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Abstract. Rain streak removal in a single image is a very challenging
task due to its ill-posed nature in essence. Recently, the end-to-end learn-
ing techniques with deep convolutional neural networks (DCNN) have
made great progress in this task. However, the conventional DCNN-based
deraining methods have struggled to exploit deeper and more complex
network architectures for pursuing better performance. This study pro-
poses a novel MCGKT-Net for boosting deraining performance, which
is a naturally multi-scale learning framework being capable of explor-
ing multi-scale attributes of rain streaks and different semantic struc-
tures of the clear images. In order to obtain high representative fea-
tures inside MCGKT-Net, we explore internal knowledge transfer mod-
ule using ConvLSTM unit for conducting interaction learning between
different layers and investigate external knowledge transfer module for
leveraging the knowledge already learned in other task domains. Fur-
thermore, to dynamically select useful features in learning procedure,
we propose a multi-scale context gating module in the MCGKT-Net
using squeeze-and-excitation block. Experiments on three benchmark
datasets: Rain100H, Rain100L, and Rain800, manifest impressive per-
formance compared with state-of-the-art methods.

1 Introduction

With the rapid development of image acquisition technology, it has become pos-
sible to obtain more and more high-quality images than ever before and has
witnessed major advances in various practical computer vision-based systems.
However, the images captured under adverse weather conditions such as rain,
haze, night have been greatly degraded and significantly affect the performance
of the vision systems such as surveillance and autonomous driving [1]. Therefore,
automatically recovering the underlying clean single rainy image, simply named
as image deraining.

Traditional image deraining methods mainly exploit simple linear-mapping
transformation motivated by the physical rainy model that the observed rainy
image: O can be generally modeled as a linear sum of a rain-free clean image: B
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and the rain streak: R [2, 3]. The linear model as mathematical representation
can be formulated as:

O = B+R (1)

Given Eq. (1), the deraining method aims at removing R from O to get B.
Since the number of the unknown variables in B and R are 2 times of the known
ones in O and there are many solutions of B, R for a given O, this is natu-
rally an ill-posed problem. For well solving this problem, previous methods [4–6]
mainly focus on employing various hand-crafted priors for exploring the under-
lying structure of the latent clean image or the attribute of the rain streaks.
However, to hammer out the proper prior for a specific image and a kind of rain
streak remains to be an art. Recent approaches for single image deraining lever-
age deep learning to mitigate the dependence on the hand-crafted priors, and
illustrate that the convolutional neural network (CNN [7, 12, 14]) itself can effec-
tively capture the intrinsic characteristics of the latent clean images via learning
strategy. In the deep learning-based scenario for single image deraining, various
CNN models have been proposed and revolved to more and more complicated
architectures for pursuing high performance. Although the deep learning-based
approaches manifest significant improvement in single image deraining, there still
exist some limitations. As mentioned above, the CNN models have progressed
into much more complex and diverse architectures to boost the performance,
and thus lead to difficulty for practical implementation and model training. In
addition, most existing CNN models adopt a single-scale framework for feature
representation, which rarely captures the underlying correlation of rain streaks
across scales. Recently, authors in [8],[9] exploited a multi-scale deep framework
for image deraining. Unfortunately, these exploitations fail to make full use of
the interactive correlation of multi-scale rain streaks and have complicated archi-
tectures with several subnets. Furthermore, the exiting CNN methods generally
get to start training with the training pairs of the observed rainy images and
their corresponding clean images from scratch and cannot exploit the knowledge
existed in the already learned CNN models from the clean training images in
other task domains such as image classification.

