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Abstract. The fully convolutional neural network (FCN) based meth-
ods achieve great performances in salient object detection (SOD). How-
ever, most existing methods have difficulty in detecting small or large
objects. To solve this problem, we propose Size Divide and Conquer
Network (SDCNet) which learning the features of salient objects of dif-
ferent sizes separately for better detection. Specifically, SDCNet contains
two main aspects: (1)We calculate the proportion of objects in the image
(with the ground truth of pixel-level) and train a size inference module to
predict the size of salient objects. (2)We propose a novel Multi-channel
Size Divide Module (MSDM) to learning the features of salient objects
with different sizes, respectively. In detail, we employ MSDM following
each block of the backbone network and use different channels to extract
features of salient objects within different size range at various resolu-
tions. Unlike coupling additional features, we encode the network based
on the idea of divide and conquer for different data distributions, and
learn the features of salient objects of different sizes specifically. The
experimental results show that SDCNet outperforms 14 state-of-the-art
methods on five benchmark datasets without using other auxiliary tech-
niques.

1 Introduction

Salient object detection (SOD), which aims to find the distinctive objects in the
image, plays an important role in many computer vision tasks, such as weakly
supervised semantic segmentation [1], object recognition [2], image parsing [3]
and image retrieval [4]. Besides, there is a lot of work focused on RGB-D salient
object detection [5–8] and video salient object detection [9,10]. One main prob-
lem of SOD is that the salient objects in different images have extremely different
sizes. As shown in Figure 1, the size of salient objects under the same dataset
varies greatly. We define the pixel-wise ratio between the salient objects and the
entire image as salient object proportion (SOP). We show the SOP distribution
of 10 benchmark datasets in Table 1 and Figure 2. It is observed that 25% of
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Fig. 1. Saliency detection results for salient objects with different size by different
methods. We use salient object proportion (SOP) to indicates the proportion of objects
in the whole image.

images have the SOP less than 0.1, while 10% of images have the SOP larger
than 0.4. The size difference of salient objects is ubiquitous in SOD datasets.

Some FPN-based complex multi-level feature fusion methods [11–13] try to
alleviate the perplex caused by huge size deviation. However, multiscale feature
fusion methods generally ignore the difference in data distribution determined by
the huge size deviation, which leads to differences in the features that need to be
learned.These methods have been proved cannot completely solve the problem
of the size difference. [14] proved that performances of SOD methods generally
decreased in small objects (SOP between 0 to 0.1) or large objects (SOP above
0.5). Our method is based on a basic fact: for a network with the same structure,
if only small-size (or large-size) objects are used for training, the model perfor-
mance in small-size (or large-size) objects detection will be better than using the
entire dataset for training. Moreover, the size difference of the salient objects has
an intuitive impact. For example, the detection of small objects depends more on
local information, while large objects contain more global semantic information.
Existing SOD methods ignore the size difference of salient objects. We argue that
divide and conquer objects of different sizes can lead to a more robust model
and better performances.

In this paper, we regard the size information as a beneficial supplement to
the salient object information and propose a novel method to divide and conquer
salient objects of different sizes. Firstly, we establish an FPN-based side output
architecture to realize the fusion of features at high and low levels. The only
reason we employ multi-resolution fusion is to make a fair comparison with SOTA
methods that generally uses feature fusion to improve performance. Secondly, we
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Table 1. Distribution of salient object proportion (SOP) in 10 benchmark datasets
without non-saliency images. The size range is divided into five categories according
to SOP. “-10%” means SOP between 0 to 0.1.

Dataset -10% 10%-20% 20%-30% 30%-40% 40%- Total

MSRA10K 1020 3646 3060 1756 518 10000
ECSSD 154 326 244 130 136 1000
DUT-O 2307 1387 818 418 238 5168
DUTS-TR 1239 2656 2553 1994 2111 10553
DUTS-TE 2299 1506 626 234 354 5019
HKU-IS 983 1580 1179 510 195 4447
PASCAL-S 204 187 168 139 146 844
SED2 34 27 18 5 16 100
SOD 54 70 68 37 69 298
THUR-15K 2616 2083 779 429 326 6233

