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Abstract. Facial action units (AUs) recognition is a multi-label clas-
sification problem, where regular spatial and temporal patterns exist
in AU labels due to facial anatomy and human’s behavior habits. Ex-
ploiting AU correlation is beneficial for obtaining robust AU detector
or reducing the dependency of a large amount of AU-labeled samples.
Several related works have been done to apply AU correlation to model’s
objective function or the extracted features. However, this may not be
optimal as all the AUs still share the same backbone network, requir-
ing to update the model as a whole. In this work, we present a novel
AU Relation Embedded deep model (RE-Net) for AU detection that
applies the AU correlation to the model’s parameter space. Specifically,
we format the multi-label AU detection problem as a domain adaptation
task and propose a model that contains both shared and AU specific pa-
rameters, where the shared parameters are used by all the AUs, and the
AU specific parameters are owned by individual AU. The AU relationship
based regularization is applied to the AU specific parameters. Extensive
experiments on three public benchmarks demonstrate that our method
outperforms the previous work and achieves state-of-the-art performance
on both AU detection task and AU intensity estimation task.

1 Introduction

Automatic facial action units (AUs) recognition has attracted increasing atten-
tion in recent years due to its wide-ranging applications in affective computing,
social signal processing, and behavioral science. Based on the Facial Action Cod-
ing System (FACS) [1], action units which refer to the contraction or relaxation
of one or more facial muscles, have been used to infer facial behaviors for emotion
analysis.

Automatic AU recognition is a challenging task due to many factors, such as
image conditions, size of database, and individual differences. Although large-
scale training data can facilitate the learning process for AU classification, data
collection and AU annotation are extremely labor-intensive, thus being a time-
consuming and error prone process. Fortunately, behavior research shows that
there exist regular spatial and temporal patterns in AU labels due to facial
anatomy and human’s behavior habits. For example, persons can not pull lip
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Fig. 1. Coupling effect of multiple AUs caused by a variety of facial expressions.

corner (AU12) and depress lip corner (AU15) at the same time due to the con-
straint of facial anatomy; inner brow raiser (AU1) and outer brow raiser (AU2)
are both related to the muscle group Frontalis, most people cannot make a facial
movement of AU1 without AU2, and vice versa. Fig.1 shows the coupling effect
of multiple AUs caused by a variety of facial expressions. Such regular spatial
and temporal patterns embedded in AU labels could be used as a constraint for
AU detection.

Inspired by the above observations, there has been extensive research by
exploiting AU relations to facilitate the learning process of AU classifiers. For
example, the existing works reported in [2][3][4][5] have proposed to apply graph-
ical model to capture the dependencies among AUs through its structure and
conditional probabilities. Alternatively, recent works by Benitez-Quiroz et al. [6],
Zhang et al. [7] and Peng et al. [8][9] proposed to introduce the dependencies
among AUs into the objective function, and Zhao et al. [10][11] exploited the
relationship among AUs and active image patches. To further utilize the AU
relationships, Corneanu et al. [12], Li et al. [13], and Shao et al. [14] proposed
to extract robust features by adding the AU relationship based graph neural
networks to the extracted features.

However, the existing AU relationship modeling (at the objective function

level, feature level, and image patch level) may not be optimal. First, most of the
works that model the AU relationship as a prior rule into the classification pre-
dictions are usually not end-to-end trainable; Second, all the AUs still share the
same backbone network, which is updated as a whole, thus it may not be the op-
timal way to utilize the AU relationship. As a matter of fact, the AU relationship
can not be effectively used to update the model’s parameters because the AU
relationship is only involved into the calculation of the loss function. Moreover,
in order to apply an AU-relation based graph to the extracted features, existing
methods have applied a cropping operation to crop the AU-related region for
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individual AU feature extraction, which may lead to the information loss due to
the neglect of AU correlation. Importantly, all shared parameters of the model
may not work equally well for different AUs.

Taking into account the shortcomings, we propose a new end-to-end trainable
AU relation embedded deep model (RE-Net) that integrates the AU relation-
ship into the model’s parameter space. Specifically, instead of sharing the same
backbone, different AUs contain both shared and AU-specific model parameters,
in which the shared parameters are shared by all the AUs, and the AU-specific
parameters are AU dependent. An AU relationship graph is constructed from
the AU labels in the training dataset with AU as vertex and relationship as edge,
which then used as a regularization of the AU-specific parameters. The benefits
of using both shared and AU-specific model parameters with AU relationship
are three-fold. First, by splitting the backbone parameters into both shared and
AU-specific parts, the deep model is able to get updated both globally (through
updating shared parameters for all the AUs) and locally (through updating AU-
specific parameters for individual AU). Second, unlike existing methods that
may lose information by cropping the facial region for individual feature extrac-
tion, our proposed method extracts different features from the input image for
individual AU detection (as shown in Fig.3). Third, optimizing the AU-specific
parameters by taking the AU relationship into account, our method is beneficial
for recognition of AUs with less occurrence rate, potentially being capable of
recognition of new AUs as well (more details in Section 4.6).

