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Abstract. Semantic segmentation has achieved remarkable results with
high computational cost and a large number of parameters. However,
real-world applications require efficient inference speed on embedded de-
vices. Most previous works address the challenge by reducing depth,
width and layer capacity of network, which leads to poor performance.
In this paper, we introduce a novel Dense Dual-Path Network (DDP-
Net) for real-time semantic segmentation under resource constraints. We
design a light-weight and powerful backbone with dense connectivity to
facilitate feature reuse throughout the whole network and the proposed
Dual-Path module (DPM) to sufficiently aggregate multi-scale contexts.
Meanwhile, a simple and effective framework is built with a skip architec-
ture utilizing the high-resolution feature maps to refine the segmentation
output and an upsampling module leveraging context information from
the feature maps to refine the heatmaps. The proposed DDPNet shows
an obvious advantage in balancing accuracy and speed. Specifically, on
Cityscapes test dataset, DDPNet achieves 75.3% mIoU with 52.6 FPS
for an input of 1024 × 2048 resolution on a single GTX 1080Ti card.
Compared with other state-of-the-art methods, DDPNet achieves a sig-
nificant better accuracy with a comparable speed and fewer parameters.

1 Introduction

Semantic segmentation is a fundamental task in computer vision, the purpose
of which is to assign semantic labels to each image pixel. It has many potential
applications in the fields of autonomous driving, video surveillance, robot sensing
and so on. Existing methods mainly focus on improving accuracy. However,
these real-world applications require efficient inference speed on high-resolution
images.

Previous works[1–6] have already obtained outstanding performances on var-
ious benchmarks[7–11]. By analyzing existing state-of-the-art semantic segmen-
tation methods, we find the keys to achieving high accuracy. 1) The backbone of
these methods has a powerful feature extraction capability, such as ResNet[12],
ResNeXt[13], DenseNet[14], which is usually pre-trained on ImageNet[15]. These
backbones have a strong generalization capability and thus are adapted to many
computer vision tasks. 2) These methods aggregate multi-scale context infor-
mation sufficiently. There are many objects in semantic segmentation that are
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difficult to be distinguished only by their appearance, such as ‘field’ and ‘grass’,
‘building’ and ‘wall’. Due to multiple scales, occlusion and illumination, some
objects like ‘car’ and ‘person’ require multi-scale context information to be cor-
rectly identified. To address above issues, dilated convolution and pooling oper-
ation are often used to enlarge the receptive field. Even though the theoretical
receptive field is large enough, it still can’t fully exploit the capability of global
context information. Therefore, some approaches[1, 4, 6, 16, 17] aggregate multi-
scale contexts via fusing feature maps generated by parallel dilated convolutions
and pooling operations to robustly segment objects at multiple scales. 3) These
methods recover spatial information effectively. Downsampling enlarges the re-
ceptive field and decreases the size of feature maps. It enriches high-level features,
but loses spatial details. However, detailed spatial information is essential for se-
mantic segmentation. In order to preserve spatial information, most works[1, 3,
4, 6] remove the last two pooling operations and replace the subsequent convo-
lutions with dilated convolutions to keep the receptive field unchanged at the
expense of computational efficiency. Unlike them, [2, 5, 18–22] utilize upsampling
methods and self-designed skip connection to refine the boundaries of objects and
small objects.

Based on the above analysis, we summarize the keys to achieving high accu-
racy in semantic segmentation as follows:

– Backbone with a powerful feature extraction capability.

– Sufficient aggregation of context information.

– Effective recovery of spatial information.