Total 11681 14036 9920 5948 4477 48462

obtain the size inference of salient objects through a Size Inference Module (SIM)
which shares the same backbone with SDCNet. SIM generates a binarized rough
saliency inference and the predicted size range of salient objects is obtained
by calculating SOP. As shown in Table 1, we classify the size range into five
categories according to the SOP (0-10%, 10%-20%, 20%-30, 30%-40% and above
40%). In the side output structure, we add MSDM in the process of feature
fusion up-to-down. MSDM divides feature maps of each side layer into size-
independent stream and size-dependent stream. As shown in Figure 4, we put
the size-independent stream into a common convolutional layer and put size-
dependent stream into multi-channel convolutional layers. Each channel of multi-
channel convolutional layers corresponds to a specific size range. We integrate
size-independent features with complementary size-dependent features.

Finally, we refer to [15] and add a one-to-one guidance module based on low-
level feature maps to enhance the network sensitivity to small-size objects. In
summary, the main contributions of this paper include three folds:

1. We propose a novel network design method that divides and conquers dif-
ferent data distributions. MSDM can learn the features of salient objects in
different size ranges separately. This network design based on data charac-
teristics is meaningful.

2. We provide an effective idea of solving the huge size deviation between salient
objects, which significantly improves the accuracy of saliency maps.

3. We compare the proposed method with 14 state-of-the-art methods on five
benchmark datasets. Our method achieves better performances over three
evaluation metrics without pre-processing and post-processing.

2 Related work

In the last few years, lots of methods have been proposed to detect salient ob-
jects in images. The early methods mainly used hand-craft low-level features,
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Fig. 2. Size distribution in 10 benchmark datasets

such as color contrast [16], local contrast [17], and global contrast [18]. In recent
years, FCN-based methods [19] have completely surpassed traditional methods.
Most of FCN-based methods are devoted to better integrate multi-level features
or enhance the utilization of important features so as to improve the perfor-
mance [11,15,20–23]. [13] improves the traditional progressive structure of FPN.
It aggregates multi-scale features from different layers and distributes the aggre-
gated features to all the involved layers to gain access to richer context. For fair
comparison, we employ the original FPN architecture in our network.

[11] designed a HED-based side output structure which using the short
connection to integrate the low-level features in the shallow side layer and high-
level features in the deep side layer to improve the effect of saliency prediction.
Instead of using layer skipped dense short connections, we retain multi-channel
concatenation layer by layer as our basic architecture.

Recently, methods based on edge feature enhancement have been widely stud-
ied. [24] proposed to learn the local context information of each spatial location
to refine the boundaries. [15] proposed to use the complementarity of edge in-
formation and saliency information to enhance the accuracy of boundary and
help to locate salient objects. [20] fused the boundary and internal features of
salient objects through selectivity or invariance mechanism. Because edge in-
formation has a significant effect in improving the pixel-wise edge accuracy of
salient objects, a lot of edge information enhancement methods have been pro-
posed [15, 20, 25, 26]. [21] have also used edge information as an important way
to enhance the performance of network. These methods utilize additional edge
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Fig. 3. Main pipeline of the proposed method. We integrate MSDM into improved FPN
structure. Two parallel arrows between MSDM indicate the flow of size-independent
and size-dependent features respectively. The green block on the left represents the size
inference module (SIM) and yellow block represents the size guide module (SGM).

information to solve the issue of rough edge prediction of salient objects in previ-
ous methods. These researches inspire us to explore the usage of size information
of salient objects, which is equally important and facing difficulties currently.
However, these two problems are opposite. Edge information is the common
feature of salient objects, while size information emphasizes the feature differ-
ence between salient objects. Moreover, edge detection can be easily integrated
into saliency detection tasks by multi-learning. Correlation of size categories and
saliency detection by multi-learning directly does not make sense.Therefore, we
combined the divide-and-conquer algorithm and designed MSDM to extract the
corresponding features of salient objects of different sizes. It uses the size cate-
gories as high-dimensional information, activates different convolution channels
to extract the features of salient objects of different sizes, and effectively solves
the problem of the confusion of salient object sizes.

3 Methodology

The performance decline of SOD methods at small objects and large objects
indicates that we need different features in detecting salient objects with huge
size difference. Ignoring the size difference of saliency objects will suppress learn-
ing of features that are related to specific size. Accordingly, we design a MSDM
for our improved FPN structure. The overall structure of SDCNet is shown in
Figure 3.
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Fig. 4. Structure of MSDM. We use Common Feature Extract Module (CFEM) to
get size-independent features and Size Feature Extract Module (SFEM) to get size-
dependent features. We activate different convolutional channel in SFEM according to
the size inference θ. The details are introduced in the Sec. 3.2.