The contributions of this paper can be summarised as below:

– Built upon the adaptive batch normalization method, we format the multi-
label AU detection problem as a domain adaptation problem with AU rela-
tion embedded, and propose a framework which contains both shared and
AU-specific parameters.

– We conduct extensive experiments on the widely used datasets for both AU
recognition and AU intensity estimation, and demonstrate the superiority of
the proposed method over the state-of-the-art methods.

– Ablation study shows our model is extendable to recognize new AUs and
robust to the scenario of data imbalance.

2 Related works

AU recognition is a multi-label classification problem, where multiple AUs may
be present simultaneously, on the other hand, some AUs just can not happen
at the same time. Exploiting AU relations has the potential to facilitate the
learning process of AU classifiers.

Generative models are used to model the joint distribution. Li et al.[2] pro-
posed to learn a dynamic Bayesian networks to model the relationships among
AUs. Wang et al.[3] used restricted Boltzman Machine to capture both local
pair-wise AU dependencies and global relationships among AUs. Tong et al.[4]
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proposed Bayesian Networks to model the domain knowledge (AU dependen-
cies) through its structure and conditional probabilities, and experimental re-
sults demonstrated that the domain knowledge can be used to improve param-
eter learning accuracy, and also reduced the dependency on the labeled data.
Similar idea was also used in [5], which presents a learning algorithm to learn
parameters in Bayesian networks under the circumstances that the training data
is incomplete or sparse or when multiple hidden nodes exist.

On the other hand, discriminative approaches introduce the dependencies
among AUs into the objective function; Zhao et al.[10] proposed a joint-patch
and multi-label (JPML) method to exploit dependencies among AUs and facial
features, which used the group sparsity and positive and negative AU correla-
tions as the constraints to learn multiple AU classifiers. Zhao et al. [11] proposed
a unified Deep Region and Multi-label Learning (DRML) network that simul-
taneously addresses both the strong statistical evidence of AU correlations and
the sparsity of active AUs on facial regions. Peng and Wang [8] utilized the
probabilistic dependencies between expressions and AUs as well as dependencies
among AUs to train a model from partially AU-labeled and fully expression la-
beled facial images. Peng and Wang [9] used the dual learning method to model
the dependencies between AUs and expressions for AU detection. By leveraging
prior expression-independent and expression-dependent probabilities on AUs,
Zhang et al. [7] proposed a knowledge-driven method for jointly learning multi-
ple AU classifiers without AU annotations.

Instead of applying AUs dependencies into the objective function, some works
also exploit using AU correlation as constraint for feature representation learn-
ing. Corneanu et al.[12] proposed a deep structured inference network (DSIN) to
deal with patch and multi-label learning for AU recognition, which first extract
local and global representations, and then capture AU relations by passing infor-
mation between predictions using a graphical models. However, the relationship
inference is still limited to the label level. Li et al. [13] proposed a AU seman-
tic relationship embedded representation learning framework, which incorporate
AU relationships as an extra guidance for the representation learning. A Gated
Graph Neural Network (GCNN) is constructed using a knowledge-graph from
AU correlation as its structure, and features extracted from facial regions as its
nodes. As a result, the learned feature involves both the appearance and the AU
relationship. A similar idea is also used in [14] that captures spatial relationships
among AUs as well as temporal relations from dynamic AUs.

However, applying AU relationship to the objective function or the extracted
features may not be optimal, so we propose to exploit the AU relationship in
the model’s parameter space.

3 Proposed method

3.1 Problem Formulation

The primary objective of our methodology is to learn a model with both shared
and AU-specific parameters. To this end, our model seeks to learn the AU-specific
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parameters in order to satisfy the AU correlation, and the shared parameters for
AU detection. Formally, Let us consider C AUs to recognize. A graph G = (V, E),
where V ⊂ C represents the set of vertices corresponding to AUs and E ⊆ V ×V
the set of edges, i.e., relations between AUs. In addition, we define an edge
weight W : E → R that measures the relation between two AUs. The network
parameters are represented as θ = {θs, θc}Cc=1 ,where θs represents the shared
parameters for all AUs, while θc = (γc, βc) represents the AU specific parame-
ters owned by individual AU. Our goal is to learn a model with parameters of
{θs, θc}Cc=1 by minimizing the supervised loss subject to the graph G among AU
specific parameters {θc}Cc=1.