To handle with the above limitations, we propose a novel deraining network,
called as multi-level context-gating knowledge transfer network: MCGKT-Net.
The MCGKT-Net is based on the well-known U-Net architecture, which can
be simply implemented and naturally a multi-scale learning framework. In or-
der to exploit the correlation of the low-level features and high-level features
in multi-scale encoder and decoder subnets of U-Net [10], we employ a Con-
vLSTM unit for interactively transferring the learned knowledge of two sides
instead of directly duplicating the encoder’s feature to the decoder side, called
as internal knowledge transfer. Since training CNN model with rain-degraded
images as input possibly leads to model deviation from optimal parameters,
we advocate to transfer a part of knowledge (the shallow layer’s parameters)
hold in the learned CNN model with the clean training images in other task
domains such as image classification, and reuse them in our proposed MCGKT-
Net for boosting deraining performance, called as external knowledge transfer.
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Finally, we adopt squeeze-and-excitation block in multi-scale learned features of
the decoder subnet for dynamically selecting the useful learned contexts for be-
ing inputted to the next scale, called as multi-scale context gating. Experiments
on three benchmark datasets demonstrate the promising performance compared
with the state-of-the-art methods on image deraining.

In summary, our main contributions are three-fold:

1. We present a simply-implemented and naturally multi-scale deraining net-
work, which can effectively explore the multi-scale attributes of rain streak
and different underlying semantic structures of the clean images;

2. We exploit the interactive learning between the same level features of encoder
and decoder subnets for internal knowledge transfer and reuses the existed
knowledge learned in other task domains for external knowledge transfer to
boosting deraining performance;

3. We explore a multi-scale context gating module for dynamically selecting
useful features of decoder subnet using squeeze-and-excitation block.

The rest of this paper is organized as follows. Section 2 surveys the related
work including deep learning-based image deraining methods and multi-level
learning networks. Section 3 presents the proposed MCGKT network for im-
age deraining. Extensive experiments are conducted in Sec. 4 to compare the
proposed MCGKT-Net with state-of-the-art image deraining methods on three
benchmark datasets. The conclusion is given in Sec. 5.

2 Related Work

In the past decades, image deraining has been actively researched in the low-level
computer vision community, and substantial improvements have been witnessed.
This work mainly concentrates on the more challenge deraining from a single
image. Here, we briefly survey the related work.

2.1 Single Image Deraining

Rain streaks removal from a single image is an extremely challenging task due
to its ill-posed nature. Previous methods are mainly divided into two categories:
optimization-based methods [17, 15, 18, 25] and deep learning-based methods [19,
20, 31, 21]. Optimization based methods usually formulate the deraining task as a
mathematical model motivated by the fact that rainy images can be decomposed
into a clean background image layer and a rain layer. To recover more robust
clean image, the prior knowledge for characterizing the underlying structure of
the latent clean image layer and the attribute of the rain layers has imposed on
the formulated mathematical model as regularization term and employed opti-
mization strategy for solving. Kang et al. [15] proposed to apply sparse coding to
separate rain streaks from the high-frequency layer, while Luo et al. [16] explored
a discriminative sparse coding framework for modeling image patches. The work
by Chen et al. [17] and Chang et al. [18] leveraged the low-rank property of rain
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streaks for removing the decomposed rain layer based on low-rankness. Since the
composite models [17, 15, 18] regularized by modeling the sparse and low-rank
prior are insufficient in characterizing the decomposed layers, leading to limited
deraining performance on diverse images. In addition, the explored priors (for
example sparsity, low-rankness) on the previous approaches are hand-crafted,
and to discover a proper prior for a specific image and a kind of rain type still
remains be an art or requires comprehensive analysis for a specific rainy image.
Recently, deep convolutional neural network has been widely applied to single
image deraining, and validated that promising performance can be achieved [19,
20, 31, 21]. Fu et al. [19] first explored a three-layer convolutional network to
predict clean image high-frequency component from its rain-contaminated coun-
terpart, and further extended it to a 20-layer CNN structure by incorporating
Residual-Block, called as deep detail network, for pursuing better performance
[20]. Zhang et al. [31] presented a multi-stream dense network for joint rain
density estimation and deraining. To generate more visually plausible deraining
result, the same research group investigated a conditional generative adversarial
network (GAN) for single image deraining [21], and proved to achieve visually
high-quality reconstructions. In [36], a novel deep network architecture based
on recurrent neural networks and squeeze-and-excitation context aggregation
module (RESCAN) has been proposed and adaptively adjusted parameters for
various rain streak layers. Fan et al. [23] proposed residual-guide network with
recursive convolution module and multi-level supervision not only on the final
results but also on the intermediate results progressively for predicting high-
quality reconstruction. Wei et al. [30] proposed a semi-supervised image derain-
ing network, while Ren et al. [37] focused on several factors including network
architecture for integrating progressive ResNet and recurrent layers inside and
cross stages, and loss functions, and provided a better and simpler baseline de-
raining network.