3.1 Overall Pipeline

Our proposed network is independent of the specific backbone network. In prac-
tice, we use ResNet [27] as backbone for feature extraction. We remove the last
pooling layer and fully connection layer and get 5 side features F1, F2, F3, F4, F5

which including 64, 256, 512, 1024 and 2048 channels respectively as our side
output path S1, S2, S3, S4, S5. The side outputs of these different layers contain
low-level details and high-level semantic information respectively. We employ
Atrous Spatial Pyramid Pooling (ASPP) in processing two high-level feature
maps F4, F5 to expand receptive field of convolutional layer. We use SIM to
provide size inference. MSDM is added to each layer of the up-to-down struc-
ture to replace the simple feature fusion module. The main function of MSDM
is to activate different convolution channels through the high-dimensional size
information provided by SIM to learn the feature of salient objects of different
sizes. It integrates basic function of upsample and concatenate as well. Finally,
we add an one-to-one guidance module with low-level features to retain more
information of small size salient objects. Our network is end-to-end, training
and inference are both one-stage. The details of the convolutional layers could
be found in Table 2.

3.2 Multi-channel Size Divide Module

The MSDM is mainly composed of the common saliency feature extraction mod-
ule (CFEM) and size-dependent feature extraction module (SFEM). The struc-
ture of MSDM can be found in Figure 4. CEFM is a single set of convolutional
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Table 2. Details of kernels in SDCNet. We use ResNet50 for example. “3×3, 256”
means the keneral size is 3×3 and channel number is 256. Each Conv layer follow with
BN and PRelu and each side-layer share the same setting.

SIM Backbone CFEM SFEM SGM

3×3,256
3×3,256
1×1,128

Conv1 1
3×3,256
3×3,256
1×1,128

(3×3,256)
(3×3,256)
(1×1,128)

×5
3×3,256
3×3,256
1×1,128

Conv2 3
Conv3 4
Conv4 6
Conv5 3

layers, while SEFM is a combination of multiple sets of parallel convolutional
layers. In CFEM, we extract size-independent features through a common con-
volutional layer. CFEM remains active for salient objects of all sizes, that is,
it learns common features that are not related to size differences. In SFEM,
we activate different convolutional set to independently extract size-dependent
features according to the specific size categories. We integrate these two comple-
mentary features to generate saliency maps in each side path S1, S2, S3, S4, S5

up-to-down. The size-independent and size-dependent features of each layer are
denoted as follows:

CFi = f (i)
conv(Cat(Fi, Up(CF(i+1);Fi))), (1)

SFi = f
(i)
(conv,θ)(Cat(Fi, Up(SF(i+1);Fi)), θ), (2)

where CFi represents size-independent feature maps, SFi represents size-dependent
feature maps. Up(∗;Fi) means up-sampling * to the same size of Fi through bi-
linear interpolation. Cat(A,B) means concatenation of feature maps A and B.

f
(i)
conv represents CFEM which is composed by three convolutional layers and

nonlinear activation function. The structure of f
(i)
(conv,θ) is composed by several

parallel f
(i)
conv, and we activate one of them for each image according to size in-

ference θ. f
(i)
(conv,θ)is applied to extract size-dependent features. θ represents size

inference, which provided by SIM. Specific characteristics of θ are as follows:

θ =
1

W ×H

W
∑

x=1

H
∑

y=1

|S(x, y)|, (3)

where W and H represent the width and height of the image respectively, and
S(x, y) represents the binarized pixel-wise value of saliency maps. In practice,
size inference θ is divided into five categories according to the value. More details
are shown in Table 1.

Deep supervision is applied on each side path Si. We integrate CFi and SFi

to make saliency inference Pi and impose the supervision signal each layer. The
specific expression is as follows:

{

F̄i = Cat(CFi, SFi, P(i+1)), 1 ≤ i ≤ 4,

F̄i = Cat(CFi, SFi), i = 5,
(4)
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Pi = Sig(Up(Pred(i)conv(Fi);Simg)), (5)

where Pi denotes the salieny prediction of i-th side layer. F̄i represents feature
maps aggregated by size-independent features and size-dependent features. Sim-

ilar to f
(i)
conv, Pred

(i)
conv is a series of convolutional layers for salient object pre-

diction. Simg denotes the size of source image. Up(∗;Simg) means up-sampling
the saliency prediction * to the same size as source image. Sig(∗) means sigmoid
function.

