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Abstract. Smiles play a vital role in the understanding of social in-
teractions within different communities, and reveal the physical state of
mind of people in both real and deceptive ways. Several methods have
been proposed to recognize spontaneous and posed smiles. All follow a
feature-engineering based pipeline requiring costly pre-processing steps
such as manual annotation of face landmarks, tracking, segmentation of
smile phases, and hand-crafted features. The resulting computation is ex-
pensive, and strongly dependent on pre-processing steps. We investigate
an end-to-end deep learning model to address these problems, the first
end-to-end model for spontaneous and posed smile recognition. Our fully
automated model is fast and learns the feature extraction processes by
training a series of convolution and ConvLSTM layer from scratch. Our
experiments on four datasets demonstrate the robustness and generaliza-
tion of the proposed model by achieving state-of-the-art performances.

1 Introduction

Facial expression recognition is a process of identifying human emotion from
videos, audios, and even the texts. Understanding facial expressions is essential
for various forms of communication, such as the interaction between humans and
machines. Also, the development of facial expression recognition contributes to
the area of market research, health care, video game testings, and so on [1].
Meanwhile, people tend to hide their natural expression in different environ-
ments. Recognising spontaneous and posed facial expressions are necessary for
social interaction analysis [2] because it can be deceptive and convey diverse
meanings. The smile is the most common and easily expressible facial display,
but still very hard to recognise. Because of the recurrence and cultural reasons,
the study of cognitive and computer sciences broadly investigates the recogni-
tion of spontaneous (genuine/real/felt) and posed (fake/false/deliberate) smiles
[2–14].

Previous efforts on recognizing spontaneous and posed smiles mostly follow a
feature-based approach where machine learning (ML) models perform a binary
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Fig. 1: Overview of different spontaneous smile recognition models. (left) Given
a video as input, previous approaches [2, 4–7, 9] perform several manual or semi-
automatic prepossessing steps like facial landmark detection [2, 4–7], tracking
[2, 4–7], smile phases segmentation [2, 5], and so on. across frames to calculate
hand-engineered feature vectors (D-marker [2, 4, 15], HoG [5, 9, 16]), then feed
the features to a learning model (SVM) for classification. The costly interme-
diate steps significantly increase the computation and limit the fully automatic
process. (right) Our proposed end-to-end architecture takes video frames as
input and recognizes spontaneous and posed smile by a simple forward pass.

classification based on the extracted visual features from a smile video [2–13,
16, 15]. We identify several limitations of such approaches. (a) Manual annota-
tion: Many methods require manual annotation of facial landmarks for the first
frame of a video [2, 4–7, 15]. It limits the automation of the recognition process.
(b) Landmark tracking : Methods need to track face landmarks throughout the
video [2, 4–7, 15]. It is a computationally expensive process, and the performance
of the recognition broadly depends on it. (c) Segmentation of temporal phases:
Some methods extract features from temporal stages of a smile (i.e., onset, apex,
and offset) separately [2, 5]. Automatic segmentation of a smile can be erroneous
because, in many smile videos, these phases are not apparent, and methods need
to assign zero values in the feature list to satisfy the constant length of the fea-
ture set. (d) Limiting the maximum length of a smile: Most traditional machine
learning methods cannot handle the dynamic length of time series data. Tradi-
tional methods need to represent each smile by a fixed length. It decreases the
robustness of the system because, in a real application, a smile video may come
with variable length. (e) Hand-engineered features: Methods depend on hand-
crafted features like D-marker [2, 4, 15], Histogram of Oriented Gradients (HoG)
[5, 9, 16], Local Binary Pattern (LBP) like feature on region of interest [5, 16].
The selection of such features sometimes requires extensive research and expert
domain-specific knowledge [17]. Because of the issues mentioned above, tradi-
tional methods become slow, limits the automation process, and achieves poor
generalization ability. Moreover, the overall performance of recognition broadly
depends on the availability of many independent pre-processing steps.
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Here, we propose an approach that elegantly solves the problems and encap-
sulates all the broken-up pieces of traditional techniques into a single, unified
deep neural network called ‘RealSmileNet ’. Our method is end-to-end trainable,
fully automated, fast, and promotes real-time recognition. We employ shared
convolution neural networks (CNN) layers to learn the feature extraction process
automatically, Convolutional Long Short Term Memory network (ConvLSTM)
[18] layers to track the discriminative features across frames and a classification
sub-network to assign a prediction score. Our model adaptively searches, tracks,
and learns both spatial and temporal facial feature representations across the
frames in an end-to-end manner. In this way, the spontaneous smile’s recogni-
tion becomes as simple as a forward pass of the smile video through the network.
In Fig. 1, we illustrate the difference between our method and the methods in
the literature. Experimenting with four well-known smile datasets, we report
state-of-the-art results without compromising the automation process.
Our main contributions are summarized below:

– To the best of our knowledge, we propose the first end-to-end deep network
for recognition of spontaneous and posed smiles.

– Our method is fully automated and requires no manual landmark annotation
or feature engineering. Unlike traditional methods, the proposed network can
handle variable length of smile videos leading to a robust solution.

– As a simple forward pass through the network can perform the recognition
process, our approach is fast enough to promote a real-time solution.

– We present extensive experiments on four video smile datasets and achieve
state-of-the-art performance.

2 Related Work

Dynamics of the spontaneous smile: The smile is the most common facial
expression, and usually featured by Action Unit 6 (AU6) and Action Unit 12
(AU12) in the facial action coding system (FACS) [19]. The rise of cheek and
pull of lip corners is commonly associated with a smile [19]. In terms of temporal
dynamics, the smile can be segmented into the onset, apex, and offset phases. It
corresponds to the facial expression variation from neutral to smile and then re-
turn to neutral. In physiological research on facial expressions, Duchenne defines
the smile as the contraction of both the zygomatic major muscle and the orbicu-
laris oculi muscle, which known as D-Smile. A Non-D-smile tends to be a polite
smile where only the zygomatic muscle is contracted [17]. Recently, Schmidt et
al. [15] proposed a quantitative metric called Duchenne Marker (D-Marker) to
measure the enjoyment of smiles. Much research uses this (controversial) metric
to recognise spontaneous and posed smiles [2, 4, 6, 15]. Our end-to-end network
for spontaneous smile recognition does not use the D-Maker feature.
Spontaneous smile engineering: The literature of spontaneous smile recog-
nition usually follows a feature-based approach. Those methods extract features
from each frame along the time dimension to construct a multi-dimensional sig-
nal. A statistical summary of the signal obtained from a smile video, such as
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duration, amplitude, speed, accelerations, and symmetry, is considered in smile
classification. The majority of competitive and notable research on Smile Clas-
sification relies on feature extraction by D-marker [2, 4, 15]. Dibeklioglu et al. [2]
proposed a linear SVM classifier that uses the movement signal of eyelid, lip, and
cheek. Mandal et al. [4] proposed a two-stream fusion method based on the move-
ment of eyelid and lip and the dense optical flows with SVM. Pfister et al. [9]
proposed feature extraction by using appearance-based local spatial-temporal
descriptor (CLBP-TOP) for genuine and posed expression classifications. The
CLBP-TOP is an extension of LBP, which able to extract the temporal informa-
tion. Later, Wu et al. [5] used CLBP-TOP feature on the region of interests (eyes,
lips and cheek) to train SVM for smile classifications. Valstar et al. [20] intro-
duced the geometric feature-based smile classifications, using the movement of
the shoulder and facial variation. We identify a few drawbacks of features based
approaches. First, strongly dependence on accurate localization of the action
units. Second, some approaches require manual labeling to track the changes in
facial landmarks. Third, spontaneous smile recognition becomes a costly process
- requiring laborious feature engineering and careful pre-processing.
End-to-end solution: In recent decades, the advancement of graphic process-
ing units and deep learning methods allow end-to-end learning of deep neural
networks that achieves unprecedented success in object re-identification [21], de-
tection [22, 23], segmentation [24] using the image, videos, and 3D point cloud
data [25]. An end-to-end network takes the input (image/video/3D point cloud)
and produces the output with a single forward pass. This network performs
the feature engineering with the convolution layers and reduces the necessity of
manual intervention and expert effort on the training process. In this vein, an
end-to-end trainable deep learning model to automatically classify the genuine
and posed smiles is the next step to solve the problems of feature-based solutions.
With this motivation, Mandal et al. [16] extract features from pre-trained CNN
networks (VGG Face Recognition model [26]) but eventually feed the features
to a separate SVM. Instead, we propose the first fully end-to-end solution.