2.2 Multi-level learning network

It is known that a rainy image is possibly decomposed into the image layer and
rain streak layer, which may consist of multiple layers, especially under heavy
rain conditions. The rain streaks decomposed in multiple layers manifest intrinsi-
cally multi-scale attributes and some self-similarity properties within and across
scales, which is prospected to boost the deraining performance via exploring the
correlated information between and across multiple levels of rain layers. Most
existing methods recur to deeper and more complex network architecture for pur-
suing better deraining performance but cannot make full use of the underlying
correlation between and across different rain layers. Although, a few work [34, 8,
9] have been investigated to explore multiscale information for deraining from a
single image, which mainly leverages multiple subnets (several mainstreams) for
exploiting different scales, and lead to more complicated DCNN architectures.
As we know that the convolutional encoder-decoder network itself is a multi-
level learning architecture, where the encoder path learns feature representation
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evolved to large scale with the increased depth of the network while the de-
coder path attempts to recover the feature representation with more detailed
structure (small scale) from the final output of the encoder with more semantic
information and large context. Further, to retain more detail structures in the fi-
nal prediction results, skip connection is usually used for duplicating the feature
representation of the encoder path to the decoder side in the same level such as
in U-Net [10], FCN [11]. Although the encoder-decoder network has also been
adopted for image deraining [12–14], most existing methods cannot effectively
exploit the correlation of the feature representations and compensate each other
between the encoder and decoder paths. This study explores a novel and simple
deraining network, called multi-level context gating knowledge transfer network
(MCGKT-Net), which is based on the multi-level encoder-decoder network and
investigates both internal and external knowledge transfer for boosting deraining
performance.

3 The proposed MCGKT-Net

The mainstream of our proposed MCGKT-Net follows the encoder-decoder net-
work architecture, and multi-level feature representation can be learned in both
encoder and decoder paths. To effectively explore the feature interaction and cor-
relation between encoder and decoder paths, we propose to leverage backward
ConvLSTM blocks instead of simple duplication, to transfer the semantic struc-
ture of the high-level features in the decoder path to the encoder side, and input
the interactively learned features to the subsequent level of the decoder, called as
internal knowledge transfer module (IKT). We further leverage a part of knowl-
edge (the shallow layer’s parameters) maintained in the learned CNN model
with the clean training images in other task domains such as image classification
for training the deraining model from a good initial state, called as external
knowledge transfer module (EKT). In addition, to adaptively select more useful
feature representations in the learning procedure, we exploit squeeze and excita-
tion block (SE) to the multi-level features in the decoder path for constructing
the multi-level context gating module (MLCG). Then the MCGKT-Net consists
of the mainstream of the encoder-decoder architecture, the knowledge transfer
module with IKT and EKT, and the MLCG module. The schematic concept
of the proposed MCGKT-Net is shown in Fig. 1. Next, we would describe the
different parts of the MCGKT-Net.

3.1 The mainstream of the encoder-decoder architecture

The mainstream of our used network architecture consists of two paths: encoder
and decoder, and each path is divided into four blocks. Both encoder and decoder
paths learn multi-level feature representations in the multiple blocks, where en-
coder employs MaxPooling layer with a 2*2 kernel for decreasing feature map
size to half in both horizontal and vertical directions between blocks while de-
coder performs up-sampling for doubly recovering the feature map size between
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blocks. In each block of both encode and decoder, we implement it in 3 convolu-
tional layers with 3*3 kernels following ReLU activation function. The channel
number of the learned feature maps block-wisely is doubled in the encoder while
is halve in the decoder. Thus the architecture in the encoder path is same as the
first 3 shallow layers of the popularly used VGGNet in different vision problems.