To realize the supervision in various resolutions, we design loss function for
each side output based on the cross-entropy loss function. The formula is as
follows:

Li(G,Pi) = −
wi

W ×H

W
∑

x=1

H
∑

y=1

[gxy log pxyi

+ (1− gxy) log(1− p
xy
i )], i ∈ [1, 5],

(6)

where G denotes the input image GT. gxy and p
xy
i represent the pixel-wise value

of GT and the normalized saliency prediction. wi is used to represent the weight
of loss function of each layer and the value is 1. For the MSDM, our total loss
function can be expressed as:

Θ =

5
∑

i=1

Li(G,Pi). (7)

3.3 Size Inference Module

As shown in Figure 3, We generate binary predictions of salient objects through
multi-level feature fusion. SIM share the same backbone with the main network
and the loss function of SIM is similar to the loss function in Sec 3.2. Unlike the
usual non-binary saliency inference, we get a tensor of size (2, H, W). Channel
1 represents the salient objects and Channel 2 represents the background. We
directly generate a binarized inference to conveniently calculate the SOP of the
images pixel by pixel. For example, for an input data with a batchsize of 8, we
separately infer the salient object area of each image, and calculate the SOP.
According to the SOP, we generates a vector of length 8, which represents the
predicted size category of each image. This size category is determined by the five
size ranges shown in Table 1. This is a rough size estimate, but they all belong
to the same category within a certain range, so the size category is usually
accurate. The accuracy rate of the inference of the salient object size categories
on different data sets is shown in Table 6. Finally, we employ this size category
inference as high-dimensional information to guide the activation of different
channels in MSDM.

3.4 Size Guidance Module

Since small objects suffer more information loss during the down-sampling, we
use side path F̄0 of the shallow layer as the guidance layer to provide more low-
level features. The guidance layer F̄0 and the sub-side layer F̄ ∗

i can be expressed
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as follows respectively:

F̄0 = f (1)
conv(F1), (8)

F̄ ∗
i = f∗(i)

conv(Up(F̄i; F̄1) + F̄0). (9)

similar to MSDM, we use a series of convolutional layers f
∗(i)
conv to generate ag-

gregated feature maps. We employ an inference module to generate the second
round of saliency predictions. The setting of inference module and the loss func-
tion are the same as those described in Sec. 3.2.

4 Experiments

4.1 Experiment Setup

Implementation Details. We implement the model with PyTorch 0.4.0 on
Titan Xp.We use ResNet [27] and ResNeXt [28] as the backbone of our network,
respectively. We use the SGD algorithm to optimize our model, where the batch
size is 8, momentum is 0.9, weight decays is 5e-4. We set the initial learning rate
to 1e-4 and adopt polynomial attenuation with the power of 0.9. We iterate our
model for 30,000 times and do not set the validation set during training. We use
the fused prediction maps of side output as the final saliency map.

Datasets. We have evaluated the proposed method on five benchmark datasets:
DUTS-TE [29], ECSSD [30], PASCAL-S [32], HKU-IS [33], DUT-OMRON [34].
DUTS [29] is a large SOD dataset containing 10553 images for training (DUT-
TR) and 5019 images for testing (DUT-TE). Most images are challenging with
various locations and scales as well as complex backgrounds. ECSSD [30] contains
1000 images with complex structures and obvious semantically meaningful ob-
jects. PASCAL-S [32] is derived from PASCAL VOC 2010 segmentation dataset
and contains 850 natural images. HKU-IS [33] contains 4447 images and many
of which have multiple disconnected salient objects or salient objects that touch
image boundaries. DUT-OMRON [34] contains 5168 high-quality but challenging
images. These images are chosen from more than 140,000 natural images, each of
which contains one or more salient objects and relatively complex backgrounds.

