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Abstract. Despite the availability of many Markov Random Field (MRF) opti-

mization algorithms, their widespread usage is currently limited due to imperfect

MRF modelling arising from hand-crafted model parameters and the selection

of inferior inference algorithm. In addition to differentiability, the two main as-

pects that enable learning these model parameters are the forward and backward

propagation time of the MRF optimization algorithm and its inference capabili-

ties. In this work, we introduce two fast and differentiable message passing algo-

rithms, namely, Iterative Semi-Global Matching Revised (ISGMR) and Parallel

Tree-Reweighted Message Passing (TRWP) which are greatly sped up on a GPU

by exploiting massive parallelism. Specifically, ISGMR is an iterative and re-

vised version of the standard SGM for general pairwise MRFs with improved

optimization effectiveness, and TRWP is a highly parallel version of Sequential

TRW (TRWS) for faster optimization. Our experiments on the standard stereo

and denoising benchmarks demonstrated that ISGMR and TRWP achieve much

lower energies than SGM and Mean-Field (MF), and TRWP is two orders of mag-

nitude faster than TRWS without losing effectiveness in optimization. We further

demonstrated the effectiveness of our algorithms on end-to-end learning for se-

mantic segmentation. Notably, our CUDA implementations are at least 7 and 700
times faster than PyTorch GPU implementations for forward and backward prop-

agation respectively, enabling efficient end-to-end learning with message passing.

1 Introduction

Optimization of Markov Random Fields (MRFs) has been a well-studied problem for

decades with a significant impact on many computer vision applications such as stereo

vision [1], image segmentation [2], texture modeling [3]. The widespread use of these

MRF optimization algorithms is currently limited due to imperfect MRF modelling

[4] because of hand-crafted model parameters, the usage of inferior inference meth-

ods, and non-differentiability for parameter learning. Thus, better inference capability

and computing efficiency are essential to improve its performance on optimization and

modelling, such as energy optimization and end-to-end learning.

Even though parameter and structural learning with MRFs has been employed suc-

cessfully in certain cases, well-known algorithms such as Mean-Field (MF) [5,6] and

Semi-Glocal Matching (SGM) [7], are suboptimal in terms of optimization capability.



2 Z. Xu et al.

Specifically, the choice of an MRF algorithm for optimization is driven by its inference

ability, and for learning capability through efficient forward and backward propagation

and parallelization capabilities.

In this work, we consider message passing algorithms due to their generality, high

inference ability, and differentiability, and provide efficient CUDA implementations

of their forward and backward propagation by exploiting massive parallelism. In par-

ticular, we revise the popular SGM method [1] and derive an iterative version noting

its relation to traditional message passing algorithms [8]. In addition, we introduce a

highly parallelizable version of the state-of-the-art Sequential Tree-Reweighted Mes-

sage Passing (TRWS) algorithm [9], which is more efficient than TRWS and has sim-

ilar minimum energies. For both these methods, we derive efficient backpropagation

by unrolling their message updates and cost aggregation and discuss massively parallel

CUDA implementations which enable their feasibility in end-to-end learning.

Our experiments on the standard stereo and denoising benchmarks demonstrate that

our Iterative and Revised SGM method (ISGMR) obtains much lower energies com-

pared to the standard SGM and our Parallel TRW method (TRWP) is two orders of

magnitude faster than TRWS with virtually the same minimum energies and that both

outperform the popular MF and SGM inferences. Their performance is further evalu-

ated by end-to-end learning for semantic segmentation on PASCAL VOC 2012 dataset.

Furthermore, we empirically evaluate various implementations of the forward and

backward propagation of these algorithms and demonstrate that our CUDA implemen-

tation is the fastest, with at least 700 times speed-up in backpropagation compared to a

PyTorch GPU version. Code is available at https://github.com/zwxu064/MPLayers.git.

Contributions of this paper can be summarised as:

• We introduce two message passing algorithms, ISGMR and TRWP, where ISGMR

has higher optimization effectiveness than SGM and TRWP is much faster than

TRWS. Both of them outperform the popular SGM and MF inferences.

• Our ISGMR and TRWP are massively parallelized on GPU and can support any

pairwise potentials. The CUDA implementation of the backpropagation is at least

700 times faster than the PyTorch auto-gradient version on GPU.

• The differentiability of ISGMR and TRWP is presented with gradient derivations,

with effectiveness validated by end-to-end learning for semantic segmentation.

2 Related Work

In MRF optimization, estimating the optimal latent variables can be regarded as mini-

mizing a particular energy function with given model parameters. Even if the minimum

energy is obtained, high accuracy cannot be guaranteed since the model parameters of

these MRFs are usually handcrafted and imperfect. To tackle this problem, learning-

based methods were proposed. However, most of these methods rely greatly on finetun-

ing the network architecture or adding learnable parameters to increase the fitting ability

with ground truth. This may not be effective and usually requires high GPU memory.