Recently, real-time semantic segmentation methods[23–28] have shown prom-
ising results. [29, 30] reduce the input size to accelerate the model, while easily
losing the spatial details around boundaries and small objects. [31, 32] remove
some of downsampling operations to create an extremely small model. Never-
theless, the receptive field of these models is not sufficient to cover large objects,
resulting in a poor performance. To achieve real-time speed, some works[23, 25,
31–33] design a specialized network for semantic segmentation as backbone. Dif-
ferently, some works[24, 26–28, 34] adopt a light-weight classification network as
backbone, such as MobileNets[35–37], ShuffleNets[38, 39], ResNet-18[12]. Convo-
lution factorization refers to the decomposition of a large convolution operation
into several smaller operations, such as factorized convolution and depth-wise
separable convolution, which is widely adopted in these backbones to reduce
the computational cost and the number of parameters. However, convolution
factorization is not conducive to GPU parallel processing, which results in a
much slower inference speed under the same computational budget. On the other
hand, these backbones have a limited capability due to fewer convolution opera-
tions and feature maps. Recent works[27, 30, 40] propose a two-column network
which consists of a deep network for encoding context information and a shal-
low network for capturing spatial information. However, the extra network on
high-resolution images limits the inference speed, and the independence between
networks limits the performance of the model.
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To strike a better balance between accuracy and efficiency, we follow the
principle of simplicity in designing the model. A complicated and sophisticated
work may improve accuracy, but in most cases it hurts efficiency significantly.
A simple and clean framework can make it easier to re-implement and improve.
Therefore, we propose a light-weight yet powerful backbone and a simple yet
effective framework for fast and accurate semantic segmentation. The proposed
Dense Dual-Path Network (DDPNet) achieves 75.3% mIoU with merely 2.53
M parameters on Cityscapes test dataset. It can run on high-resolution images
(1024× 2048) at 52.6 FPS on a single GTX 1080Ti card. DDPNet is superior to
most of the state-of-the-art real-time semantic segmentation methods in accuracy
and speed, and requires fewer parameters.

Our main contributions are summarized as follows:

– We design a light-weight and powerful backbone with dense connectivity
to facilitate feature reuse throughout the whole network and the proposed
Dual-Path module (DPM) to sufficiently aggregate multi-scale contexts.

– We propose a simple and effective framework with a skip architecture utiliz-
ing the high-resolution feature maps to refine the segmentation output and
an upsampling module leveraging context information from the feature maps
to refine the heatmaps.

– We conduct a series of experiments on two standard benchmarks, Cityscapes
and CamVid, to investigate the effectiveness of each component of our pro-
posed DDPNet and compare accuracy and efficiency with other state-of-the-
art methods.

2 Related Work

Recently, FCN[20] based methods have greatly improved the performance of
semantic segmentation. Most of them focus on encoding content information
and recovering spatial information.

Real-time Segmentation: The goal of real-time semantic segmentation is
to achieve the best trade off between accuracy and efficiency. In order to reach a
real-time speed, SegNet[41] and U-Net[42] perform multiple downsampling oper-
ations to significantly reduce the feature map size. SegNet designs a symmetric
encoder-decoder architecture to carefully recover feature maps. U-Net proposes
a symmetric architecture with skip connection to enable precise localization.
Differently, E-Net[32] constructs an extremely light-weight network with fewer
downsampling operations to boost the inference speed. ERFNet[33] focuses on
a better accuracy with a deeper network that uses residual connection and fac-
torized convolution. ESPNet[31] proposes a light-weight network with efficient
spatial pyramid module. ICNet[30] uses an image cascade network to capture
objects of different sizes from multi-scale images. BiSeNet[27] designs a spatial
path to preserve spatial information and a context path to obtain sufficient re-
ceptive field. Based on multi-scale feature propagation, DFANet[24] reduces the
number of parameters and maintains high accuracy.
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Context Information: Semantic segmentation needs to sufficiently obtain
context information to correctly identify objects that are similar in appearance
but belong to different categories and objects that are different in appearance
but belong to the same category. Most works capture diverse context infor-
mation by using different dilation convolutions to enlarge the receptive field.
DeepLab[16] proposes an atrous spatial pyramid pooling module to aggregate
multi-scale contexts. In the follow-up work, [17] further improves performance
by extending the previously proposed atrous spatial pyramid pooling module
with a global average pool, which is able to capture the global context of im-
ages. Similarly, PSPNet[6] proposes a pyramid pooling module which consists of
different sizes of average pooling operations to aggregate multi-scale contexts.
[43] designs a scale-adaptive convolution to acquire flexible-size receptive fields.
PAN[44] combines attention mechanism and spatial pyramid to learn a better
feature representation. DMNet[4] adaptively captures multi-scale contents with
multiple dynamic convolutional modules arranged in parallel.