4.2 Evaluation Metrics

We adopt mean absolute error (MAE), Max F-measure (FMax
β ) [36], and a

structure-based metric, S-measure [37], as our evaluation metrics. MAE reflects
the average pixel-wise absolute difference between the normalized saliency maps
and GT. MAE can be calculated by:

MAE =
1

W ×H

W
∑

x=1

H
∑

y=1

|P (x, y)−G(x, y)| (10)
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where W and H represent the width and height of images. P (x, y) and G(x, y)
denote the saliency map and GT, respectively.

F-measure is a harmonic mean of average precision and average recall. We
compute the F-measure by:

Fβ =
(1 + β2)Precision×Recall

β2Precision+Recall
(11)

we set β2 = 0.3 to weigh more on precision than recall as suggested in [16].
Precision denotes the ratio of detected salient pixels in the predicted saliency
map. Recall denotes the ratio of detected salient pixels in the GT. We normalize
the predicted saliency maps into the range of [0, 255] and binarize the saliency
maps with a threshold from 0 to 255. By comparing the binary maps with GT, we
can get precision-recall pairs at each threshold and then evaluate the maximum
F-measure from all precision-recall pairs as FMax

β .
S-measure is proposed by [14], and it can be used to evaluate the structural

information of non-binary foreground maps. This measurement is calculated by
evaluating the region-aware and object-aware structural similarity between the
saliency maps and GT.

4.3 Comparisons with State-of-the-arts

In this section, we compare the proposed method with 14 state-of-the-art meth-
ods, including EGNet [15], BANet [20], RAS [39], RADF [40], R3Net [12], Pi-
ACNet [41], PAGRN [22], DGRL [24], BDMPM [42], SRM [43], NLDF [44],
DSS [11], Amulet [45] and UCF [46]. All of these methods are proposed in the
last three years. Saliency maps of the above methods are produced by running
source codes with original implementation details or directly provided by the
authors. We evaluating the saliency maps both in the code provide by [11] and
by ourselves to guarantee the reliability of the results.

F-measure, MAE, and S-measure. We compared with 14 state-of-the-art
saliency detection methods on five datasets. The comparison results are shown
in Table 3. We can see that our method significantly outperforms other methods
across all of the six benchmark datasets in MAE. Specifically, our method reduce
MAE by 17.9%, 10.8%, 25.6%, 6.5% and 15.1% on DUTS-TE [29], ECSSD [30],
PASCAL-S [32], HKU-IS [33] and DUT-OMRON [34] datasets, respectively. For
the metrics where we get top two or three, we are only slightly behind the best
edge-guide method. In fact, without using edge information, we achieved state-of-
the-art performance comparable to the best model combining edge information.

Visual comparison. We show some visualization results in Figure 5. Those pic-
tures have different SOP: 0.866, 0.570, 0.281, 0.167, 0.134, 0.0864, 0.042, 0.034,
from up-to-down. It is obvious that our method has consistent performance for
salient objects of different sizes. A significant advantage of our method is that



SDCNet: Size Divide and Conquer Network for Salient Object Detection 11

Table 3. Comparison of 14 state-of-the-arts and the proposed method on Max F,
MAE, and S-measure over five benchmark datasets. ↑ & ↓ denote higher better and
lower better respectively. * means the results are post-processed by dense conditional
random field (CRF) [38]. The best three results are marked in red, and green, blue.
Our method achieves the state-of-the-art on these five benchmark datasets under three
evaluation metrics.

Method
DUTS-TE ECSSD PASCAL-S HKU-IS DUT-O

Fm↑ MAE↓S↑ Fm↑ MAE↓S↑ Fm↑ MAE↓S↑ Fm↑ MAE↓S↑ Fm↑ MAE↓S↑

VGG-based

UCF 0.772 0.111 0.782 0.903 0.069 0.884 0.816 0.116 0.806 0.888 0.062 0.875 0.730 0.120 0.760

Amulet 0.778 0.084 0.804 0.915 0.059 0.894 0.830 0.100 0.818 0.897 0.051 0.886 0.743 0.098 0.781