Nevertheless, considering the highly effective MRF optimization algorithms, the

field of exploiting their optimization capability with parameter learning to alleviate

https://github.com/zwxu064/MPLayers.git
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each other’s drawbacks is rarely explored. A few works provide this capability in cer-

tain cases, such as CRFasRNN in semantic segmentation [5] and SGMNet in stereo

vision [7], with less effective MRF algorithms, that is MF and SGM respectively. Thus,

it is important to adopt highly effective and efficient MRF inference algorithms for

optimization and end-to-end learning.

MRF Optimization. Determining an effective MRF optimization algorithm needs

a thorough study of the possibility of their optimization capability, differentiability, and

time efficiency. In the two main categories of MRF optimization algorithms, namely

move-making algorithms (known as graph cuts) [10,11,12,13,14,15] and message pass-

ing algorithms [1,16,17,9,18,19,20,21], the state-of-the-art methods are α-expansion

[12] and Sequential Tree-Reweighted Message Passing (TRWS) [9] respectively. The

move-making algorithms, however, cannot easily be used for parameter learning as they

are not differentiable and are usually limited to certain types of energy functions.

In contrast, message passing algorithms adapt better to any energy functions and can

be made differentiable and fast if well designed. Some works in probabilistic graphical

models indeed demonstrate the learning ability of TRW algorithms with sum-product

and max-product [16,20] message passing. A comprehensive study and comparison of

these methods can be found in Middlebury [4] and OpenGM [22]. Although SGM [1]

is not in the benchmark, it was proved to have a high running efficiency due to the fast

one-dimensional Dynamic Programming (DP) that is independent in each scanline and

scanning direction [1].

End-to-End Learning. Sum-product TRW [23,24,25] and mean-field [5,26,27]

have been used for end-to-end learning for semantic segmentation, which presents their

highly effective learning ability. Meanwhile, for stereo vision, several MRF/CRF based

methods [7,28,29], such as SGM-related, have been proposed. These further indicate

the high efficiency of selected MRF optimization algorithms in end-to-end learning.

In our work, we improve optimization effectiveness and time efficiency based on

classical SGM and TRWS. In particular, we revise the standard SGM and make it iter-

ative in order to improve its optimization capability. We denote the resulting algorithm

as ISGMR. Our other algorithm, TRWP, is a massively parallelizable version of TRWS,

which greatly increases running speed without losing the optimization effectiveness.

3 Message Passing Algorithms

We first briefly review the typical form of a pairwise MRF energy function and discuss

two highly parallelizable message passing approaches, ISGMR and TRWP. Such a par-

allelization capability is essential for fast implementation on GPU and enables relatively

straightforward integration to existing deep learning models.

3.1 Pairwise MRF Energy Function

Let Xi be a random variable taking label xi ∈ L. A pairwise MRF energy function

defined over a set of such variables, parametrized by Θ = {θi, θi,j}, is written as

E(x | Θ) =
∑

i∈V

θi(xi) +
∑

(i,j)∈E

θi,j(xi, xj) , (1)
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where θi and θi,j denote unary potentials and pairwise potentials respectively, V is the

set of vertices (corresponding, for instance, to image pixels or superpixels), and E is the

set of edges in the MRF (usually encoding a 4-connected or 8-connected grid).

3.2 Iterative Semi-Global Matching Revised

We first introduce the standard SGM for stereo vision supporting only a single iteration.

With its connection to message passing, we then revise its message update equation and

introduce an iterative version. Figure 1 shows a 4-connected SGM on a grid MRF.

3.2.1 Revised Semi-Global Matching. We cast the popular SGM algorithm [1] as an

optimization method for a particular MRF and discuss its relation to message passing

as noted in [8]. In SGM, pairwise potentials are simplified for all edges (i, j) ∈ E as

θi,j(λ, µ) = θi,j(|λ− µ|) =







0 if λ = µ ,
P1 if |λ− µ| = 1 ,
P2 if |λ− µ| ≥ 2 ,

(2)

where 0 < P1 ≤ P2. The idea of SGM relies on cost aggregation in multiple directions

(each direction having multiple one-dimensional scanlines) using Dynamic Program-

ming (DP). The main observation made by [8] is that, in SGM the unary potentials are

over-counted |R| − 1 times (where R denotes the set of directions) compared to the

standard message passing and this over-counting corrected SGM is shown to perform

slightly better in [30]. Noting this, we use symbol mr
i (λ) to denote the message-vector

passed to node i, along a scan-line in the direction r, from the previous node, denoted

i− r. This is a vector indexed by λ ∈ L. Now, the SGM update is revised from

mr
i (λ) = min

µ∈L

(

θi(λ) +mr
i−r(µ) + θi−r,i(µ, λ)

)

, (3)

which is the form given in [1], to

mr
i (λ) = min

µ∈L

(

θi−r(µ) +mr
i−r(µ) + θi−r,i(µ, λ)

)

. (4)

The mr
i (λ) represents the minimum cost due to possible assignments to all nodes pre-

vious to node i along the scanline in direction r, and assigning label λ to node i. It does

not include the cost θi(λ) associated with node i itself.

