∥∥2
2
+

λ2

2
‖w − w̃‖22

}

=

[
λ1libinxusd@outlook.com

K∑

k=1

(
Nk
)T

Nk + λ2I

]−1

λ2w̃

=
λ2w̃

λ1

∑K

k=1 h
k ⊙ hk + λ2I

.

(15)
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Here, Nk = diag
(
hk
)
∈ R

T×T .

Solving µ: Given other variables H, Ĝ, w, and Ŝ, the optimal solution of µ can
be determined as,

µ∗ = argmin
µ

{
µ

2

K∑

k=1

∥∥ĝk − ĝk
t−1

∥∥2
2
+

1

2
‖µ− µ̃‖22

}

= µ̃− 1

2

K∑

k=1

∥∥ĝk − ĝk
t−1

∥∥2
2
.

(16)

Lagrangian Multiplier Update: We update Lagrangian multipliers as,

Ŝi+1 = Ŝi + γi
(
Ĝi+1 − Ĥi+1

)
. (17)

Here, i and i + 1 denote the iteration index. The step size regularization con-
stant γ takes the form of γi+1 = min

(
γmax, βγ

i
)
(β = 10, γmax = 10000). By

iteratively solving the five subproblems above, we can optimize our objective
function effectively and obtain the optimal filter Ĝ, object-aware spatial regu-
larization weight w and context-aware temporal regularization parameter µ in
frame t. Then Ĝ is used for detection in frame t+ 1.

3.3 Target localization

The location of the target can be determined in the Fourier domain as,

R̂t =

K∑

k=1

x̂k ⊙ ĝk
t−1. (18)

Here, Rt and R̂t denote the response map and its Fourier transform. After
obtaining the response map, the optimal location can be obtained based on the
maximum response.

4 Experimental Results

In this section, we demonstrate the effectiveness of our tracker on DTB70 [26]
and UAV123@10fps [27] datasets among the current state-of-the-art trackers.
We use the same evaluation criteria on the two benchmarks.

The experiments of tracking performance evaluation are conducted using
MATLAB R2017a on a PC with an i7-8700K processor (3.7GHz), 32GB RAM,
and an NVIDIA GTX 1080Ti GPU. For the hyper-parameters of our tracker,
we set λ1 = 1, λ2 = 0.001, ν = 2× 10−5, and ζ = 13. The threshold of φ is 3000,
and the ADMM iteration is set to 4.
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4.1 Quantitative evaluation

DTB70: The DTB70 dataset [26] contains 70 difficult UAV image sequences,
primarily addressing the problem of severe UAV motion. In addition, various
cluttered scenes and objects with different sizes as well as aspect ratios are
included. We compare our tracker with 12 state-of-the-art trackers, including
trackers using hand-crafted features (i.e., AutoTrack [6], BACF [8], DAT [28],
DSST [29], ECO-HC [12], KCF [4], SRDCF [7], and STRCF [15]), using deep
feature-based or pretrained deep architecture-based trackers (i.e., ASRCF [11],
IBCCF [30], UDT+ [31], and MDNet [32]). To make a fair comparison, the
publicly available codes or results provided by the original authors are employed.
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Fig. 2. Comparison of the success rate and precision plots with the state-of-the-art
trackers on DTB70 dataset [26]. The numbers in the legend indicate the representative
AUC for success plots and precisions at 20 pixels for precision plots.

We evaluate the trackers based on One Pass Evaluation (OPE) rule [33],
and two measures are used for evaluation, namely success rate and precision.
The success rate can display the percentage of situations when the overlap be-
tween the estimated bounding box and the ground truth is greater than different
thresholds, and Area under the curve (AUC) is utilized for ranking. Precision
can demonstrate the percentage of scenarios when the distance between the esti-
mated bounding box and ground truth one is smaller than different thresholds,
and the score at 20 pixels is used for ranking. Fig. 2 depicts both the success
rate and precision of different trackers. Overall, the proposed tracker achieves
the best result with an AUC score of 0.484 among all the other trackers. For the
distance precision, the proposed ASTR-CF outperforms most of the competing
trackers except for AutoTrack [6]. It is noteworthy that the proposed tracker
surpasses its counterpart SRDCF [7] and STRCF [15] by 22% and 6.6%, respec-
tively. What’s more, only with hand-crafted features, our tracker outperforms
deep feature-based trackers (ASRCF [11], and IBCCF [30]) and pre-trained deep
architecture-based trackers (MDNet [32], and UDT+ [31]).
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UAV123@10fps: The UAV123@10fps dataset [27] is a temporarily down-sampled
version of the UAV123 [27]. It increases the tracing challenge compared with the
original UAV123 [27] because the displacements of the moving objects become
bigger. Nine state-of-the-art trackers, i.e., AutoTrack [6], BACF [8], DSST [29],
ECO-HC [12], MEEM [34], SRDCF [7], STRCF [15], Struck [35], MUSTer [36]
are implemented for comparison. The comparative results are depicted in Fig. 3.
One can see that the proposed tracker outperforms all the other state-of-the-art
trackers in terms of both success rate and precision.
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Fig. 3. Performance evaluation on UAV123@10fps dataset [27] in terms of success plots
and precision plots.