3.2 Preliminary: Batch Normalization

A standard Batch Normalization (BN)[15] layer normalizes its input according
to:

BN(x) = γ · x− µ√
σ2 + ǫ

+ β (1)

where µ, σ2 are the estimated mean and variance of x; γ, β are learnable scale and
bias parameters respectively, and ǫ is a small constant used to avoid numerical
instabilitie-s. For simplicity, the channel dimension and spatial location have
been omitted.

Recent works[16][17][18][19] have shown the effectiveness of extending batch-
normalization to address domain adaptation tasks. In particular, these works
rewrite each BN to take into account domain-specific statistics. For example,
given an AU c ∈ C, a B̂N layer differs from the standard BN by including a
specific AU information:

B̂N(x, c) = γ · x− µc√
σ2
c + ǫ

+ β (2)

where {µc, σ
2
c} are the mean and variance statistics estimated from x conditioned

on AU c. In other words, for each input x, the normalization is conditioned on
which AU we aim to recognize. Since we do not want to share the scale and bias
parameters across different AUs, so we include them within the set of private
parameters, and rewrite the B̂N(x, c) as below:

B̂N(x, c) = γc ·
x− µc√
σ2
c + ǫ

+ βc (3)

here, {γc, βc} are the learnable AU specific parameters.

3.3 AU Relationship Graph

AU relationship graph G = (V, E) represents the correlations between each pair
of AUs. Each node in graph represents a corresponding AU. Given a dataset
with C AUs, the constructed graph is formed by |C| nodes.
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Fig.2 shows the relation matrix studied on the datasets. Following previous
work [14] [13] , we compute the Pearson correlation coefficient (PCC) between
each pair of the j-th and i-th AUs in the dataset, denoted as ωi,j . Unlike [14]
[13] that convert the AU correlations to positive or negative relationship based
on two thresholds, ignoring the correlations between the two thresholds and
also the strength of correlation, we use the original PCC as ωi,j , so both the
positive/negative relationship and strength are considered.

3.4 AU Recognition with Graph Constraint

When training the model, B̂N(x, c) allows to optimize the AU-specific scale γc
and bia βc parameters, however, it does not take into account the presence of
the relationship between the AUs, as imposed by the AU correlation matrix. As
used in [16], one possible way to include the AU correlation matrix within the
optimization procedure is to modify Eq(3) as follows:

B̂N(x, c,G) = γG
c · x− µc√

σ2
c + ǫ

+ βG
c (4)

where, γG
c and βG

c are calculated as below:

γG
c =

∑
k∈C

ωc,k · γk∑
k∈C

ωc,k

; βG
c =

∑
k∈C

ωc,k · βk∑
k∈C

ωc,k

; (5)

ωc,k is set as 1 if c = k, otherwise, ωc,k represents the calculated PCC from
training dataset. By doing this, the calculation of any AU-specific scale and bias
parameters are influenced by other AUs with graph edge as the weight.

A cross-entropy loss function is used for AU recognitionn:

Lθ = − 1

N

N∑

i=1

∑

c∈C

−
[
yTi,c × log(ȳi,c) + (1− yi,c)

T × log(1− ȳi,c)
]

(6)

During training, we have two different strategies we can use:

– for each batch, we run the model |C| times to calculate the loss for each AU,
and then update the model’s parameters by back-propagating the sum of all
the losses;

– for each batch, randomly select a single AU for optimization;

the first training method optimize the shared and all the AU specific parameters
together, which may be beneficial for stable training, but the training procedure
will be memory-intensive and time consuming. On the other hand, the second
training strategy will not add extra burden by optimizing randomly selected
single AU for each input batch, so the model can be trained as fast as the
baseline model. Through experiments, we find that there is no big difference in
performance as using two training strategies, so the second training method is
of course preferred.
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BP4D DISFA BP4D+

Fig. 2. The relation matrix calculated by PCC on three datasets. (+,−) represents the
corresponding positive and negative correlations between AU pairs; the absolute value
means the strength of correlations. Zoom in for more details.