3 Our Approach

In contrast with available methods, an end-to-end deep learning model can pro-
vide a convenient solution by ensuring complete automation and saving compu-
tational cost after finishing the training. Because of the availability of enormous
amounts of data in recent years, such end-to-end learning systems are gradually
dominating research in AI. In this section, we describe an end-to-end solution
for spontaneous and posed smile recognition.

3.1 Preliminaries

We consider a binary classification problem assigning labels to a sequence of

images or video
−→
Xi = 〈xt|1 . . . ni〉 by parameterizable models Fθ where, ni is

number of frames associated with
−→
Xi and i ∈ T and T is total number of videos
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Fig. 2: Our proposed RealSmileNet architecture. The TSA layers guide the fol-
lowing feature processing network to extract discriminative facial representa-
tions. Then ConvLSTM tracks the face representation across the temporal di-
rection to create a unified length video embedding. Finally, the classification
block refines the video embedding and predicts a classification score. The num-
ber of kernels is denoted by the first number of Conv block, then the size of the
kernel is followed.

in the dataset. The training dataset includes a set of tuples {(
−→
Xi, yi) : i ∈ [0, T ]}

where yi represent the ground-truth label of the ith video. Here, yi = 1 and
yi = 0 represent the class label spontaneous / posed smile respectively. Our goal
is to train an end-to-end deep network model, Fθ, that can assign a prediction

label, ŷj , to all of K testing videos, {
−→
V j}

K
j=1. We formulate ŷj as follows:

ŷj =

{

1, if Fθ(
−→
V j) ≥ 0.5

0, otherwise
(1)

3.2 Architecture

We illustrate our proposed RealSmileNet architecture in Fig. 2. It has four com-
ponents: Temporal based Spatial Attention (TSA), Feature Processing Network
(FPN), ConvLSTM, and Classification block. TSA captures the motion of frames
using two consecutive frames as input, FPN further processes the motion feature
to generate a frame representation, ConvLSTM processes the temporal variation
of frame features across different time frame to produce a video representation,
and finally a classification block predicts a label for the input video. We train all
components together from scratch as a single and unified deep neural network.
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Fig. 3: State transitions of the ConvLSTM.

Temporal based Spatial Attention (TSA): We design the TSA network
that learns the variation of pixels i.e. motion of a video by concentrating certain
regions using residual attention. Previous research on video classification [27]
showed that difference image of adjacent frames provides crude approximation
of optical flow images that is helpful in action recognition. With this motivation,
this network takes two consecutive frames of a video, applies a 2D convolution
on difference map and performs some element-wise operations on the residual
(skip) connections from xt. The overall TSA calculation is defined as:

TSA(xt−,xt) =
(

C(xt − xt−1)⊗ xt

)

⊕ xt (2)