Spatial Information: Semantic segmentation requires spatial details to re-
store the boundaries of objects and small objects. The reason for the loss of
spatial details is downsampling operations in the convolutional network. Down-
sampling is essential for convolutional networks because it can reduce the size
of feature maps and enlarge the receptive field. Most works reduce the num-
ber of downsampling operations to preserve spatial details, which leads to slow
inference speed. Differently, [21, 32, 33, 41] construct an encoder-decoder struc-
ture with unpooling and deconvolution to recover spatial details. However, this
structure still can not effectively recover the loss of spatial details and have
high computational complexity. Skip connection is first introduced in FCN[20],
which combines semantic information from a deep layer with appearance in-
formation from a shallow layer to produce accurate and detailed segmentation
result. Based on FCNs, RefineNet[19] presents a multi-path refinement network
that refines high-level semantic features using long-range residual connection.
BiseNet[27] and Fast-SCNN[40] explicitly acquire spatial information at a fast
inference speed using a light-weight spatial path.

3 Dense Dual-Path Network

In this section, we introduce the backbone of DDPNet and the proposed frame-
work for real-time semantic segmentation. Furthermore, we elaborate the design
choices and motivations in detail.

3.1 Dense Connectivity

The backbone of DDPNet is a variant of densely connected convolutional net-
work, which adopts dense connectivity to stack convolution operations. Dense
connectivity is originally proposed by DenseNet[14], in which each layer has di-
rect connections to all subsequent layers. Formally, the mth layer takes feature
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Fig. 1. Depiction of the dense layer originally proposed in DenseNet[14], and our
proposed Dual-Path module (DPM). “k”: the growth rate. “D”: dilated convolution.
“c”: channel concatenate operation. “s”: channel split operation. In the convolutional
blocks, “s1× s2, no” indicates their kernel sizes (s1, s2) and the number of output fea-
ture maps (no). (a) Original dense layer. (b-c) Dual-Path Module. For brevity, we omit
normalization and activation function.

maps from all preceding layers as input:

xm = Hm([x0, x1, ..., xm−1]) (1)

where xn, n ∈ [1, 2, ...,m] refers to the output of nth layer. x0 refers to the input
of dense block, bracket indicates concatenation operation, and H is a composite
function of three consecutive operations: batch normalization[45], followed by a
rectified linear unit[46] and a convolution operation.

Some works[47, 48] utilize dense connectivity in the network to boost the
performance of semantic segmentation. However, they focus on accuracy rather
than speed. Dense connectivity allows for the reuse of features throughout the
network and significantly reduces the number of parameters, which contributes
to the implementation of light-weight models. Therefore, we use dense connec-
tivity to build a light-weight and powerful backbone for real-time semantic seg-
mentation. Following PeleeNet[49], we use post-activation as composite function,
which conducts convolution operation before batch normalization, for improving
inference speed.

3.2 Dual-Path Module

Dual-Path module (DPM) is the basic unit of dense block. Motivated by the
diversity of object scales in semantic segmentation, we propose a specific Dual-
Path module composed of two bottleneck layers in parallel. One of the bottleneck
layers uses a point-wise convolution to reduce the number of input feature maps,
followed by a 3× 3 convolution to produce k

2 new feature maps. k refers to the
growth rate. The other bottleneck layer replaces the 3 × 3 convolution with
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dilation convolutions to learn visual patterns for large objects. The structural
details are shown in Fig. 1(b). We refer this structure as DPM-b. Notice that
the point-wise convolutions in both branches have the same input. Therefore,
we combine the two point-wise convolutions into one, and split the output of
the convolution into two independent inputs for the two branches, as depicted
in Fig. 1(c). We refer this structure as DPM-c. The two implementations are
functionally identical but differ in efficiency. DPM-c is more efficient than DPM-
b in GPU parallel processing. For this reason, we adopt the structure of DPM-c
as our final implementation of DPM. Finally, the output of two branches is
concatenated, followed by a dropout layer[50].

As can be seen from Fig. 1, Dual-Path module has a larger effective receptive
field than the original dense layer. With an extra dilated branch in dense layer,
Dual-Path module can extract features from different scales. Intuitively, more
branches can aggregate multi-scale contexts more effectively, such as ASPP in
[16]. However, the decomposition of a single convolution into multiple parallel
convolutions is not conducive to the acceleration of the model. Due to the abil-
ity to effectively aggregate feature maps at different scales, Dual-Path module
significantly improves the capacity of backbone.