Since subtracting a fixed value for all λ from messages preserves minima, the mes-

sage mr
i (λ) can be reparametrized as

mr
i (λ) = mr

i (λ)−min
µ∈L

mr
i (µ) , (5)

which does not alter the minimum energy. Since the values of θi(λ) are not included in

the messages, the final cost at a particular node i at label λ is revised from

ci(λ) =
∑

r∈R

mr
i (λ) (6)
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Fig. 1: An example of 4-connected SGM on a grid MRF: left-right, right-left, up-down,

down-up. Message passing along all these scanlines can be accomplished in parllel.

to

ci(λ) = θi(λ) +
∑

r∈R

mr
i (λ) , (7)

which is the sum of messages over all the directions plus the unary term. The final

labelling is then obtained by

x∗
i = argmin

λ∈L
ci(λ) , ∀ i ∈ V . (8)

Here, the message update in the revised SGM, i.e., Eq. (4), is performed in parallel

for all scanlines for all directions. This massive parallelization makes it suitable for

real-time applications [31] and end-to-end learning for stereo vision [7].

3.2.2 Iteration of Revised Semi-Global Matching. In spite of the revision for the

over-counting problem, the 3-penalty pairwise potential in Eq. (2) is insufficient to ob-

tain dominant penalties under a large range of disparities in different camera settings.

To this end, we consider more general pairwise potentials θi,j(λ, µ) and introduce an

iterative version of the revised SGM. The message update for the iterative version is

mr,k+1
i (λ) = min

µ∈L

(

θi−r(µ) + θi−r,i(µ, λ) +mr,k+1
i−r (µ) +

∑

d∈R\{r,r−}

md,k
i−r(µ)

)

, (9)

where r− denotes the opposite direction of r and mr,k+1
i−r (µ) denotes the updated mes-

sage in kth iteration while mr,k
i−r(µ) is updated in (k − 1)th iteration. The exclusion of

the messages from direction r− is important to ensure that the update is analogous to the

standard message passing and the same energy function is minimized at each iteration.

A simple combination of several standard SGMs does not satisfy this rule and performs

worse than our iterative version, as reported in Tables 1-2. Usually, mr for all r ∈ R
are initialized to 0, the exclusion of r− from R is thus redundant for a single iteration

but not multiple iterations. Even so, messages can be reparametrized by Eq. (5).

After multiple iterations, the final cost for node i ∈ V is calculated by Eq. (7), and

the final labelling is calculated in the same manner as Eq. (8). We denote this iterative

and revised SGM as ISGMR, summarized in Algorithm 1.

In sum, the improvement of ISGMR from SGM lies in the exclusion of over-counted

unary terms by Eq. (4) to increase the effects of pairwise terms as well as the iterative

energy minimization by Eq. (9) to further decrease the energy with updated messages.
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Algorithm 1: Forward Propagation of ISGMR

Input: Energy parameters Θ = {θi, θi,j(·, ·)}, set of nodes V , edges E , directionsR,

iteration number K. We replace mr,k by mr and mr,k+1 by m̂r for simplicity.

Output: Labelling x
∗ for optimization, costs {ci(λ)} for learning, indices {prk,i(λ)}

and {qrk,i} for backpropagation.

1 m̂ ← 0 and m ← 0 ⊲initialize all messages

2 for iteration k ∈ {1, . . . ,K} do

3 forall directions r ∈ R do ⊲parallel

4 forall scanlines t in direction r do ⊲parallel

5 for node i in scanline t do ⊲sequential

6 for label λ ∈ L do

7
∆(λ, µ)←θi−r(µ) + θi−r,i(µ, λ) + m̂

r
i−r(µ) +

∑

d∈R\{r,r−}

m
d
i−r(µ)

8 prk,i(λ)← µ∗ ← argminµ∈L ∆(λ, µ) ⊲store index

9 m̂r
i (λ)← ∆(λ, µ∗) ⊲message update (9)

10 qrk,i ← λ∗ ← argminλ∈L m̂r
i (λ) ⊲store index

11 m̂r
i (λ)← m̂r

i (λ)− m̂r
i (λ

∗) ⊲reparametrization (5)

12 m ← m̂ ⊲update messages after iteration

13 ci(λ)← θi(λ) +
∑

r∈R mr
i (λ), ∀i ∈ V, λ ∈ L ⊲Eq. (7)

14 x∗
i ← argminλ∈L ci(λ), ∀i ∈ V ⊲Eq. (8)

3.3 Parallel Tree-Reweighted Message Passing

TRWS [9] is another state-of-the-art message passing algorithm that optimizes the Lin-

ear Programming (LP) relaxation of a general pairwise MRF energy given in Eq. (1).