Where, C represents a convolution layer that takes the difference between current
frame xt and previous frame xt−1, ⊗ and ⊕ are the Hadamard product and
element-wise addition respectively. The residual connections augment the output
of the convolution and focus on certain area in the context of the current frame.
Feature Processing Network (FPN): We forward the output of the TSA
network to the FPN layers to process the TSA features further. We design FPN
with two sets of Conv, Batch Normalization, ReLU, and Avg-pooling layers.
In FPN block, all the convolution layer and average pooling layer use 3x3 ker-
nel size and 2x2 kernel size respectively. FPN learns a dense spatial feature
representation of frames required to model the complex interplay of smile dy-
namics. During the experiment, we replace this FPN with popular ResNet18 and
DenseNet like structure. However, we have achieved the best performance using
our proposed implementation of an FPN. Besides, our FPN has less trainable pa-
rameters than its alternatives. In our model, TSA and FPN contribute together
to get overall spatial information from frames. This representation plays the
role of D-marker [2, 4, 15], HoG [5, 9, 16], LBP [5, 16] of the traditional approach.
The main difference is our model learns this representation, unlike conventional
methods dependent on handcrafted and computationally intensive features.
ConvLSTM: We employ the ConvLSTM [18] to model the temporal dynam-
ics of the video. We adaptively build up a saliency temporal representation of
each video that contributes to the classification processes. Specifically, we con-
currently learn the hidden states and input tensors by using convolution layers
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instead of maintaining different weight matrixes for the hidden state and input.
We visualize the state transition in Fig. 3 that performs the following operations:
input vector, ut = concatenate(et,ht−1), input gate, it = σ (Wi ⊛ ut ⊕ bi),
forget gate, ft = σ (Wf ⊛ ut ⊕ bf ), output gate, ot = σ (Wo ⊛ ut ⊕ bo), cell
gate, gt = tanh (Wg ⊛ ut ⊕ bg), cell state, ct = ft ⊗ ct−1 ⊕ it ⊗ gt, hidden
state, ht = ot ⊗ tanh (ct), where, σ and tanh are the activation function of the
sigmoid and hyperbolic tangent. ⊛, ⊗ and ⊕ represent convolution operator,
Hadamard product, and element-wise addition. concatenate operator stands for
concatenating the augments along the channel axis. [·]t and W[·] denote the el-
ement at time slot t and the corresponding weight matrix respectively. Usually,
ConvLSTM updates the input gate, forget gate, cell gate, and output gate by
element-wise operations [18]. But, in our case, we learn more complex temporal
characteristics by concatenating the input and hidden state as the input of the
convolution layer. As nearby pixels of an image are both connected and cor-
related, using more complex flows within the ConvLSTM cell, the convolution
layer can group the local features to generate robust temporal features while
preserving more spatial information.
Classification Block: The hidden state of the last frame is passed to the classi-
fication block to assign a prediction label. This block is composed of dot product
NonLocal block [28], average pooling (2×2 kernel size), convolution layer(with
2×2 kernel size), batch normalization, ReLU, Dropout (with 0.5 probability),
and dense layers. The NonLocal block captures the dependency between any
two positions [28]. Such reliance is critical because Ekman et al. [8] suggested
the relative position of facial landmarks (such as symmetry) contributes to the
smile classification. Then, we further trim the learned embedding of the video
feature through the later layers of the classification block. In this way, the clas-
sification space is well-separated for binary classification (see Fig. 5).

Loss function: Given a video as an input,
−→
X i, our proposed network predicts

a score, Fθ(
−→
X i), which is compared with the ground-truth yi to calculate the

weighted binary cross-entropy loss:

LCE = −
1

T

T
∑

i=1

[

α yi log
(

Fθ(
−→
X i)

)

+ β (1− yi) log
(

1−Fθ(
−→
X i)

)

]

, (3)

where, α and β are the weights computed as the proportion of spontaneous
and posed videos in the training dataset respectively.

Inference: For jth test video,
−→
V j , we perform a simple forward pass through

the trained network and produce a prediction score, Fθ(
−→
V j). Then, we apply

Eq. 1 to assign the predicted label, ŷj for the input.