3.3 Backbone Design

In this subsection, we discuss the main components and algorithms used to
build the backbone of Dense Dual-Path Network. In this work, we aim to de-
sign an architecture that gets the best possible trade-off between accuracy and
efficiency. Many approaches that focus on designing a light-weight architecture
largely adopt depth-wise separable convolution and factorized convolution which
lack efficient implementation. Instead of using depth-wise separable convolution
or factorized convolution, Dense Dual-Path Network is build with traditional
convolution.

Transition Layer. Transition layer is used to reduce the size of feature maps
and compress the model. It is composed of a point-wise convolution followed
by a 2 × 2 average pooling layer. In order to fully exploit dense connectivity,
DDPNet keeps the number of input channels and output channels the same in
all transition layers. This design facilitates feature reuse throughout the whole
network.

Initial Block. Initial block is used to reduce the input size, which typi-
cally involves several downsampling operations. Due to direct operation on the
original image, initial block is often computationally expensive. However, a well-
designed initial block can effectively improve feature expression and preserve
rich spatial information. The initial block of DPPNet is motivated by ENet[32]
and PeleeNet[49], which preserves rich spatial information and takes full advan-
tage of feature reuse. In our initial block, a 3 × 3 convolution with stride 2 is
performed on the original image, followed by two branches. One of the branches
is a 3 × 3 convolution with stride 2. The other branch is a 2 × 2 max pooling
layer with stride 2. Finally, the output of two branches is concatenated.
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Table 1. The backbone of our proposed DDPNet. “DenseLayer (orDPM) × nd, k”
indicates the operation in dense block is the original dense layer (DenseLayer) or the
proposed Dual-Path module (DPM), the number of layers (nd) and the growth rate
(k). Input size is (1024× 2048× 3).

Type Operator Output Shape

Initial Block 256 x 512 x 64

Dense Block Dense Layer x 2, k=32 256 x 512 x 128

Transition Layer
1 x 1 conv, stride 1

128 x 256 x 128
2 x 2 average pool, stride 2

Dense Block Dense Layer x 4, k=32 128 x 256 x 256

Transition Layer
1 x 1 conv, stride 1

64 x 128 x 256
2 x 2 average pool, stride 2

Dense Block DPM x 8, k=32 64 x 128 x 512

Transition Layer
1 x 1 conv, stride 1

32 x 64 x 512
2 x 2 average pool, stride 2

Dense Block DPM x 8, k=32 32 x 64 x 768

Transition Layer 1 x 1 conv, stride 1 32 x 64 x 768

Architecture Detail. The backbone of our proposed DDPNet is shown in
Table 1. The entire architecture consists of an initial block and four dense blocks
followed by a transition layer. To maintain a better balance between accuracy and
computational cost, DDPNet first reduces spatial resolution twice in the initial
block and performs downsampling operation in each transition layer (except for
the last one). Except for the last block, DDPNet doubles the number of feature
maps in each dense block.

In DenseNet[14], each layer produces k new feature maps, where k refers to as
the growth rate. The growth rate is usually a small constant due to feature reuse.
With a fixed number of output channels and a fixed growth rate, we can get the

number of layers in a certain block. For example, the nth block has (nout−nin)
k

layers, where nout is the number of channels at the end of the block, and nin is
the number of channels in the input layer. As mentioned in [14, 51], convolution
layers in a deeper block tend to rely more on high-level features than on low-level
features. Based on this observation, DDPNet produces more new feature maps
in deeper blocks, which means that more layers are needed in deeper blocks.

Since the feature maps from a higher layer contain more semantic informa-
tion and less spatial information, we adopt the original dense layer in the first
two blocks and replace the original dense layer with Dual-Path module in the
last two blocks. We explore further in the experiment section. A larger growth
rate requires fewer layers to generate new feature maps, which can boost the
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Fig. 2. (a) Framework of the proposed DDPNet. (b) Architecture details of the usam-
pling module. Note that the feature maps used to generate heatmaps are the output
of the point-wise convolution in transition layer before downsampling. For brevity, we
refer to these feature maps as the output of transition layer in this diagram. “+”:
element-wise addition. “×”: weighted sum operation.

inference speed. However, a smaller growth rate forms a denser connections,
which improves the quality of feature maps. To strike a better balance between
accuracy and efficiency, we set the growth rate to 32 in DDPNet.