4 Experiments

In this section, the proposed method is first evaluated on three benchmark
datasets: BP4D [20], DISFA [21] and BP4D+ [22] for AU recognition task, then
applied to AU intensity estimation task in both BP4D and DISFA datasets.

4.1 Data

BP4D [20] is a widely used dataset for evaluating AU detection performance.
The dataset contains 328 2D and 3D videos collected from 41 subjects (23 females
and 18 males) under eight different tasks. As mentioned in the dataset, the most
expressive 500 frames (around 20 seconds) are manually selected and labeled
for AU occurrence from each one-minute long sequence, resulting in a dataset of
around 140,000 AU-coded frames. For a fair comparison with the state-of-the-art
methods, a three-fold subject-exclusive cross validation is performed on 12 AUs.

DISFA [21] is another benchmark dataset for AU detection, which contains
videos from left view and right view of 27 subjects (12 females, 15 males). 12
AUs are labeled with AU intensity from 0 to 5, resulting in around 130,000
AU-coded images. Following the experimental setting in [23], 8 of 12 AUs with
intensity greater than 0 are used from the left camera. F1-score is reported based
on subject-exclusive 3-fold cross-validation.

BP4D+[22] is a multimodal spontaneous emotion dataset, where high-resolution
3D dynamic model, high-resolution 2D video,thermal (infrared) image and physi-
ological data were acquired from 140 subjects. There are 58 males and 82 females,
with ages ranging from 18 to 66 years old. Each subject experienced 10 tasks cor-
responding to 10 different emotion categories, and the most facially-expressive
20 seconds from four tasks were AU-coded from all 140 subjects, resulting in a
database contains around 192,000 AU-coded frames. Following a similar setting
in BP4D dataset, 12 AUs are selected and performance of 3-fold cross-validation
is reported.
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4.2 Evaluation Metrics

For the AU recognition task, we use the F1-score for comparison study with the
state of the arts. F1-score is defined as the harmonic mean of the precision and
recall. As the distribution of AU labels are unbalanced, F1-score is a preferable
metric for performance evaluation.

For the AU intensity estimation task, we use the Intra-class Correlation
ICC(3,1)[24], which is commonly used in behavioral sciences to measure agree-
ment between annotators (in our case, the AU intensity levels between prediction
and ground-truth). We also report the Mean Absolute Error (MAE), the absolute
differences between target and prediction, commonly used for ordinal prediction
tasks.

4.3 Implementation details

All the face images are aligned and cropped to the size of 256x256 using affine
transformation based on the provided facial landmarks, randomly cropped to
224x224 for training, and center-cropping for testing. Random horizontal flip is
also applied during training.

To analyze the impact of our proposed method, we use the ResNet-18[25]
architecture as baseline. In particular, the default batch normalization layer is
replaced with B̂N(x, c,G) as described in Eq(4). To reduce the training complex-
ity, a single AU is randomly selected to optimize for each training batch images,
and use all of the AUs for validation and testing. We use an Adam optimizer
with learning rate of 0.0001 and mini-batch size 100 with early stopping. We
implement our method with the Pytorch[26] framework and perform training
and testing on the NVIDIA GeForce 2080Ti GPU.

4.4 AU detection results

We compare our method to alternative methods, including Liner SVM (LSVM)
[27], Joint Patch and Multi-label (JPML)[10], Deep Region and Multi-label
(DRML) [11], Enhancing and Cropping Network (EAC-net)[23], Deep Struc-
ture Inference Network (DSIN) [12], Joint AU Detection and Face Alignment
(JAA) [28],Optical Flow network (OF-Net) [29], Local relationship learning with
Person-specific shape regularization (LP-Net) [30], Semantic Relationships Em-
bedded Representation Learning ( SRERL) [13] and ResNet18.

Table.1 shows the results of different methods on the BP4D database. It can
be seen that our method outperforms all of the SOTA methods. The ResNet18
baseline achieves 59.6% F1-score, and a similar baseline performance is also
reported in [31] [32]. Compared with the patch or region-based methods: JPML
and DRML, our method achieves 19.6% and 17.2% higher performance on BP4D
database. Compared with JAA and LP-Net, which used Facial landmarks as a
joint task or regularization for AU detection, our method still shows 5.5% and
4.5% improvement in terms of F1-score on the BP4D database. It worth to note
that both our method and LP-Net use ResNet as the stem network.
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Table 1. F1 scores in terms of 12 AUs are reported for the proposed method and
the state-of-the-art methods on the BP4D database. Bold numbers indicate the best
performance; bracketed numbers indicate the second best.