The main idea of the family of TRW algorithms [32] is to decompose the underlying

graph G = (V, E) of the MRF with parameters Θ into a combination of trees where the

sum of parameters of all the trees is equal to that of the MRF, i.e.,
∑

T∈T ΘT = Θ.

Then, at each iteration message passing is performed in each of these trees indepen-

dently, followed by an averaging operation. Even though any combinations of trees

would theoretically result in the same final labelling, the best performance is achieved

by choosing a monotonic chain decomposition and a sequential message passing update

rule, which is TRWS. Interested readers please refer to [9] for more details.

Since we intend to enable fast message passing by exploiting parallelism, our idea is

to choose a tree decomposition that can be massively parallelized, denoted as TRWP. In

the literature, edge-based or tree-based parallel TRW algorithms have been considered,

namely, TRWE and TRWT in the probability space (specifically sum-product message

passing) rather than for minimizing the energy [32]. Optimizing in the probability do-

main involves exponential calculations which are prone to numerical instability, and the

sum-product version requires O(|R||L|) times more memory compared to the min-sum

message passing in backpropagation. More details are in Appendix E.

Correspondingly, our TRWP directly minimizes the energy in the min-sum message

passing fashion similar to TRWS, and thus, its update can be written as

mr
i (λ) = min

µ∈L

(

ρi−r,i(θi−r(µ) +
∑

d∈R

md
i−r(µ))−mr−

i−r(µ) + θi−r,i(µ, λ)
)

. (10)
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Algorithm 2: Forward Propagation of TRWP

Input: Energy parameters Θ = {θi, θi,j(·, ·)}, set of nodes V , edges E , directionsR,

tree decomposition coefficients {ρi,j}, iteration number K.

Output: Labelling x
∗ for optimization, costs {ci(λ)} for learning, indices {prk,i(λ)}

and {qrk,i} for backpropagation.

1 m ← 0 ⊲initialize all messages

2 for iteration k ∈ {1, . . . ,K} do

3 for direction r ∈ R do ⊲sequential

4 forall scanlines t in direction r do ⊲parallel

5 for node i in scanline t do ⊲sequential

6 for label λ ∈ L do

7
∆(λ, µ)←ρi−r,i

(

θi−r(µ) +
∑

d∈R

m
d
i−r(µ)

)

−m
r−

i−r(µ) + θi−r,i(µ, λ)

8 prk,i(λ)← µ∗ ← argminµ∈L ∆(λ, µ) ⊲store index

9 mr
i (λ)← ∆(λ, µ∗) ⊲message update (10)

10 qrk,i ← λ∗ ← argminλ∈L mr
i (λ) ⊲store index

11 mr
i (λ)← mr

i (λ)−mr
i (λ

∗) ⊲reparametrization (5)

12 ci(λ)← θi(λ) +
∑

r∈R mr
i (λ), ∀i ∈ V, λ ∈ L ⊲Eq. (7)

13 x∗
i ← argminλ∈L ci(λ), ∀i ∈ V ⊲Eq. (8)

Here, the coefficient ρi−r,i = γi−r,i/γi−r, where γi−r,i and γi−r are the number of

trees containing the edge (i − r, i) and the node i − r respectively in the considered

tree decomposition. For loopy belief propagation, since there is no tree decomposition,

ρi−r,i = 1. For a 4-connected graph decomposed into all horizontal and vertical one-

dimensional trees, we have ρi−r,i = 0.5 for all edges.

Note that, similar to ISGMR, we use the scanline to denote a tree. The above update

can be performed in parallel for all scanlines in a single direction; however, the message

updates over a scanline are sequential. The same reparametrization Eq. (5) is applied.

While TRWP cannot guarantee the non-decreasing monotonicity of the lower bound

of energy, it dramatically improves the forward propagation speed and yields virtually

similar minimum energies to those of TRWS. The procedure is in Algorithm 2.

In sum, our TRWP benefits from a high speed-up without losing optimization capa-

bility by the massive GPU parallelism over individual trees that are decomposed from

the single-chain tree in TRWS. All trees in each direction r are paralleled by Eq. (10).

3.4 Relation between ISGMR and TRWP

Both ISGMR and TRWP use messages from neighbouring nodes to perform recur-

sive and iterative message updates via dynamic programming. Comparison of Eq. (9)

and Eq. (10) indicates the introduction of the coefficients {ρi−r,i}. This is due to the

tree decomposition, which is analogous to the difference between loopy belief propaga-

tion and TRW algorithms. The most important difference, however, is the way message

updates are defined. Specifically, within an iteration, ISGMR can be parallelized over

all directions since the most updated messages m̂r are used only for the current scan-

ning direction r and previous messages are used for the other directions (refer Eq. (9)).