NLDF 0.816 0.065 0.805 0.905 0.063 0.875 0.824 0.098 0.805 0.902 0.048 0.879 0.753 0.080 0.770

RAS 0.831 0.059 0.839 0.921 0.056 0.893 0.831 0.101 0.799 0.913 0.045 0.887 0.786 0.062 0.814

DSS* 0.825 0.061 0.812 0.921 0.052 0.882 0.833 0.093 0.799 0.916 0.040 0.878 0.781 0.063 0.790

RADF - - - 0.923 0.049 0.894 0.832 0.097 0.802 0.914 0.039 0.889 0.791 0.062 0.815

PAGRN 0.854 0.055 0.839 0.927 0.061 0.889 0.849 0.089 0.822 0.918 0.048 0.887 0.771 0.071 0.775

BDMPM 0.854 0.048 0.862 0.930 0.045 0.911 0.858 0.074 0.844 0.922 0.039 0.907 0.793 0.064 0.809

ResNet-based

SRM 0.826 0.058 0.836 0.917 0.054 0.895 0.840 0.084 0.834 0.906 0.046 0.887 0.769 0.069 0.798

DGRL 0.828 0.050 0.842 0.922 0.041 0.903 0.849 0.072 0.836 0.910 0.036 0.895 0.774 0.062 0.806

PiCA* 0.871 0.040 0.863 0.940 0.035 0.916 0.870 0.064 0.846 0.929 0.031 0.905 0.828 0.054 0.826

BANet 0.872 0.039 0.879 0.943 0.035 0.924 0.866 0.070 0.852 0.931 0.032 0.913 0.803 0.059 0.832

EGNet 0.893 0.039 0.887 0.943 0.037 0.925 0.869 0.074 0.852 0.937 0.031 0.918 0.842 0.053 0.841

Ours 0.888 0.032 0.884 0.943 0.033 0.922 0.871 0.055 0.863 0.933 0.029 0.914 0.835 0.045 0.839

ResNeXt-based

R3Net* 0.879 0.037 0.873 0.938 0.036 0.913 0.867 0.063 0.851 0.930 0.029 0.910 0.818 0.057 0.819

Ours 0.896 0.030 0.890 0.948 0.029 0.926 0.880 0.058 0.872 0.937 0.026 0.918 0.845 0.041 0.844

we can locate the main area of salient objects more accurately. As shown in row
6 and row 8, when the salient objects share the same attributes with background
or the background is relatively complex, our method can accurately segment the
main objects and dropout the extra parts. Another advantage of our approach
is that we retain more detail. In row 4, we preserve more details compare with
other methods. It proves that the shallow feature guidance layer is effective for
retaining detail information. In addition to achieving marvelous performance on
small objects, we achieve impressive results on large objects as well (row 1-3).
These observations indicate the size information of salient objects is crucial for
identifying the salient objects and improving the robustness of the SOD methods
at multiple scales.

4.4 Ablation Analysis

To explore the effectiveness of different components of the proposed method, we
conduct experiments on five benchmark datasets to compare the performance
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Fig. 5. Qualitative comparisons with 8 state-of-the-art methods. We arrange those
images from high to low SOP up-to-down. * means the results are post-processed by
dense conditional random field (CRF).

variations of our methods with different experimental settings over the DUTS-
TE [29], ECSSD [30], PASCAL-S [32] and DUT-OMRON [34]. Test results of
different settings are shown in Table 4.

Effectiveness of MSDM. We explore the effectiveness of MSDM in this sub-
section. As shown in Table 4, CFEM denotes only remain CFEM in MSDM.
SFEM denotes remain SFEM in MSDM. For better comparison, we kept other
settings the same. The comparison between the first and third columns of Table
4 proves the effectiveness of SFEM and MSDM. It means that the divide-and-
conquer module is effective in separately learning the features of salient objects
of different sizes. By comparing the second and third columns we can find that
retaining a common convolutional layer can better learning size-independent fea-
tures and improve the network in a complementary way. MSDM+edge verifies
the effectiveness of edge information. SDCNet achieved higher performance by
combining edge information. Running time in CFEM, SFEM and CFEM+SFEM
is 6.71, 6.58 and 6.06 FPS in Titan Xp with input size 300×300. In addition,
MSAM can easily integrate into other lightweight networks.

Improvement on small and big object detection. To demonstrate the
superiority of SDCNet in the detection of small and big salient objects, we
compared the performance difference between the baseline network (the same
as CFEM in Table 4) and SDCNet in the detection of small objects and large
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Table 4. Ablation analyses on four datasets. CFEM, SFEM, MSDM are introduced
in Sec. 3.2. MSAM+edge means add edge supervision to F̄0.