3.3 Analysis

We analyze and visualize different aspects of our model, which allows us to
address many drawbacks of the traditional approaches.
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Fig. 4: Visualization of FPN features for spontaneous (top two rows) and posed
(bottom two rows) smiles from UVA-NEMO [2] by using score-cam [29, 30].
Keeping equal temporal distance from each other, sample frames are selected
for this visualization. The more ’warm’ the color, the more important the area
becomes during classification.

Our model automatically learns discriminative smile features that replace
traditional handcrafted features. This learning process does not require manual
landmark initialization and their tracking through the video. Our ConvLSTM
block enables us to track the learned features automatically until the last frame.
The iterative learning process of ConvLSTM does not have any restriction on the
maximum length of smile videos, unlike traditional methods requiring maximum
fixed video length. Our ConvLSTM block effectively manages the temporal as-
pect of features in the time dimension, which performs the role of face landmark
tracking of other methods. Our classification block, coupled with the ConvL-
STM leans to classify time series data. But, using the SVM like classifiers, which
are commonly used in the area, are not an excellent fit to classify similar data.
Therefore, traditional models perform hand-engineering to make the data fit for
SVM. Instead, in our model, every component of traditional methods are em-
bedded in the unified deep network. Thus, once learned, our model handles the
intermediate process through a forward pass as a single unit. Such a strategy
simplifies the process because that parallel implementation is easy for a deep
learning model.

Visualization: In Fig. 4, we visualize the importance of different facial regions
across various frames. We extract features (after FPN layers) and blend them
on the input frame. This shows that our model extracts features where it finds
discriminative information. One can notice that our model puts less emphasis on
neutral faces (by assigning cooler color on the heatmap) because those frames
have no role in the context of spontaneous or posed smile recognition. Moreover,
the starting and ending frames (roughly, onset and offset regions) are promising
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Fig. 5: 2D tSNE [31] visualization of smile video features extracted from the
classification block (after ReLU layer) of our proposed model. Blue and Green
represent posed and spontaneous smiles respectively. Each plot shows the test
fold features from the 10-fold cross-validations data of UvA-NEMO database.
Here, spontaneous and posed smiles are reasonably well-separated to recognize
using the classification block.

to be the most discriminative for posed smiles, whereas middle frames (apex
regions) are important for spontaneous smiles. To further visualize the feature
embedding, we plot learned video features (from the output of ReLU layer of
classification block (please see Fig. 2)) of the test fold belonging to the UvA-
NEMO dataset in Fig. 5. We notice that spontaneous and posed smile features
are properly separated for classification.

4 Experiment

4.1 Setup

Dataset: In this paper, we experiment on four popular smile datasets: Here,
we briefly describe the data statistics. (a) UVA-NEMO Smile Database [2]:
This dataset is recorded in 1920×1080 pixels at a rate of 50 frames per second. It
composed of 597 spontaneous and 643 posed smile videos. The length of videos
distributed from 1.8 seconds to 14.2 seconds. It contains over 400 participants
(185 females and 215 males) with ages from 8 years to 76 years. There are 149
young people and 251 adults. (b) BBC database5 [2, 5] This dataset contains
20 videos, recorded in 314 × 286 pixels with 25 frames per second. There are
10 spontaneous and 10 posed smiles. (c) MMI Facial Expression Database
[32]: They provided spontaneous and posed facial expressions separately includ-
ing 38 labeled posed smiles. Apart from these posed smiles, we identified 138
spontaneous and 49 posed smile videos from 9 and 25 participants, respectively.
The age of participants ranges from 19 to 64. All of the videos contain frontal
recordings. The part of the spontaneous smile is in 640×480 pixels at 29 frames
per second, and the posed smile part is recorded in 720 × 576 pixels with 25
frames per second. (d) SPOS database [9]: It provides both gray and near-
infrared sequences of images in 640× 480 resolution with 25 frames per second.

5 https://www.bbc.co.uk/science/humanbody/mind/surveys/smiles/
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Database
Video Spec. Number of Videos Number of Subjects

Resolution FPS Genuine Posed Genuine Posed

UVA-NEMO 1920 x 1080 50 597 643 357 368

BBC 314 x 286 25 10 10 10 10

MMI
720 x 576 29

138 49 9 25
640 x 480 25

SPOS 640 x 480 25 66 14 7 7

Table 1: Summary of the smile datasets.