In contrast, aggregated messages in TRWP are up-to-date direction-by-direction, which

largely contributes to the improved effectiveness of TRWP over ISGMR.
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3.5 Fast Implementation by Tree Parallelization

Independent trees make the parallelization possible. We implemented on CPU and

GPU, where for the C++ multi-thread versions (CPU), 8 threads on Open Multi-Processing

(OpenMP) [33] are used while for the CUDA versions (GPU), 512 threads per block

are used. Each tree is headed by its first node by interpolation. The node indexing de-

tails for efficient parallelism are provided in Appendix C. In the next section, we derive

efficient backpropagation through each of these algorithms for parameter learning.

4 Differentiability of Message Passing

Effective and differentiable MRF optimization algorithms can greatly improve the per-

formance of end-to-end learning. Typical methods such as CRFasRNN for semantic

segmentation [5] by MF and SGMNet for stereo vision [7] by SGM use inferior infer-

ences in the optimization capability compared to ISGMR and TRWP.

In order to embed ISGMR and TRWP into end-to-end learning, differentiability of

them is required and essential. Below, we describe the gradient updates for the learn-

able MRF model parameters, and detailed derivations are given in Appendix D. The

backpropagation pseudocodes are in Algorithms 3-4 in Appendix A.

Since ISGMR and TRWP use min-sum message passing, no exponent and logarithm

are required. Only indices in message minimization and reparametrization are stored in

two unsigned 8-bit integer tensors, denoted as {prk,i(λ)} and {qrk,i} with indices of di-

rection r, iteration k, node i, and label λ. This makes the backpropagation time less

than 50% of the forward propagation time. In Figure 2a, the gradient updates in back-

propagation are performed along edges that have the minimum messages in the forward

direction. In Figure 2b, a message gradient at node i is accumulated from all following

nodes after i from all backpropagation directions. Below, we denote the gradient of a

variable ∗ from loss L as ∇∗ = dL/d∗.

For ISGMR at kth iteration, the gradients of the model parameters in Eq. (9) are

∇θi(λ) =∇ci(λ) +
∑

v∈L

∑

r∈R

∑

µ∈L

(

∇mr,k+1
i+2r (µ)

∣

∣

∣

v=pr
k,i+2r

(µ)

+
∑

d∈R\{r,r−}

∇md,k
i+r+d(µ)

∣

∣

∣

v=pd
k,i+r+d

(µ)

)

∣

∣

∣

∣

∣

∣

λ=pr
k,i+r

(v)

,

(11)

∇θi−r,i(µ, λ) = ∇mr,k+1
i (λ)

∣

∣

∣

µ=pr
k,i

(λ)
. (12)

Importantly, within an iteration in ISGMR, ∇m
r,k are updated but do not affect ∇m

r,k+1

until the backpropagation along all directions r is executed (line 18 in Algorithm 3 in

Appendix A). This is because within kth iteration, independently updated m
r,k+1 in r

will not affect md,k, ∀d ∈ R\ {r, r−}, until the next iteration (line 12 in Algorithm 1).

In contrast, message gradients in TRWP from a direction will affect messages from

other directions since, within an iteration in the forward propagation, message updates

are direction-by-direction. For TRWP at kth iteration, ∇θi(λ) related to Eq. (10) is



Fast and Differentiable Message Passing on Pairwise Markov Random Fields 9

(a) message passing (b) gradient accumulation

Fig. 2: Forward and backward propagation, a target node is in dark gray, r: forward

direction, r−: backpropagation direction. (a) blue ellipse: min operation as MAP, blue

line: an edge having the minimum message. (b) a message gradient at node i accumu-

lated from nodes in r−.

∇θi(λ) = ∇ci(λ) +
∑

v∈L

∑

r∈R

∑

µ∈L

(

−∇mr−

i (µ)
∣

∣

∣

v=pr−

k,i
(µ)

+
∑

d∈R

ρi+r,i+r+d∇md
i+r+d(µ)

∣

∣

v=pd
k,i+r+d

(µ)

)

∣

∣

∣

∣

∣

λ=pr
k,i+r

(v)

,
(13)

where coefficient ρi+r,i+r+d is for the edge connecting node i + r and its next one in

direction d which is denoted as node i+ r + d, and the calculation of ∇θi−r,i(λ, µ) is

in the same manner as Eq. (12) by replacing mr,k+1 with mr.

The backpropagation of TRWP can be derived similarly to ISGMR. We must know

that gradients of the unary potentials and the pairwise potentials are accumulated along

the opposite direction of the forward scanning direction. Therefore, an updated message

is, in fact, a new variable, and its gradient should not be accumulated by its previous

value but set to 0. This is extremely important, especially in ISGMR. It requires the

message gradients to be accumulated and assigned in every iteration (lines 17-18 in

Algorithm 3 in Appendix A) and be zero-out (lines 4 and 16 in Algorithm 3 and line

14 in Algorithm 4 in Appendix A). Meanwhile, gradient derivations of ISGMR and

characteristics are provided in Appendix D.