3.4 Framework for Real-time Semantic Segmentation

In this subsection, we propose a simple and effective framework for real-time se-
mantic segmentation. Fig. 2(a) shows the overall framework. The proposed back-
bone and the framework are adopted to construct the DDPNet. The backbone
can be other classification networks, such as ResNet[13]. Most of the frameworks
used for real-time semantic segmentation adopt an encoder-decoder architecture.
The encoder is used to provide information for the final classification and reduce
the computational cost by downsampling. The main purpose of the decoder is
to recover the spatial details lost during the downsampling process.

Skip Architecture. DDPNet employs an asymmetric sequential architec-
ture, where an extreme light-weight decoder is adopted to upsample the feature
maps to match the input resolution. The decoder of DDPNet is a skip architec-
ture, which utilizes the high-resolution feature maps to refine the segmentation
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output. In U-Net[42], skip connection is performed on the feature space, which
is very computational expensive because it is directly affected by the number
of channels. To accelerate the inference speed, DDPNet adopts skip connection
on heatmaps in the label space, similar to FCN[20]. The output of each tran-
sition layer is followed by a point-wise convolution to map from feature space
to label space, resulting in a heatmap corresponding to each class. Note that
the feature maps used to generate heatmaps are the output of the point-wise
convolution in transition layer before downsampling. For convenience, we refer
to these feature maps as the output of transition layer in the following paper.
A low-resolution heatmap is upsampled by an upsampling module, and then
element-wise addition is performed between this heatmap and a high-resolution
heatmap. After three skip connections, a bilinear interpolation with stride 4 is
adopted to produce the final output. Fig. 2(a) shows the overall framework of
DDPNet.

Upsampling Module. The commonly used upsampling methods in seman-
tic segmentation are bilinear interpolation and deconvolution. Bilinear interpo-
lation is computationally cheap, but only leverages the distance information be-
tween pixels. Deconvolution uses fixed kernels to perform upsampling, which has
been proved to be limited and inefficient. The upsampling module of DDPNet
is modified from [22] to save a lot of computation by performing upsampling on
label space instead of upsampling on feature space. More specifically, DDPNet
uses a bilinear interpolation to upsample the heatmap and refine the upsam-
pled heatmap with a dynamic filtering layer. Dynamic filtering layer is originally
proposed in dynamic filter networks[52]. In dynamic filter networks, a dynamic
filter module consists of a filter generating path that produces filters based on
one input, and a dynamic filtering layer that applies the generated filters to an-
other input. In the upsampling module of DDPNet, the filter generating path
takes the output of transition layer as input, then compresses the input feature
channel with a point-wise convolution. Finally, a 3 × 3 convolution followed by
a pixel shuffle operation and a softmax is used to generate the filters. In dy-
namic filtering layer, the generated filters are applied to refine the upsampled
heatmap, which is a weighted sum operation. Formally, the upsampling module
can be written as

Y = U(X1)⊗ δ(S(N(F 1(w3×3, σ(N(F 2(w1×1,X2))))))) (2)

where Y and X are the output and input of the upsampling module respectively.
X1 and X2 refer to the input of dynamic filtering layer and filter generating path.
U denotes bilinear interpolation, ⊗ indicates weighted sum operation, F and N

represent convolution operation and batch normalization, S refers to pixel shuffle
operation, σ and δ indicate ReLU and softmax activation. wn×n is convolutional
parameter and n represents kernel size. Fig. 2(b) shows the detailed architecture
of the upsampling module.
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4 Experiment

In this section, we evaluate the proposed DDPNet on Cityscapes[8] and CamVid
[7] benchmarks. We first introduce the datasets and the implementation proto-
col. Then, we conduct a series of experiments on Cityscapes validation set to
investigate the effectiveness of each component of our proposed method. Finally,
we report the accuracy and efficiency results compared with other state-of-the-
art methods. All accuracy results are reported using the commonly used mean
Intersection-over-Union (IoU) metric. Runtime evaluations are performed on a
single 1080Ti card. To eliminate the error fluctuation, we report an average of
5000 frames for the frames per second (FPS) measurement.