Fig. 1. Network architecture of MCGKT-Net. The abbreviations IKT, EKT and
MLCG Module denote internal knowledge transfer, external knowledge transfer mod-
ule, and multi-level context gating module, respectively.

Let’s denotes the input and output of the j − th block in the encoder path
as E

j
i , E

j
o, and in the decoder path as D

j
i , D

j
o, respectively, the relation of the

input and output of each block can be expressed as:

Ej
o = f(Ej

o, θE,i), D
j
o = f(Dj

o, θD,i) (2)

where f(·) represents the transformation operation of 3 convolutional layers with
the learned parameters θE,i and θD,i, respectively. The j + 1− th inputs in the
encoder and the j− 1− th output in the decoder sides can be obtained from the
j − th outputs, and are expressed as:

E
j+1
i = MP (Ej

o), D
j−1
i = UP (Dj

o) (3)
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where MP (·) and UP (·) denote the MaxPooling and up-sampling layer im-
plemented between blocks, respectively. Then the mainstream of our encoder-
decoder network can learn multi-level feature representations:Ei = [E1

i ,E
2
i ,E

3
i ,E

4
i ]

in the encoder and Do = [D1
o,D

2
o,D

3
o,D

4
o] in the decoder with different context

information, where the encoder generates low-level features with more detail im-
age structure while decoder results in high-level feature representation with more
semantic information. The encoder-decoder architecture is very simple with the
convolutional layer of small kernel size 3*3 and is prospected to be easily trained
in different vision tasks. In this network, it is known that the outputs of the
deeper blocks inherit from the shallow blocks of the decoder and all blocks of
the encoder, and produce more semantic information but may lose detail struc-
ture. To maintain more detail structure in the final results, the existing encoder-
decoder architecture in different vision tasks such as FCN, U-Net usually employ
skip connection for directly duplicating the output of the encoder to the corre-
sponding input sides in the decoder, which cannot effectively leverage the learned
feature maps in both encoder and decoder paths. This study integrates several
elementary modules for effectively interaction learning or knowledge transfer
among the feature representations of the main network and adaptively selects
more useful information. Next, we describe the integrated modules: knowledge
transfer module and multi-level context gating module.

3.2 Knowledge transfer module

As described above, the simple feature reuse via skip connection cannot effec-
tively fuse the learned feature representations in both encoder and decoder paths.
In addition, it is known that the feature representations with more semantic in-
formation are gradually learned based on the former ones and inherit from the
already learned features including those in the encoder. However, the feature rep-
resentations with more semantic information in the decoder path cannot be back
transferred to the encoder side for calibrating the low-level features. This study
integrates a transfer module among the corresponding blocks in the encoder and
decoder paths and conducts back transfer, called as internal knowledge transfer
(IKT) module. Furthermore, we also aim at investigating the already learned
knowledge in the released CNN models in other vision domains for aiding our
deraining network training, called as external knowledge transfer (EKT) module.

IKT Module: In the conventional feature reuse with skip connection, the sim-
ple concatenate layer is used for fusing the output: Ej

o of the j − th block in
the encoder and the input: Dj

i of the j − th block in the decoder as the real

input instead of Dj
i . To effectively transfer the learned semantic features in the

decoder path for calibrating those in the encoder path, we consider the encoder’
s output: Ej

o and the decoder’s input: Dj
i as a time sequence [Ej

o, D
j
i ] with two-

time points, and employ a backward ConvLSTM (BW ConvLSTM(·) ) unit for
learning more effective features from both paths, which can be formulated as:

D̂
j
i = BW ConvLSTM([Ej

o,D
j
i ]) (4)



8 K. Yamamichi et al.

where D
j
i with semantic information is firstly inputted and the generated state

in ConvLSTM calibrate the final output of Ej
o with more detailed structure. The

output: D̂j
i of BW ConvLSTM(·) is adopted as the input of the j − th block

in the decoder. With the ConvLSTM unit, it is prospected that the learned
semantic features (knowledge) in the decoder side can be effectively transferred
back to the encoder side, and results in high-level representative features inside
the deraining network.