5 Experiments

Below, we evaluated the optimization capability of message passing algorithms on

stereo vision and image denoising with fixed yet qualified data terms from benchmark

settings. In addition, differentiability was evaluated by end-to-end learning for 21-class

semantic segmentation. The experiments include effectiveness and efficiency studies of

the message passing algorithms. Additional experiments are in Appendix F.

We implemented SGM, ISGMR, TRWP in C++ with single and multiple threads,

PyTorch, and CUDA from scratch. PyTorch versions are for time comparison and gra-

dient checking. For a fair comparison, we adopted benchmark code of TRWS from [34]

with general pairwise functions; MF followed Eq. (4) in [6]. For iterative SGM, unary

potentials were reparametrized by Eq. (6). OpenGM [22] can be used for more compar-

isons in optimization noting TRWS as one of the most effective inference methods.
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Our experiments were on 3.6GHz i7-7700 Intel(R) Core(TM) and Tesla P100 SXM2.

5.1 Optimization for Stereo Vision and Image Denoising

The capability of minimizing an energy function determines the significance of selected

algorithms. We compared our ISGMR and TRWP with MF, SGM with single and mul-

tiple iterations, and TRWS. The evaluated energies are calculated with 4 connections.

Datasets. For stereo vision, we used Tsukuba, Teddy, Venus, Map, and Cones from

Middlebury [35,36], 000041 10 and 000119 10 from KITTI2015 [37,38], and deliv-

ery area 1l and facade 1 from ETH3D two-view [39] for different types of stereo views.

For image denoising, Penguin and House from Middlebury dataset 3 were used.

MRF model parameters. Model parameters include unary and pairwise potentials.

In practice, the pairwise potentials consist of a pairwise function and edge weights, as

θi,j(λ, µ) = θi,jV (λ, µ). For the pairwise function V (·, ·), one can adopt (truncated)

linear, (truncated) quadratic, Cauchy, Huber, etc., [40]. For the edge weights θi,j , some

methods apply a higher penalty on edge gradients under a given threshold. We set it as a

constant for the comparison with SGM. Moreover, we adopted edge weights in [34] and

pairwise functions for Tsukuba, Teddy, and Venus, and [11] for Cones and Map; for the

others, the pairwise function was linear and edges weights were 10. More evaluations

with constant edge weights are given in Appendix F.

Number of directions matters. In Figure 3, ISGMR-8 and TRWP-4 outperform the

others in ISGMR-related and TRWP-related methods in most cases. From the experi-

ments, 4 directions are sufficient for TRWP, but for ISGMR energies with 8 directions

are lower than those with 4 directions. This is because messages from 4 directions in

ISGMR are insufficient to gather local information due to independent message updates

in each direction. In contrast, messages from 4 directions in TRWP are highly updated

in each direction and affected by those from the other directions. Note that in Eq. (7)

messages from all directions are summed equally, this makes the labels by TRWP over-

smooth within the connection area, for example, the camera is oversmooth in Figure 4n.

Overall, TRWP-4 and ISGMR-8 are the best.

ISGMR vs SGM. [30] demonstrates the decrease in energy of the over-count cor-

rected SGM compared with the standard SGM. The result shows the improved opti-

mization results achieved by subtracting unary potentials (|R| − 1) times. For experi-

mental completion, we show both the decreased energies and improved disparity maps

produced by ISGMR. From Tables 1-2, SGM-related energies are much higher than

ISGMR’s because of the over-counted unary potentials. Moreover, ISGMR at the 50th

iteration has much a lower energy value than the 1st iteration, indicating the importance

of iterations, and is also much lower than those for MF and SGM at the 50th iteration.

TRWP vs TRWS. TRWP and TRWS have the same manner of updating messages

and could have similar minimum energies. Generally, TRWS has the lowest energy;

at the 50th iteration, however, TRWP-4 has lower energies, for instance, Tsukuba and

Teddy in Table 1 and Penguin and House in Table 2. For TRWP, 50 iterations are suffi-

cient to show its high optimization capability, as shown in Figure 3. More visualizations

of Penguin and House denoising are in Appendix F.

3 http://vision.middlebury.edu/MRF/results

http://vision.middlebury.edu/MRF/results
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Fig. 3: Convergence with the connections having the minimum energy in Table 1.

Table 1: Energy minimization for stereo vision. ISGMR is better than SGM and TRWP

obtains similar energies as TRWS. ISGMR and TRWP outperform MF and SGM.