We use gray images in our experiments. The face region of each image has been
cropped by the database owners. There are 66 spontaneous smiles, and 14 posed
smiles from 7 participants. The age of participants distributed from 22 to 31,
while 3 of them are male. Table 1 provides a summary of these datasets.
Train/test split: We use the standard train/test split protocol from [2] for
UVA-NEMO database. Following the settings from [2, 5], we perform 10-fold, 7-
fold, and 9-fold cross-validation for BBC, SPOS, and MMI datasets, respectively,
while maintains no subject overlap between training and testing folds.
Evaluation Processes: We have evaluated our model with prediction accuracy.
The accuracy is the proportion of test data that is correctly predicted by our
model. We report the average result of running ten trials.
Implementation details6: We train our model for 60 epoch with the mini-
batch size 16. To optimize network parameters, we use Adam optimizer with a
learning rate 10−3 and decay 0.005. We employ weighted binary cross-entropy
loss for training where the weight is the ratio between spontaneous smiles and
posed smiles in training data. To prepare the video to be manageable for the
network, we sample 5 frames per second, crop the face using DLIB library [33]
and resize each frame into the dimension 48 × 48, which are purely automatic
processes. We validate the sensitivity of these design choices in experiments. We
implement our method using the PyTorch library [34].

4.2 Recognition Performance

In this subsection, we will compare our performance with other models, will show
an ablation study, will design choice sensitivity, and will analyze the robustness
of our approach.

Benchmark Comparisons: In Table 2, we compare our performance of spon-
taneous and posed smile classification with previously published approaches
using four popular datasets. We divide all methods into two categories: semi-
automatic and fully-automatic. Semi-automatic methods manually annotate fa-
cial landmark locations of the first frame of the video. In contrast, fully-automatic

6 Code and evaluation protocols available at: https://github.com/Yan98/Deep-
learning-for-genuine-and-posed-smile-classification
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Method Process Type UVA-NEMO MMI SPOS BBC

Cohn’04 [7] Semi-automatic 77.3 81.0 73.0 75.0
Dibeklioglu’10 [6] Semi-automatic 71.1 74.0 68.0 85.0
Pfister’11[9] Semi-automatic 73.1 81.0 67.5 70.0
Wu’14 [5] Semi-automatic 91.4 - 79.5 90.0
Dibeklioglu’15 [2] Semi-automatic 89.8 88.1 77.5 90.0
Mandal’17 [4] Semi-automatic 80.4 - - -

Mandal’16 [16] Fully-Automatic 78.1 - - -
Ours Fully-Automatic 82.1 92.0 86.2 90.0

Table 2: Benchmark comparison of methods. ‘-’ means unavailable result.

methods require no manual intervention in the complete process. Our model suc-
cessfully beats all methods in MMI, SPOS, and BBC datasets. For UVA-NEMO,
we outperform the automatic method [16]. However, Wu et al. reported the best
performance on the UVA-NEMO dataset.[5] For all these experiments, the same
video and subjects are used during testing. But, being not end-to-end, previ-
ous methods apply many pre-processing steps (borrowed from different work)
that are not consistent across methods. For example, the performance of [2, 6,
7, 9] are adopted from the work [2] where same landmark initialization tracker
[35], face normalization, etc. are used. However, the accuracy of [5] and [4] are
reported from the original papers where they employed a different manual ini-
tialization and tracker [36, 37]. Moreover, the number and position of landmarks
used are also different across models. Because of these variations, performance
of the semi-automatic methods are difficult to compare in a common frame-
work. The automatic method [16] is our closest competitor because of the lack
of requirement of landmark initialization or tracker and their best result can be
gained in a fully automatic way. However, their feature extraction and learning
model are still separated. Besides, to manage the variable length of video frames,
they apply a frame normalization process (using fixed number of coefficients of
Discrete Cosine Transform) to create fixed length videos. Our proposed model
is fully-automated and end-to-end trainable as a single deep learning model. It
requires no landmark detection, tracking, frame normalization to a fixed-length,
etc.