EKT Module: Most existing deep learning-based deraining methods usually
train the network from a randomly initialized state, and cannot leverage knowl-
edge of the pre-trained CNN models in other vision tasks such as image classi-
fication. However, to train a good generalization model with a huge amount of
unknown parameters, a large dataset is necessary, which is very tough to gather
a vast number of labeled data especially for the deraining scenario. This inspires
the knowledge exploiting of a pre-trained CNN to a specific under-studying task,
generally called as transfer learning, which requires the similar network structure
for the specific task with the pre-trained CNN model. This study attempts to
explore the knowledge in the pre-trained VGG family with Imagenet dataset to
overcome the isolated learning paradigm for boosting the deraining performance.
Although our encoder-decoder network has different architecture with the pre-
trained VGG-Net models, there are partially same structures of the encoder path
in our deraining network with the shallow layers in VGG-Net. Thus, we simply
transfer the parameters of the pre-trained VGG-Net’s shallow layers to the first
3 blocks of the encoder path while randomly initialize the remainder structure’s
parameters. Then we re-train the network inheriting somewhat knowledge from
the pre-trained VGG models for adapting to the new deraining task.

3.3 Multi-level Context Gating Module

It is obvious that the network can obtain large amount of feature representations
in different layers of multi-level blocks. However, not all learned features equiva-
lently contribute to the subsequent extraction of high representative features and
the final prediction. Recently, attention mechanism has been popularly explored
to adaptively concentrate the more discriminated and effective features in the
network training procedure. For example, motivated by the fact that different
regions in the input may have various contributions to the final prediction such
as in image classification, detection and segmentation, many work exploit the
spatial attention via mutual enhancement with spatial correlation, and manifest
significant improvement. Our goal aims at predicting all underlying pixel val-
ues from the rain-degraded input, and all regions should be indispensable for
estimating the precise pixel values nearby. Thus, this study instead investigates
the channel attention for dedicating to emphasize the channel with the underly-
ing scene information. We suppose that the feature maps extracted by various
convolutional kernels may correspond to some underlying scene layers or a part
of rain layers, and propose to exploit explicit relationship between channels of
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the convolutional layers for gating context. We implement the context gating
module via adaptively assigning a weight for each channel (channel attention)
and then encoding the inputted raw feature maps.

Fig. 2. The multi-level context gating module for MCGKT-Net.

The multi-level context gating (MLCG) module shown in Fig. 2, consists
of two-part: squeeze and excitation (also called SE-block), and is employed on
multi-level integrated feature maps [D̂1

i , D̂
2
i , · · · , D̂

L
i ] of the encoder and decoder

paths, which are also the input of the decoder’s blocks. The input feature maps
to MLCG module are aggregated to generate channel contribution index by
employing global average pooling (GAP) of the whole context of channels. Let’s
denote the input feature map to the l − th MLCG module as D̂l

i = [d̂l
i,1, d̂

l
i,2,

· · · , d̂l
i,C ], where d̂l

i,c ∈ R
W×H , and the spatial squeeze (GAP) is formulated as:

sc = fsq(d̂
l
i,c) =

1

W ×H

H∑

h

W∑

w

d̂l
i,c(h,w) (5)

where fsq(·) is the spatial squeeze function for compressing each two-dimensional
feature map as a contribution index sc, and W × H is the size of the c − th

channel feature map. Then, we employ excitation functions for capturing the
channel-wise dependencies and non-linear interaction based on the global channel
information s = [s1, s2, · · · , sC ], which is implemented with two fully connected
(FC) layers in the MLCG module. The first FC layer encodes the channel global
vector s to a dimension-reduced vector with reduction ratio r, and the second
FC layer encodes it back again to the dimension C as an excitation vector, which
can be expressed:

z = fex(s,W) = δ(W2σ(W1s)) (6)

where W1 ∈ R
C

r
×C and W2 ∈ R

C×
C

r are the parameters of the first and sec-
ond FC layers, respectively, σ(·) and δ(·) refer ReLU and sigmoid activation
functions. The final output of the MLCG module is generated as:

d̃l
i,c = fscale(d̂

l
i,c, zc) = zcd̂

l
i,c (7)

where fscale denotes a channel-wise multiplication between the channel attention
index zc and the input feature map.
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4 Experimental Results

In this section, we conduct extensive experiments to validate the effectiveness
of the proposed multi-level context gating knowledge transfer network (MCGKT-
Net) for single image deraining. Comprehensive ablation study is given for demon-
strating the effect of different modules.