Method
Tsukuba Teddy 000002 11 delivery area 1l

1 iter 50 iter 1 iter 50 iter 1 iter 50 iter 1 iter 50 iter

MF-4 3121704 1620524 3206347 2583784 82523536 44410056 19945352 9013862

SGM-4 873777 644840 2825535 2559016 24343250 18060026 5851489 4267990

TRWS-4 352178 314393 1855625 1807423 9109976 8322635 1628879 1534961

ISGMR-4 (ours) 824694 637996 2626648 1898641 22259606 12659612 5282024 2212106

TRWP-4 (ours) 869363 314037 2234163 1806990 40473776 8385450 9899787 1546795

MF-8 2322139 504815 3244710 2545226 61157072 18416536 16581587 4510834

SGM-8 776706 574758 2868131 2728682 20324684 16406781 5396353 4428411

ISGMR-8 (ours) 684185 340347 2532071 1847833 17489158 8753990 4474404 1571528

TRWP-8 (ours) 496727 348447 1981582 1849287 18424062 8860552 4443931 1587917

MF-16 1979155 404404 3315900 2622047 46614232 14192750 13223338 3229021

SGM-16 710727 587376 2907051 2846133 18893122 16791762 5092094 4611821

ISGMR-16 (ours) 591554 377427 2453592 1956343 15455787 9556611 3689863 1594877

TRWP-16 (ours) 402033 396036 1935791 1976839 11239113 9736704 2261402 1630973

5.2 End-to-End Learning for Semantic Segmentation

Although deep network and multi-scale strategy on CNN make semantic segmentation

smooth and continuous on object regions, effective message passing inference on pair-

wise MRFs is beneficial for fine results with auxiliary edge information. The popular

denseCRF [6] demonstrated the effectiveness of using MF inference and the so-called

dense connections; our experiments, however, illustrated that with local connections,

superior inferences, such as TRWS, ISGMR, and TRWP, have a better convergence

ability than MF and SGM to improve the performance.

Below, we adopted TRWP-4 and ISGMR-8 as our inference methods and negative

logits from DeepLabV3+ [41] as unary terms. Edge weights from Canny edges are in

the form of θij = 1− |ei − ej |, where ei is a binary Canny edge value at node i. Potts

model was used for pairwise function V (λ, µ). Since MF required much larger GPU

memory than others due to its dense gradients, for practical purposes we used MF-4 for

learning with the same batch size 12 within our GPU memory capacity.

Datasets. We used PASCAL VOC 2012 [42] and Berkeley benchmark [43], with

1449 samples of the PASCAL VOC 2012 val set for validation and the other 10582 for

training. These datasets identify 21 classes with 20 objects and 1 background.

CNN learning parameters. We trained the state-of-the-art DeepLabV3+ (ResNet101

as the backbone) with initial learning rate 0.007, “poly” learning rate decay scheduler,
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(a) left image (b) GT (c) unary (d) 1 SGM-8 (e) 1 ISGMR-8

(f) MF-4 (g) MF-8 (h) MF-16 (i) TRWS-4 (j) ISGMR-4

(k) ISGMR-8 (l) ISGMR-16 (m) TRWP-4 (n) TRWP-8 (o) TRWP-16

Fig. 4: Disparities of Tsukuba. (d)-(e) are at 1st iteration. (f)-(o) are at 50th iteration. (j)

and (l) have the lowest energies in ISGMR-related and TRWP-related methods respec-

tively. TRWP-4 and TRWS-4 have similar disparities for the most parts.

Table 2: Energy minimization for image de-

noising at 50th iteration with 4, 8, 16 con-

nections (all numbers divided by 103). Our

ISGMR or TRWP performs best.

Method Penguin House

MF-4 46808 50503

SGM-4 31204 66324

TRWS-4 15361 37572

ISGMR-4 (ours) 16514 37603

TRWP-4 (ours) 15358 37552

MF-8 21956 47831

SGM-8 37520 76079

ISGMR-8 (ours) 15899 39975

TRWP-8 (ours) 16130 40209

MF-16 20742 55513

SGM-16 47028 87457

ISGMR-16 (ours) 17035 46997

TRWP-16 (ours) 17516 47825

(a) noisy (b) GT (c) MF-16 (d) 1 SGM-4

(e) SGM-4 (f) TRWS-4 (g) ISGMR-8 (h) TRWP-4

Fig. 5: Penguin denoising corresponding to the

minimum energies marked with gray color in Ta-

ble 2. ISGMR-8 and TRWP-4 are our proposals.

and image size 512×512. Negative logits from DeepLabV3+ served as unary terms, the

learning rate was decreased for learning message passing inference with 5 iterations,

i.e., 1e-4 for TRWP and SGM and 1e-6 for ISGMR and MF. Note that we experimented

with all of these learning rates for involved inferences and selected the best for demon-

stration, for instance, for MF the accuracy by 1e-6 is much higher than the one by 1e-4.

In Table 3, ISGMR-8 and TRWP-4 outperform the baseline DeepLabV3+ [41],

SGM-8 [1], and MF-4 [6]. Semantic segmentation by ISGMR-8 and TRWP-4 are more
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Table 3: Learning for semantic segmentation with mIoU on PASCAL VOC2012 val set.