Method AU1 AU2 AU4 AU6 AU7 AU10 AU12 AU14 AU15 AU17 AU23 AU24 Avg

LSVM [27] 23.2 22.8 23.1 27.2 47.1 77.2 63.7 64.3 18.4 33.0 19.4 20.7 35.3

JPML[10] 32.6 25.6 37.4 42.3. 50.5 72.2 74.1 65.7 38.1 40.0 30.4 42.3 45.9

DRML[11] 36.4 41.8 43.0 55.0 67.0 66.3 65.8 54.1 33.2 48.0 31.7 30.0 48.3

EAC-net[23] 39.0 35.2 48.6 76.1 72.9 81.9 86.2 58.8 37.5 59.1 35.9 35.8 55.9

DSIN [12] [51.7] 40.4 56.0 76.1 73.5 79.9 85.4 62.7 37.3 [62.9] 38.8 41.6 58.9

JAA [28] 47.2 44.0 54.9 [77.5] 74.6. 84.0 86.9 61.9 43.6 60.3 42.7 41.9 60.0

OF-Net [29] 50.8 [45.3] [56.6] 75.9 75.9 80.9 [88.4] 63.4 41.6 60.6 39.1 37.8 59.7

LP-Net [30] 43.4 38.0 54.2 77.1 76.7 83.8 87.2 63.3 [45.3] 60.5 48.1 54.2 61.0

SRERL [13] 46.9 [45.3] 55.6 77.1 78.4 83.5 87.6 63.9 52.2 63.9 [47.1] [53.3] [62.9]

ResNet18 44.5 45.1 51.1 81.2 76.8 [87.6] 86.8 [67.9] 44.2 57.5 42.0 30.8 59.6

Ours 57.7 59.0 66.9 76.3 [77.0] 88.9 89.8 70.9 42.0 62.8 44.8 49.3 65.5

DSIN and SRERL are the closely related methods. Both DSIN and our
method are able to predict label for individual AU, while SRERL and our method
are similar in concept to learn robust feature for individual AU. The main differ-
ence lies in the facts: first, the CNN layers are still shared by all the AUs in both
DSIN and SRERL, and the AU correlation is applied to the objective function or
the extracted feature; second, DSIN needs incremental training and SRERL uses
facial landmarks to crop the AU region for individual feature extraction, which
may lead to information loss. Our end-to-end trainable method contains both
shared and AU-specific parameters, so features can be extracted for individual
AU by AU-relation guided computation of AU-specific parameters. The AU re-
lationship is directly applied to the model’s parameter space, and the 6.6% and
2.6% higher F1-scores demonstrate the effectiveness of applying AU relationship
into the model’s parameter space.

Experimental results on the DISFA database are reported in Table.2. As
compared to ResNet18, our method shows 4.6% improvement. Note that, both
JAA and LP-Net use facial landmarks as either a joint task or regularization, and
SRERL uses AU intensity equal or greater than 2 as positive example, while our
method and other methods use AU intensity greater than 0 as positive example,
and our method still shows comparable result.

Our method is also evaluated on the BP4D+ database, which contains more
AU-labeled frames from more subjects, the results are shown in Table.3. Our
method achieves 4.0% improvement in F1-score when compared to ResNet18.

4.5 AU Intensity Estimation

Action Units recognition aims to detect the occurrence or absence of AUs; while,
AU intensity is used to describe the extent of muscle movement, which presents
detailed information of facial behaviours. AU intensity is quantified into six-point
ordinal scales in FACS. Compared to AU detection, AU intensity estimation
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Table 2. F1 scores in terms of 8 AUs are reported for the proposed method and the
state-of-the-art methods on DISFA dataset. Bold numbers indicate the best perfor-
mance; bracketed numbers indicate the second best. [* means the method used AU

intensity greater or equal to 2 as positive example.]