Fig. 4 shows the overlap success plots of different trackers on 6 attributes,
e.g., illumination variation, partial occlusion, viewpoint changes, fast motion,
scale variation, and low resolution. Our tracker achieves the best performance in
all these attributes. This is mainly attributed to the proposed adaptive spatio-
temporal regularization, in which the adaptive temporal regularization enables
the learned filter to perform more robust to occlusion while adapting well to
large appearance variation. Meanwhile, the learned filters focus on the reliable
features of the tracked object, it can alleviate the effects of unexpected noises
within the object region by introducing adaptive spatial regularization. More

attribute-based evaluations can be seen in the supplementary material.
Finally, we perform qualitative evaluations of different trackers on several

video sequences. For a clearer visualization, we exhibit the results of ASTR-CF
and 4 state-of-the-art trackers, i.e., AutoTrack [6], STRCF [15] ECO-HC [12],
and BACF[8]. The tracking results on 6 video sequences are shown in Fig. 5.
One can note that the proposed ASTR-CF performs favorably against the state-
of-the-art hand-crafted trackers.

Overall performance evaluation: Average performance of the top-5 CPU-
based trackers on DTB70 dataset [26] and UAV123@10fps dataset [27] are sum-
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UAV123@10fps: Illumination Variation (31)

Ours [0.394]
AutoTrack [0.380]
ECO-HC [0.366]
STRCF [0.355]
SRDCF [0.333]
MEEM [0.322]
BACF [0.310]
Struck [0.290]
MUSTer [0.281]
DSST [0.210]
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UAV123@10fps: Partial Occlusion (73)

Ours [0.414]
AutoTrack [0.405]
ECO-HC [0.391]
STRCF [0.389]
SRDCF [0.355]
MEEM [0.337]
BACF [0.327]
MUSTer [0.302]
Struck [0.300]
DSST [0.246]
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UAV123@10fps: Viewpoint Change (60)

Ours [0.420]
AutoTrack [0.412]
ECO-HC [0.403]
STRCF [0.394]
SRDCF [0.356]
BACF [0.353]
MEEM [0.348]
MUSTer [0.316]
Struck [0.291]
DSST [0.231]
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UAV123@10fps: Fast Motion (28)

Ours [0.356]
AutoTrack [0.349]
STRCF [0.328]
SRDCF [0.311]
ECO-HC [0.301]
BACF [0.275]
MEEM [0.231]
MUSTer [0.203]
DSST [0.157]
Struck [0.155]
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UAV123@10fps: Scale Variation (109)

Ours [0.445]
AutoTrack [0.443]
ECO-HC [0.422]
STRCF [0.419]
SRDCF [0.390]
BACF [0.374]
MUSTer [0.343]
MEEM [0.340]
Struck [0.307]
DSST [0.262]
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UAV123@10fps: Low Resolution (48)

Ours [0.316]
AutoTrack [0.315]
ECO-HC [0.300]
STRCF [0.291]
BACF [0.248]
Struck [0.246]
MEEM [0.241]
SRDCF [0.237]
MUSTer [0.235]
DSST [0.171]

Fig. 4. Evaluation of di�erent trackers with 6 attributes on the UAV123@ 10fps dataset
[27]. Success plot can display the percentage of situations whenthe overlap between
estimated bounding boxes and ground truth one is greater than di �erent thresholds.
Area under curve (AUC) is utilized for ranking.

Fig. 5. Qualitative comparison of our approach with state-of-the-art t rackers on the
group2 2, group2 3, person1 s, and wakeboard5 sequences.