Design Choice Sensitivity: In Fig. 6, we report the sensitivity of the design
choice of our method for different numbers of frames per second (FPS) and
resolutions of the input frames. For all combination of FPS (1, 3, 5 and 7) and
resolution (48 × 48, 64 × 64, 96 × 96 and 112 × 112) choices, we find FPS = 5
and resolution = 48× 48 achieves the maximum performance. Note that image
resolution is important because it decides the type of visual features extracted
by the CNN layers. For example, a low resolution (48×48) lets the CNN kernels
(of size 3× 3) extracts coarse features that are the most discriminative for smile
classification. Similarly, the choice of FPS also interacts with ConvLSTM layers
to track the change of smile features across frames. The FPS = 5 and resolution
= 48× 48 is the trade-off to maximize the performance.



12 Y. Yang et al.

Method UVA-NEMO MMI SPOS BBC

No TSA 78.5 92.0 81.5 80.0
miniResNet 73.8 84.9 80.5 90.0
miniDenseNet 77.0 71.2 82.2 90.0
No Weighted Loss 80.6 91.7 82.2 90.0
Softmax Function 79.2 71.6 82.2 70.0

Ours 82.1 92.0 86.2 90.0

Table 3: Ablation study. We experiment
adding or removing parts of proposed
method with reasonable alternatives.
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Fig. 6: Varying image size and FPS on
UVA-NEMO dataset.

Ablation studies: In Tab. 3, we perform ablation studies by replacing part of
our proposed network with a suitable alternative. Our observations from the ab-
lation studies are the following. (1) We remove the TSA block from our model
and directly forward the frame to FPN for feature extraction. In this situation,
the network could not get optical flow information and motion from the spatio-
temporal region. Smile features based on the difference of consecutive frames
extract more discriminative features than a single frame. Thus, without using
the TSA block, the performance degrades, especially on UVA-NEMO and SPOS
datasets. (2) Now, we experiment on the alternative implementation of the FPN
network, for example, ResNet12 [38] (composed by 3 layers) or DenseNet [39]
(with growth rate 2 and 6,12, 24 and 16 blocks in each layer). We use a rela-
tively small version of that well-known architecture because smile datasets do
not contain enough instances (in comparison to large scale ImageNet dataset
[40]) to train large networks. Alternative FPNs could not outperform our pro-
posed FPN implementation. One reason could be that the smaller version of
those popular architectures is still larger than our proposed FPN, and available
smile data overfits the networks. Another reason is that, we could not use pre-
trained weights for the alternatives, because of different input resolutions. (3)
We try without the weighting version of the loss of Eq. 3, i.e, α = β = 1. This
impacts the performance of UVA-NEMO, MMI, and SPOS dataset because of
the large imbalance in number of training samples of spontaneous and posed
smiles. (4) We replace the dense sigmoid at the last layer of the classification
block with softmax. In our sigmoid based implementation, we use one neuron
at the last layer to predict a score within [0, 1] and apply Eq. 1 for inference.
For the softmax case, we add two neurons at the last layer, which increases the
number of trainable parameters. We notice that the softmax based network does
not perform better than our proposed sigmoid based case. This observation is in
line with the recommendation of [41] that Softmax is better for the multi-class
problem rather than a binary class case. (5) The performance of our final model
outperforms all ablation alternatives consistently across datasets.