Method AU1 AU2 AU4 AU6 AU9 AU12 AU25 AU26 Avg

LSVM [27] 10.8 10.0 21.8 15.7 11.5 70.4 12.0 22.1 21.8

DRML [11] 17.3 17.7 37.4 29.0 10.7 37.7 38.5 20.1 26.7

EAC-net [23] 41.5 26.4 66.4 50.7 80.5 89.3 88.9 15.6 48.5

DSIN [12] 42.4 39.0 [68.4] 28.6 46.8 70.8 90.4 42.2 53.6

JAA [28] * [43.7] [46.2] 56.0 41.4 44.7 69.6 88.3 58.4 [56.0]*

OF-Net [29] 30.9 34.7 63.9 44.5 31.9 [78.3] 84.7 [60.5] 53.7

LP-Net [30]* 29.9 24.7 72.7 46.8 49.6 72.9 [93.8] 65.0 56.9*

SRERL [13] * 45.7 47.8 59.6 47.1 45.6 73.5 84.3 43.6 55.9*

ResNet18 31.3 33.7 48.7 45.5 33.3 68.6 94.3 48.1 50.4

Ours 38.8 31.1 57.2 [50.1] [50.2] 75.5 86.6 50.6 55.0

Table 3. F1 scores in terms of 12 AUs are reported on the BP4D+ dataset.

Method AU1 AU2 AU4 AU6 AU7 AU10 AU12 AU14 AU15 AU17 AU23 AU24 Avg

ResNet18 34.6 34.6 33.1 84.9 87.0 90.0 88.9 80.4 53.3 38.7 54.7 13.4 57.8

Ours 37.6 33.7 37.1 85.8 89.2 90.7 89.3 80.6 63.0 46.0 55.2 33.5 61.8

could provide more detailed information for facial behaviour analysis, but it is
also a more challenging task, as the subtle difference among neighbor intensities.

Fortunately, a similar relationship also exists among AU intensity. We slightly
modify the model for the AU intensity estimation task in both BP4D and DISFA
datasets. First, AU intensity relationship is constructed from the AU intensity
labels in the training dataset; second, the output of the model is set as six, the
number of intensity levels. The results are shown in Table.4 and Table.5. Our
method achieves the best average performance on both databases under two
evaluation metrics, except ICC(3,1) on the BP4D database, where our method
shows comparable result over the state-of-the-art methods.

4.6 Ablation study

Effectiveness of RE-Net: First, we provide evidences to support our claim
that applying AU relation to the model’s parameters space is more effective than
applying to image patches or deep features. JPML[10] and DRML[11] model the
AU relation with active image patches, while DSIN[12] and SRERL[13] applied
the AU relation to the extracted deep features. As shown in Table.7, our method
applies the AU relation to the parameter space of the model, which achieves
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Table 4. ICC(3,1) and MAE scores in terms of 5 AUs are reported for the proposed
method and the state-of-the-art methods on BP4D dataset. Bold numbers indicate the
best performance; bracketed numbers indicate the second best.

Method AU6 AU10 AU12 AU14 AU17 Avg.

IC
C

VGP-AE[33] 0.75 0.66 0.88 0.47 [0.49] 0.65
CCNN-IT[34] 0.75 0.69 0.86 0.40 0.45 0.63
OR-CNN[35] 0 .71 0.63 [0.87] 0.41 0.31 0.58
2DC[36] [0.76] 0.71 0.85 0.45 0.53 [0.66]
VGG16[37] 0.63 0.61 0.73 0.25 0.31 0.51
Joint [38] 0.79 [0.80] 0.86 [0.54] 0.43 0.68

Ours 0.54 0.88 0.77 0.70 0.33 0.64

M
A
E

VGP-AE [33] 0.82 1.28 0.70 1.43 0.77 1.00
CCNN-IT[34] 1.23 1.69 0.98 2.72 1.17 1.57
OR-CNN[35] 0.88 1.12 0.68 1.52 0.93 1.02
2DC[36] [0.75] 1.02 0.66 [1.44] 0.88 0.95
VGG16[37] 0.93 1.04 0.91 1.51 1.10 1.10
Joint [38] 0.77 [0.92] [0.65] 1.57 0.77 [0.94]
Ours 0.48 0.47 0.64 0.67 0.99 0.65

Table 5. ICC(3,1) and MAE scores in terms of 12 AUs are reported for the proposed
method and the state-of-the-art methods on DISFA dataset. Bold numbers indicate
the best performance; bracketed numbers indicate the second best.

Method AU1 AU2 AU4 AU5 AU6 AU9 AU12 AU15 AU17 AU20 AU25 AU26 Avg.