Cityscapes. The Cityscapes dataset is a large urban street scene dataset
which is collected from 50 different cities. It contains 5000 fine annotated images,
which are split into three sets: 2975 images for training, 500 images for validation,
and 1525 images for testing. For fair a comparison, the 1525 test images is
offered without ground-truth. There is another set of 19,998 images with coarse
annotation, but we only use the fine annotated images for all experiments. All
images have a resolution of 1024 × 2048, in which each pixel is annotated to
pre-defined 19 classes.

CamVid. The CamVid dataset is another street scene dataset which is ex-
tracted from video sequences. It contains 701 images, which are split into three
sets: 367 images for training, 101 images for validation, and 233 images for
testing. All images have a resolution of 720 × 960 and 11 semantic categories.
Following the general settings, we reduce the image resolution to 360× 480 and
use the training set and the validation set to train our model, then test it on the
test set.

4.1 Implementation Protocol

We conduct all experiments using PyTorch with CUDA 10.0 and cuDNN back-
ends on a single 1080Ti card. We use Adam optimizer [53] with batch size 8 and
weight decay 2e−4 in training. For learning rate schedule, we use the learning
rate warmup strategy suggested by [54] and the cosine learning rate decay policy.
The learning rate li is computed as:

li =
1

2
×

(

1 + cos
i× π

T

)

× lbase (3)

where i refers to current epoch, the maximum number of epochs T is set to 350 for
training on Cityscapes and 700 for training on CamVid, the initial learning rate
lbase is 5e−4. As for data augmentation, we employ mean subtraction, random
horizontal flip and random scale on the input images during training. A random
parameter between [0.75, 2] is used to transform the images to different scales.
Finally, we randomly crop the images into fixed size for training.
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Table 2. Ablation studies for dense connectivity and DPM. All models are trained
from scratch on Cityscapes training set and evaluated on Cityscapes validation set.
The numbers in brackets denote the performance improvement over the baseline. The
bold entries are the final settings for DDPNet.

Model mIoU(%) Time(ms) FPS Para FLOPs Memory

Baseline 72.8 9.5 105.7 2.7M 13.7G 333MB
ResNet[12] 70.9 9.8 101.6 11.2M 41.7G 287MB
PeleeNet[49] 72.5 11.7 85.3 2.1M 12.3G 406MB

+ DPM × 1 74.6 (+1.8) 10.3 97.4 2.6M 13.5G 333MB
+ DPM × 2 75.5 (+2.7) 11.2 89.4 2.4M 12.8G 333MB
+ DPM × 4 74.7 (+1.9) 11.7 85.5 2.4M 11.5G 333MB

4.2 Ablation Study

In this subsection, we perform a series of experiments to evaluate the effectiveness
of each component in our proposed DDPNet. All ablation studies are trained on
Cityscapes training set and evaluated on Cityscapes validation set. We reduce
the image size to 768× 1536 to accelerate the training process and evaluate the
accuracy and efficiency of our models. For a fair comparison, we use the same
training settings for all models.

Ablation Study for Dense Connectivity and DPM. We first explore
the effects of dense connectivity and Dual-Path module specifically. A densely
connected convolutional network without compression in transition layer is built
as our backbone. The growth rate is set to 32. The proposed initial block and a
skip architecture are adopted to construct a baseline for semantic segmentation.
We replace the backbone with the frequently used ResNet-18[12] to make a
comparison between two different connection mechanisms. As suggested by [54],
we adopt a modified ResNet, which replace the 1 × 1 convolution with stride 2
in downsampling block with a 2× 2 average pooling layer with stride 2 followed
by a 1×1 convolution with stride 1. As can be seen from Table 2, our baseline is
far more accurate (72.8% VS 70.9%) and efficient than ResNet. Due to feature
reuse, our baseline has 4× fewer parameters and 3× fewer FLOPs than ResNet,
which results in a much lower power consumption. To better understand the
DPM, we replace the original dense layer with the proposed DPM stage by
stage. Equipping the DPM in the last stage alone can boost the baseline by 1.8%
(72.8% → 74.6%) in accuracy with a slight drop in inference speed. We continue
to adopt the DPM in the third stage, which brings in 2.7% (72.8% → 75.5%)
improvement to the baseline. However, adopting more DPMs at early stages
does not yield further benefits. It verifies that feature maps from an early stage
contain more spatial details, which is essential for further feature representation.
Therefore, we adopt the original dense layer in the first two blocks and replace
the original dense layer with the proposed DPM in the last two blocks as the
backbone of DDPNet. Here, we adopt an increasing dilation rate in dense blocks
to fully explore the ability to aggregate feature maps at different scales. For
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Table 3. Ablation studies for skip architecture and upsampling module. All models are
trained from scratch on Cityscapes training set and evaluated on Cityscapes validation
set. The numbers in brackets denote the performance improvement or degradation over
the baseline. The bold entries are the final settings for DDPNet.