Model CFEM SFEM
MSDM

(CFEM+SFEM)
MSDM+edge

DUTS-TE
MaxF↑ 0.875 0.890 0.896 0.898
MAE↓ 0.042 0.033 0.030 0.028

ECSSD
MaxF↑ 0.937 0.944 0.948 0.951
MAE↓ 0.035 0.031 0.029 0.027

PASCAL-S
MaxF↑ 0.868 0.878 0.880 0.879
MAE↓ 0.067 0.058 0.058 0.058

DUT-O
MaxF↑ 0.818 0.837 0.845 0.847
MAE↓ 0.063 0.045 0.041 0.040

Table 5. Performance improvement of SDCNet in small and big object detection.
Small objects means SOP is less than 10%. Large objects refers to SOP more than
40%. We use the complete dataset to train the baseline and SDCNet, and test on large
and small objects separately. Specific Dataset means training with a dataset of the
same size category as the test set.

Model Baseline SDCNet
Specific
Dataset

Small Objects
DUTS-TE

MaxF↑ 0.823 0.850 0.872
MAE↓ 0.038 0.027 0.015

PASCAL-S
MaxF↑ 0.766 0.794 0.820
MAE↓ 0.062 0.045 0.021

Big Objects
DUTS-TE

MaxF↑ 0.957 0.960 0.962
MAE↓ 0.056 0.052 0.048

PASCAL-S
MaxF↑ 0.923 0.933 0.932
MAE↓ 0.088 0.086 0.080

objects. The specific performance is shown in Table 5. SDCNet outperforms
baseline in both small objects detection and large objects detection, while they
sharing the same structure except SFEM. It demonstrates the superiority of the
divide and conquer network in fitting actual data distribution. However, it still
has performance differences compared to networks trained with specific data.
The third column of Table 5 shows the best performance that can be achieved
on small (or large) salient objects by dividing and conquering without changing
other network structures.

Effectiveness of SIM The performance of SIM determines whether we can
accurately divide the image into the corresponding channel. We explore the ef-
fectiveness of SIM in this subsection. As shown in Tabel 6, Classification Network
denotes train an individual ResNeXt101 to infer the size category of salient ob-
jects. The results of the comparison show that the SIM module has a better
accuracy of size inference than the independent size classification network. It
indicates that it is more effective to calculate the size range of salient objects
pixel by pixel than direct classification the size categories. The inference accu-
racy of SIM is about 80% to 85%. This does not seem completely satisfactory.
But in fact, for those significant objects whose size range is wrongly estimated,
the deviation is usually not large. The difference in features of salient objects
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Table 6. Accuracy of the size inference on benchmark datasets. The details are intro-
duced in Sec. 4.4.

Dataset ECSSD DUT-TE HKU-IS DUT-O

Classification Network
(ResNeXt101)

acc(%) 74.8 71.7 72 69.6

SIM acc(%) 85.4 83.6 84.7 80.2

in the size range of 30-40% and 40-50% is obviously smaller than that of the
salient objects in the size range of 0-10%, so misclassification usually does not
lead to worse performance. For those salient objects with large size inference
deviation, the accuracy of labeling may be a more important reason. Moreover,
the improvement space of SIM shows that SDCNet still has rich potential.

5 Conclusion

In this paper, we view size information as an important supplement of current
SOD methods. We explored the application of divide-and-conquer networks in
solving salient object detection with significant size differences. First, we counted
the size distribution of salient objects in the benchmark datasets and trained a
SIM to perform size inference using a pixel-by-pixel calculation. Second, we use
an up-to-down multi-scale feature fusion network as the basic structure. We
designed an MSDM, which activates different channels according to the size in-
ference obtained by SIM, and learned the features of salient objects of different
sizes. Finally, we utilize the low-level feature maps as one-to-one guidance to
retain more information about small salient objects. Experimental results show
that our method has a significant improvement in the detection performance
of small-sized objects. Our method obtains state-of-the-art performance in five
benchmark datasets under three evaluation metrics. Without using edge features,
SDCNet can get results comparable to models that combine edge information.
This impressive performance denotes the great effectiveness of our method. Fur-
thermore, our method provides an original idea on how to overcome the inherent
feature differences between task data and better solve the problems.
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