IC
C

VGP-AE[33] 0.37 0.32 0.43 0.17 0.45 0.52 0.76 0.04 0.21 0.08 0.80 0.51 0.39
CCNN-IT [34] 0.18 0.15 0.61 0.07 0.65 [0.55] [0.82] 0.44 [0.37] 0.28 0.77 [0.54] 0.45
OR-CNN [35] 0.33 0.31 0.32 0.16 0.32 0.28 0.71 [0.33] 0.44 [0.27] 0.51 0.36 0.36
LT-all [39] 0.32 0.37 0.41 0.18 0.46 0.23 0.73 0.07 0.23 0.09 0.80 0.39 0.36
2DC[36] 0.70 [0.55] [0.69] 0.05 [0.59] 0.57 0.88 0.32 0.10 0.08 0.90 0.50 [0.50]
BORMIR[40] 0.19 0.24 0.30 0.17 0.38 0.18 0.58 0.15 0.22 0.08 0.70 0.14 0.28
KJRE [41] 0.27 0.35 0.25 0.33 0.51 0.31 0.67 0.14 0.17 0.20 0.74 0.25 0.35
CFLF[42] 0.26 0.19 0.45 [0.35] 0.51 0.35 0.70 0.18 0.34 0.20 0.81 0.51 0.40
Ours [0.59] 0.63 0.73 0.82 0.49 0.50 0.73 0.29 0.21 0.03 0.90 0.60 0.54

M
A
E

VGP-AE[33] 1.02 1.13 0.92 0.10 0.67 [0.19] 0.33 0.46 0.58 0.19 0.69 0.65 0.57
CCNN-IT[34] 0.87 0.63 0.86 0.26 0.73 0.57 0.55 0.38 0.57 0.45 0.81 0.64 0.61
OR-CNN[35] 0.41 0.44 0.91 0.12 0.42 0.33 0.31 0.42 0.35 0.27 0.71 0.51 0.43
LT-all [39] 0.44 0.39 0.96 [0.07] 0.41 0.31 0.40 [0.17] [0.33] [0.16] 0.61 0.46 0.39
2DC[36] [0.32] 0.39 [0.53] 0.26 0.43 0.30 [0.25] 0.27 0.61 0.18 [0.37] 0.55 0.37
BORMIR[40] 0.87 0.78 1.24 0.58 0.76 0.77 0.75 0.56 0.71 0.62 0.89 0.87 0.78
KJRE [41] 1.02 0.92 1.86 0.70 0.79 0.87 0.77 0.60 0.80 0.72 0.96 0.94 0.91
CFLF[42] [0.32] [0.28] 0.60 0.12 [0.35] 0.27 0.42 0.18 0.29 [0.16] 0.53 0.39 [0.32]
Ours 0.16 0.08 0.40 0.02 0.23 0.12 0.22 0.14 0.48 0.12 0.27 0.39 0.22

Table 6. F1 scores in terms of 12 AUs are reported for the proposed method on the
BP4D dataset. Colored AU is removed during training, and only used for testing.

AU1 AU2 AU4 AU6 AU7 AU10 AU12 AU14 AU15 AU17 AU23 AU24 Avg

44.1 69.0 73.8 80.2 62.2 88.1 89.2 38.5 53.7 60.6 27.6 68.2 62.9

89.9 77.5 53.6 66.9 39.7 70.4 81.5 52.2 86.6 45.7 63.8 37.3 63.6
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the highest F1-score (65.5%), demonstrating the effectiveness of our proposed
method.

Second, to show the effectiveness of Eq.(4) and Eq.(5), we set scale =
1, bias = 0 in Eq.(4). Since then RE-Net is equivalent to the vanilla Resnet18,
by comparing our method and the vanilla Resnet18, we can see a 5.9% improve-
ment in F1-score, which demonstrates the effectiveness of Eq.(4,5) in improving
the performance of AU recognition.

Third, the Pearson correlation coefficient is computed in each dataset and
fixed in Eq.(5), which could be biased, as different datasets vary in subjects and
tasks. To further investigate this issue, we try to learn the AU relation along
with AU detection by setting the AU relation graph G = (V, E) as learnable
parameters. Specifically, the ωi,j of AU relation G is first randomly initialized,
and then updated through training by minimizing the loss function in Eq.(6).
As indicated by Ours+learnable in Table.7, a 63.7% F1-score is achieved.
Although the performance is not as good as ours with fixed AU relation, its
performance is 4.1% higher than the Resnet18 baseline, and outperforms the
state-of-the-art methods. More importantly, it has the potential to learn a gen-
eral dataset-independent AU relation.

Table 7. F1-scores of different methods with AU relation are reported on the BP4D
dataset. Learnable indicates the AU relation is learned through training rather than a

fixed factor.