Model mIoU(%) Time(ms) FPS Para FLOPs Memory

Baseline 69.7 10.7 93.4 2.4M 12.5G 326MB

+ Skip Architecture 75.5 (+5.8) 11.2 (+0.5) 89.4 2.4M 12.8G 333MB
+ Upsampling Module 76.2 (+6.5) 11.7 (+1.0) 85.4 2.5M 13.2G 412MB

+ U-Net Architecture 75.2 (+5.5) 11.7 (+1.0) 85.6 2.5M 13.7G 356MB
+ CARAFE[22] 76.2 (+6.5) 14.8 (+4.1) 67.4 2.5M 14.0G 601MB

example, the dilation rate sequence of the third dense block is set to {2, 4,
8, 16, 2, 4, 8, 16}. We also try to set all dilation rates to a fixed number, or
increase them gradually in different ways, which all lead to a slight decrease in
accuracy. We compare DDPNet with PeleeNet[49], which utilizes a different way
to aggregate multi-scale representations. Table 2 shows that DDPNet is superior
to PeleeNet (75.5% VS 72.5%).

Ablation Study for Skip Architecture and Upsampling Module.

Here, we demonstrate the effectiveness of our proposed framework for real-time
semantic segmentation. The proposed backbone is adopted as the encoder of
baseline and the output heatmap is directly upsampled to the original image
size, which leads to poor segmentation of boundaries and small objects. We com-
pare two different decoder structures, skip architecture and U-Net architecture,
which perform skip connection on label space and feature space respectively.
As can be seen from Table 3, skip architecture is more efficient than U-Net
architecture and has a comparable accuracy (75.5% VS 75.2%). By gradually
restoring spatial information, skip architecture significantly improves the base-
line by 5.8% (69.7% → 75.5%) in accuracy. Furthermore, we adopt the proposed
upsampling module that leverages context information from feature maps to re-
fine the heatmaps. DDPNet with the proposed framework boosts the baseline by
6.5% (69.7% → 76.2%) in accuracy with a negligible drop in inference speed (1.0
ms). We compare another upsampling method CARAFE[22], which performs
upsampling on feature space. We directly adopt CARAFE in U-Net architecture
and compare it with DDPNet. Table 3 shows that the proposed framework has a
comparable accuracy, but 4 times faster (1.0 ms VS 4.1 ms). Some visual results
and analyses are provided in the supplementary file.

4.3 Accuracy and Efficiency Analysis

In this subsection, we compare the proposed DDPNet with other existing state-
of-the-art real-time segmentation models on Cityscapes dataset. For a fair com-
parison, we measure the mIoU without any evaluation tricks like multi-crop,
multi-scale, etc.
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Table 4. Accuracy and efficiency results on Cityscapes test dataset. “-” indicates that
the corresponding result is not provided by the method. “†” indicates that the model
is evaluated on Cityscapes validation set.