4.1 Experimental setting-up

Implementation Details We implement our MCGKT-Net using Keras with
TensorFlow as backbend. In network training stage, we randomly sample image
patches of size 224× 224 from all images as training samples, and then train the
network with epochs 500. We use Adam optimizer [26] with default parameters
and batch size of 4. The learning rate is set as 2× 10−4 .

Datasets We evaluate MCGKT-Net on three public benchmark datasets:
Rain100H [27], Rain100L [27], and Rain800 [28]. Rain100L consists of 1800 train-
ing images and 200 test images, where the rainy images are synthesized with only
one type of rain streaks while Rain100H has 1800 rainy/clean pairs as training
images and 200 rainy/clean pairs as test, where the rainy images are synthesized
with five directions of rain streaks. Rain800 has in total 800 images, where 700
rainy/clean pairs are as training samples and the remainders are as testing. The
rainy images in Rain800 are created via adding rain streak to the clean images
following the guidelines mentioned in [19], which aims at generating a diverse
rainy dataset via adding various intensities and orientations of rain streak to dif-
ferent pixels. Some synthesized rainy images from all three datasets are shown
Fig. 3 manifests that the rainy images in Rain100L and Rain100H have thick
and clean line structure while the rain steaks in Rain800 are much thinner and
arbitrarily discontinuous without any regulation.

Fig. 3. Example rainy images from Rain100H, Rain100L and Rain800 datasets.
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Evaluation Metrics We use two commonly metrics: i.e. peak signal to noise
ratio (PSNR) and structure similarity index (SSIM [29]), which measures the im-
age structure difference and is more consistent with human perceptual measure,
to evaluate the deraining performance on all three datasets.

4.2 Comparison to the state-of-the-art methods

We compare our proposed MCGKT-Net with the state-of-the-art deraining ap-
proaches, including semi-supervised transfer learning (SEMI) [30], density-aware
deraining (DIDMDN) [31], simple deep convolutional network for image SR (SR-
CNN) [32], deep detail network (DDN) [20], image-to-image translation (pix2pix)
[33], lightweight pyramid network (LPNet) [34], U-Net [10], uncertainty guided
multi-scale residual learning (UMRL) [35], recurrent squeeze-and-excitation con-
text aggregation net (RESCAN) [36], progressive deraining network (PreNet) [37].
Table 1 shows the quantitative measure on the three datasets. From Table 1, we
can see that our methods can outperform almost methods. For providing visual
comparison, Fig. 4 and 5 visualize the derained examples from Rain100L and
Rain100H datasets using different methods, which manifests that our proposed
MCGKT-Net can recover more clean images than other existing methods. Fur-
thermore, we also provide the derained results on three real images in Fig. 6
using our proposed MCGKT-Net and several state-of-the-art methods.

Table 1. Average PSNR and SSIM comparison on the synthetic datasets
Rain100H [27], Rain100L [27] and Rain800 [28]. Red and blue colors are used to indicate
top 1st, 2nd performance.

Methods Rain100H Rain100L Rain800

SEMI [30] 16.56/0.486 25.03/0.842 22.35/0.788
DIDMDN [31] 17.35/0.524 25.23/0.741 22.56/0.818
SRCNN [32] 18.29/0.612 32.63/0.936 25.10/0.823
DDN[20] 22.08/0.788 31.12/0.953 25.10/0.823
pix2pix[33] 21.96/0.679 29.20/0.886 -/-
LPNet[34] 23.16/0.801 33.61/0.958 22.21/0.789
U-Net[10] 23.28/0.741 30.97/0.921 26.28/0.826
UMRL[35] 24.91/0.810 31.98/0.955 24.37/0.819

RESCAN[36] 26.36/0.786 29.80/0.881 25.00/0.835
PreNet[37] 26.77/0.858 32.44/0.950 24.81/0.865

Ours 27.06/0.848 35.23/0.962 27.44/0.840
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Fig. 4. Deraining results of different methods on Rain100H.