Method AU relation applied to: Avg

JPML [10] image patch 45.9

DRML [11] image patch 48.3

DSIN [12] deep features 58.9

SRERL[13] deep features 62.9

ResNet18 none 59.6

Ours model’s parameters 65.5

Ours+ learnable model’s parameters [63.7]

Imbalance issue: Most AU databases are imbalanced. Take BP4D as example,
the occurrence rate of AU6, AU7, AU10, AU12 and AU14 are almost 2-3 times
more than the others. To deal with the imbalanced issue, most works apply
a data augmentation method (i.e.,duplication) to increase the frames of AUs
with less occurrence rate. To evaluate the impact of data augmentation, we
duplicate the AUs (AU1, AU2, AU15, AU23 and AU24) one time if a positive
label is observed in the training dataset. As we can see in Table.8, ResNet18
achieves 1.3% improvement by using the augmented training dataset; while our
method shows only 0.1% difference with/without data augmentation, indicating
the effectiveness of our proposed method in handling the data imbalance issue.
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Table 8. F1-score of ablation study for 12 AUs on the BP4D database. DA: data

augmentation.

Method AU1 AU2 AU4 AU6 AU7 AU10 AU12 AU14 AU15 AU17 AU23 AU24 Total

ResNet18 w/o DA 44.5 45.1 51.1 81.2 76.8 87.6 86.8 67.9 44.2 57.5 42.0 30.8 59.6
ResNet18 + DA 49.4 53.0 58.0 79.2 72.7 86.0 89.6 68.1 34.4 65.0 42.3 33.5 60.9

Ours + DA 61.9 50.3 62.3 80.0 73.7 87.3 90.3 70.4 42.0 67.4 47.3 55.5 65.6
Ours w/o DA 57.7 59.0 66.9 76.3 77.0 88.9 89.8 70.9 42.0 62.8 44.8 49.3 65.5

Recognize New AU: Inspired by recent works[17][18][19][16] that extend
batch-normalization to address domain adaptation tasks, we conduct two ini-
tial experiments to verify the ability of recognizing new AU. In Table.6, the
label of the colored AU is selected to remove during training. During testing,
the AU-specific parameters (γ, β) are calculated by using Eq.(4) and Eq.(5).
As we can see in Table.6, transferring the AU-specific parameters to the new
AU, our method shows comparable results in recognizing the unseen AU23 and
AU24.

Feature Visualization: To provide insight into the feature space for individual
AUs, we first extract the features for the testing images on the BP4D dataset
using our proposed method and the ResNet18. Fig.3 shows the t-SNE [43] em-
bedding of frames, which are colored in terms of AU4, AU10, AU12 and AU24
(different colors means presence or absence of a specific AU). ResNet18 extracts
a single representation for each input image for multiple AUs detection, hence
the shapes of t-SNE embedding are all the same. On the contrary, our method
extracts different features for individual AU, therefore the shapes of t-SNE em-
bedding are different in AU4, AU10, AU12 and AU24. By comparing the AU
related projection, we may find that the features extracted for individual AU by
our method are more robust than the features extracted by ResNet18, for exam-
ple, the green points of AU4 and AU24, which are more challenging to recognize
than AU10 and AU12, are more concentrated in our method than ResNet18.

4.7 Conclusion

In this paper, we format the multi-label AU detection problem as a domain
adaptation problem, and propose a new AU relationship embedded deep model
(RE-Net) for AU detection, which contains both shared and AU-specific param-
eters. The AU relation is modeled in the model’s AU-specific parameters space,
therefore, the deep model can be optimized effectively for individual AU. We
also apply a new training strategy that will not add extra burden for the model
training. Extensive experiments are conducted on the widely used datasets for
both AU recognition and AU intensity estimation, demonstrating the superiority
of the proposed method over the state-of-the-art methods.

One concern of the proposed method is the running efficiency, as the model
needs to be run multiple times for detecting different AUs. We measure the
inference time of our method with 12 AUs on the NVIDIA GeForce 2080Ti
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AU  12 AU 24AU  10AU  4

Ours

ResNet18

Fig. 3. A visualization of t-SNE embedding using deep features on the BP4D database
by coloring each frame from testing images in terms of AU4, AU10, AU12 and AU24
(blue and green means the absent and occurrence of individual AU respectively). Best
viewed in color.

GPU, which is around 5.4ms/image, equivalent to 183 FPS (frame per second).
Although the processing speed is much slower than the ResNet18 baseline, our
method has achieved a much higher performance, and the 183 FPS processing
speed is more than enough for the real-time processing requirement.

Our future work is to improve the model’s efficiency as well as to extend it
for detection of new AUs.
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