Method Pretrain Input Size #Params FLOPs GPU FPS mIoU(%)

SegNet[41] ImageNet 640 x 360 29.5M 286G TitanX M 14.6 56.1
ENet[32] No 512 x 1024 0.4M 4.4G TitanX M 76.9 58.3
ESPNet[31] No 512 x 1024 0.4M 4.7G TitanX 112 60.3
ERFNet[33] No 512 x 1024 2.1M - TitanX M 41.7 68.0
ICNet[30] ImageNet 1024 x 2048 26.5M 29.8G TitanX M 30.3 69.5
BiSeNet1[27] ImageNet 768 x 1536 5.8M 14.8G TitanX 72.3 68.4
BiSeNet2[27] ImageNet 768 x 1536 49.0M 55.3G TitanX 45.7 74.7
DABNet[23] No 1024 x 2048 0.8M - 1080Ti 27.7 70.1
DFANet[24] ImageNet 1024 x 1024 7.8M 3.4G TitanX 100 71.3
SwiftNet†[26] No 1024 x 2048 11.8M 104G 1080Ti 39.9 70.4
SwiftNet[26] ImageNet 1024 x 2048 11.8M 104G 1080Ti 39.9 75.5
ShelfNet[28] ImageNet 1024 x 2048 - - 1080Ti 36.9 74.8

DDPNet† No 768 x 1536 2.52M 13.2G 1080Ti 85.4 76.2
DDPNet† No 1024 x 2048 2.52M 23.5G 1080Ti 52.6 77.2
DDPNet No 768 x 1536 2.52M 13.2G 1080Ti 85.4 74.0
DDPNet No 1024 x 2048 2.52M 23.5G 1080Ti 52.6 75.3

The comparison of the accuracy (class mIoU) and efficiency (FLOPs, FPS)
is shown in Table 4. Our DDPNet outperforms most existing real-time se-
mantic segmentation methods in accuracy, and maintains a superior inference
speed. Specifically, DDPNet achieves 75.3% mIoU with 52.6 FPS for an input of
1024×2048 resolution and 74.0% mIoU with 85.4 FPS for an input of 768×1536
resolution on Cityscapes test set. ShelfNet[28] and SwiftNet[26] are recent pub-
lished state-of-the-art models. Compared to ShelfNet, DDPNet is faster (52.6
FPS VS 36.9 FPS) and more accurate (75.3% VS 74.8%). SwiftNet has a slightly
better accuracy than DDPNet (75.5% VS 75.3%). However, DDPNet is trained
with only Cityscapes fine-annotated images, without using any extra data. For a
fair comparison, we compare the results of SwiftNet and DDPNet trained from
scratch and evaluated on Cityscapes validation set. As can be seen from Table 4,
DDPNet achieves significant better results in accuracy (77.2% VS 70.4%) and
inference speed (52.6 FPS VS 39.9 FPS). Note that DDPNet has fewer parame-
ters and smaller FLOPs than most methods. The reason is that most real-time
semantic segmentation methods adopt ResNet-18 as their backbone, while DDP-
Net designs a light-weight and powerful backbone with fewer parameters.

4.4 Result on Other Dataset

To verify the generality of our proposed DDPNet, we conduct experiments on
CamVid dataset. We modify the DDPNet to better fit the image resolution by
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Table 5. Accuracy results on CamVid test dataset.

Method Pretrain #Params mIoU (%)

SegNet[41] ImageNet 29.5M 55.6
ENet[32] No 0.4M 51.3
ICNet[30] ImageNet 26.5M 67.1
BiSeNet1[27] ImageNet 5.8M 65.6
BiSeNet2[27] ImageNet 49.0M 68.7
DABNet[23] No 0.8M 66.4
FPENet[25] No 0.4M 65.4
DFANet[24] ImageNet 7.8M 64.7
SwiftNet[26] No 11.8M 63.3
SwiftNet[26] ImageNet 11.8M 72.6
FC-HarDNet[55] No 1.4M 62.9

DDPNet No 1.1M 67.3
DDPNet Cityscapes 1.1M 73.8

replacing the initial block with a 3× 3 convolution and removing the last dense
block. As can be seen from Table 5, DDPNet achieves impressive results with
only 1.1 M parameters. Besides, we investigate the effect of the pre-training
datasets on CamVid. The last two rows of Table 5 show that pre-training on
Cityscapes can significantly improve the accuracy over 6.5% (67.3% → 73.8%).

5 Conclusion

In this paper, we propose a novel Dense Dual-Path Network (DDPNet) for real-
time semantic segmentation on high-resolution images. The proposed DDPNet
achieves a significant better accuracy with a comparable speed and fewer pa-
rameters than most real-time semantic segmentation methods.
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