Effect of Age and Genders: To illustrate our approach’s robustness, we an-
alyze the effect of model prediction for the different subject groups concerning
age and gender. Firstly, we experiment on whether biologically similar appear-
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Fig. 7: (left) The accuracy of the model trained by individual group. (right)
The normalized distribution of the total number of wrong predictions among
different subject groups.

ance inserts any bias in the prediction. For this, we train and test our proposed
model with only male/female/adult/young separately. In Fig. 7(left), we show
the results on each subgroup: male, female, adult, and young. We notice that
the performance is similar to our overall performance reported in Table 2. This
shows that our training has no bias on age- and gender-based subgroups. Sec-
ondly, in Fig. 7(right), we visualize the normalized distribution of the total
number of wrong predictions among adults/young and males/females. We find
that there is no significant bias in misprediction distribution. In other words, as
the mispredictions are similar across different groups, our model does not favor
any particular group.
Cross-domain Experiments: We also perform experiments across datasets
and subject groups. While training with UVA-NEMO and testing with BBC,
MMI, and SPOS dataset, we get 80%, 92.5% & 82.5% accuracy, respectively.
Moreover, training with adults and testing with young subjects got 75.9%, and
conversely 74.8% accuracy. Again, training on female then testing on male sub-
jects got 74.2% and conversely 75.1% accuracy. These experiments indicate the
robustness of our method.

4.3 Discussion

Time Complexity: The processes of facial landmarks tracking/detection fol-
lowed by handcrafted feature extraction are usually very computationally ex-
pensive. As evidence, when we re-implement D-marker feature-based approaches
with DLIB library [33] to face normalization and facial landmark detection, it
requires more than 28 hours for the processes using a single NVIDIA V100 GPU
and one Intel Xeon Cascade Lake Platinum 8268 (2.90GHz) CPU. Although the
training is efficient and effective, the pre-processing pipelines are costly. How-
ever, for our end-to-end learning models, the whole processing only spends up to
eight hours using the same system configuration, which significantly saves time.
Human Response vs. Our Model: Several recent works estimate the ability
of the average human to recognize spontaneous smiles [11, 12]. In Fig. 8, we show
the comparison of our work with human responses using the experiment set-up
mentioned in [11]. In an experiment with 26 human and 20 videos selected from
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the UVA-NEMO dataset, Hossain et al. [11] reported a 59% average accuracy
of the human. In this set-up, our trained RealSmileNet (without using any of
those 20 videos and their subjects during training) successfully achieves 95%
of accuracy on the same test set. In another experiment with 36 humans and
30 videos from the same UVA-NEMO dataset, Hossain et al. [11] reported 70%
for humans, whereas our proposed model achieves 90% accuracy. These compar-
isons show that our end-to-end model is already capable of beating human-level
performance.
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Fig. 8: Human response vs. our model

Limitations: One notable drawback
of deep learning-based solutions is
the dependence on large-scale bal-
anced data. Being a deep model, our
proposed model has also experienced
this issue during training with UVA-
NEMO dataset, which includes smiles
of subjects with a wide range of ages,
e.g., child (0–10 years), young (11–
18 years), adult (19–69 years), aged
people (≥ 70 years). However, among
the 1,240 videos, the distributions are
20.24%, 18.47%, 60.16%, and 1.45%
respectively. The imbalanced/skewed
distribution usually cannot be well
modeled in the deep models [42], and
can lead to unexpected bias in the ker-
nel of the convolution layer. Here, our model performs less well than the semi-
automatic method of Wu et al. [5] (See Table 2). In future, one can collect more
data to handle such shortcomings.

5 Conclusion

Traditional approaches for recognizing spontaneous and posed smiles depend on
expert feature engineering, manual labeling, and numerous costly pre-processing
steps. In this paper, we introduce a deep learning model, RealSmileNet, to unify
the broken-up pieces of intermediate steps into a single, end-to-end model. Given
a smile video as input, our model can generate an output prediction by a simple
forward pass through the network. Our proposed model is not only fast but
also removes the expert intervention (hand engineering) in the learning process.
Experimenting with four large scale smile datasets, we establish state-of-the-
art performances on three datasets. Our experiment previews the applicability
of RealSmileNet to many real-word applications like polygraphy, human-robot
interactions, investigation assistance, and so on.
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