Fig. 5. Deraining results of different methods on Rain100L.

4.3 Ablation studies

Our proposed MCGKT-Net is evolved from the baseline U-Net architecture,
which is very simple and easy to be trained effectively. We integrated three mod-
ules: internal knowledge transfer (IKT), external knowledge transfer (EKT), and
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multi-level context gating (MLCG) modules into the baseline U-Net for higher
representative feature learning. Therein EKT module adopted the pre-trained
VGG models: VGG16 and VGG19. This section evaluates the effectiveness of
the integrated modules on the baseline U-Net. Quantitative results on all three
datasets are given in Table 2. It can be seen from Table 2 that the proposed
MCGKT-Net manifests great superiority over the baseline U-Net and its incom-
plete versions not integrating all proposed modules. The results of the experiment
with the addition of each of the three modules in the Rain800 are shown in Fig.
7. Integration of all modules surpasses the baseline by 3.78dB, 4.26dB, 1.16dB
for Rain100H, Rain100L, and Rain800, respectively.

Table 2. Quantitative results by different setups on the baseline U-Net model.

IKT Module × ✓ × × × ✓ ✓ ✓

EKT Module(VGG19) × × ✓ × × ✓ × ✓

EKT Module(VGG16) × × × ✓ × × ✓ ×
MLCG Module × × × × ✓ × × ✓

Rain100H
PSNR 23.28 24.61 26.77 26.45 24.92 27.03 26.82 27.06

SSIM 0.7407 0.7837 0.8422 0.8393 0.7888 0.8475 0.8458 0.8477

Rain100L
PSNR 30.97 33.16 32.04 31.98 31.10 35.03 35.02 35.23

SSIM 0.9210 0.9475 0.9231 0.9231 0.9131 0.9608 0.9606 0.9618

Rain800
PSNR 26.28 26.76 26.52 26.38 25.80 27.32 27.44 27.03
SSIM 0.8269 0.8307 0.8422 0.8428 0.8190 0.8409 0.8402 0.8327

Fig. 6. The compared results on real rainy images.

From the results of Table 2, all integrated modules can improve the quanti-
tative measures on both Rain100H and Rain100L datasets while the integration
of the MLCG module on the Rain800 dataset decreases the quantitative met-
rics a little. From Fig. 3 as mentioned above that the rain streaks in Rain100H
and Rain100L datasets exhibit some regular characteristics similar to the line
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Fig. 7. Deraining results of ablation study on Rain800. Values below every image
indicate PSNR value and SSIM [29] value, respectively.

structures with diverse directions while the rain streaks in the Rain800 dataset
have no regular pattern most like un-regular noise. The intent of integrating the
MLCG module is to adaptively emphasize and attenuate specific channels of
features with some specific patterns and is expected to be oriented well to the
existed rain steaks in the Rain100H and Rain100L datasets while be difficult to
attenuate the noise-like rain streaks in the Rain800 dataset.

5 Conclusion

In this paper, we proposed a multi-level context gating knowledge transfer net-
work for the removal of rain streaks from a single image. Taking the possible
multi-layer characteristic of the rain streak in mind, we used the encoder-decoder
network architecture, which itself is a multi-scale structure for feature learning,
as a baseline network, and integrated several simple modules for higher represen-
tative feature learning. We employed an internal knowledge transfer module for
interactively learning between the features of the encoder and decoder paths and
an external knowledge transfer module for effective reuse of the knowledge pre-
served in a pre-trained CNN model in other task domains. Further, we explored
a multi-level context gating module for adaptively emphasizing useful feature
channels and attenuating the channels related to rain layers. Experimental re-
sults demonstrated that our proposed MCGKT-Net gave promising deraining
performance compared with the state-of-the-art methods.
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