(a) term weight for TRWP-4

Method λ mIoU (%)

+TRWP-4 1 79.27

+TRWP-4 10 79.53

+TRWP-4 20 79.65

+TRWP-4 30 79.44

+TRWP-4 40 79.60

(b) full comparison

Method λ mIoU (%)

DeepLabV3+ [41] - 78.52

+SGM-8 [1] 5 78.94

+MF-4 [6] 5 77.89

+ISGMR-8 (ours) 5 78.95

+TRWP-4 (ours) 20 79.65

(a) RGB (b) Canny (c) baseline (d) SGM-8 (e) MF-4 (f) ISGMR-8 (g) TRWP-4 (h) GT

Fig. 6: Semantic segmentation on PASCAL VOC2012 val set. Last two rows are failure

cases due to poor unary terms and missing edges. ISGMR-8 and TRWP-4 are ours.

sharp, accurate, and aligned with the Canny edges and ground-truth (GT) edges, shown

in white, than the other inference methods, such as SGM-8 and MF-4 (see Figure 6).

5.3 Speed Improvement

Speed-up by parallelized message passing on a GPU enables a fast inference and end-

to-end learning. To be clear, we compared forward and backward propagation times for

different implementations using 256×512 size images with 32 and 96 labels.
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Table 4: Forward propagation time with 32 and 96 labels. Our CUDA version is aver-

aged over 1000 trials; others over 100 trials. Our CUDA version is 7–32 times faster

than PyTorch GPU version. C++ versions are with a single and 8 threads. Unit: second.

Method
PyTorch CPU PyTorch GPU C++ single C++ multiple CUDA (ours) Speed-up PyT/CUDA

32 96 32 96 32 96 32 96 32 96 32 96

TRWS-4 - - - - 1.95 13.30 - - - - - -

ISGMR-4 1.43 11.70 0.96 1.13 3.23 25.19 0.88 5.28 0.03 0.15 32× 8×
ISGMR-8 3.18 24.78 1.59 1.98 8.25 71.35 2.12 15.90 0.07 0.27 23× 7×
ISGMR-16 7.89 52.76 2.34 4.96 30.76 273.68 7.70 62.72 0.13 0.53 18× 9×

TRWP-4 1.40 11.74 0.87 1.08 1.84 15.41 0.76 4.46 0.03 0.15 29× 7×
TRWP-8 3.19 24.28 1.57 1.98 6.34 57.25 1.88 14.22 0.07 0.27 22× 7×
TRWP-16 7.86 51.85 2.82 5.08 28.93 262.28 7.41 60.45 0.13 0.52 22× 10×

Method
PyTorch GPU CUDA (ours) Speed-up PyT/CUDA

32 96 32 96 32 96

ISGMR-4 7.38 21.48 0.01 0.03 738× 716×
ISGMR-8 18.88 55.92 0.02 0.07 944× 799×
ISGMR-16 58.23 173.02 0.06 0.18 971× 961×

TRWP-4 7.35 21.45 0.01 0.02 735× 1073×
TRWP-8 18.86 55.94 0.02 0.06 943× 932×
TRWP-16 58.26 172.95 0.06 0.16 971× 1081×

Table 5: Backpropagation

time. PyTorch GPU is aver-

aged on 10 trials and CUDA

on 1000 trials. Ours is 716–

1081 times faster than Py-

Torch GPU. Unit: second.

Forward propagation time. In Table 4, the forward propagation by CUDA imple-

mentation is the fastest. Our CUDA versions of ISGMR-8 and TRWP-4 are at least 24

and 7 times faster than PyTorch GPU versions at 32 and 96 labels respectively. In Py-

Torch GPU versions, we used tensor-wise tree parallelization to highly speed it up for

a fair comparison. Obviously, GPU versions are much faster than CPU versions.

Backpropagation time. In Table 5, the backpropagation time clearly distinguishes

the higher efficiency of CUDA versions than PyTorch GPU versions. On average, the

CUDA versions are at least 700 times faster than PyTorch GPU versions, and only a low

memory is used to store indices for backpropagation. This makes the backpropagation

much faster than the forward propagation and enables its feasibility in deep learning.

Analysis of PyTorch GPU version and our CUDA implementation are in Appendix D.4.

6 Conclusion

In this paper, we introduce two fast and differentiable message passing algorithms,

namely, ISGMR and TRWP. While ISGMR improved the effectiveness of SGM, TRWP

sped up TRWS by two orders of magnitude without loss of solution quality. Besides,

our CUDA implementations achieved at least 7 times and 700 times speed-up compared

to PyTorch GPU versions in the forward and backward propagation respectively. These

enable end-to-end learning with effective and efficient MRF optimization algorithms.

Experiments of stereo vision and image denoising as well as end-to-end learning for

semantic segmentation validated the effectiveness and efficiency of our proposals.
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