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Abstract. We present a novel approach to perform the unsupervised do-
main adaptation for object detection through forward-backward cyclic
(FBC) training. Recent adversarial training based domain adaptation
methods have shown their effectiveness on minimizing domain discrep-
ancy via marginal feature distributions alignment. However, aligning the
marginal feature distributions does not guarantee the alignment of class
conditional distributions. This limitation is more evident when adapt-
ing object detectors as the domain discrepancy is larger compared to
the image classification task, e.g., various number of objects exist in one
image and the majority of content in an image is the background. This
motivates us to learn domain-invariance for category-level semantics via
gradient alignment for instance-level adaptation. Intuitively, if the gra-
dients of two domains point in similar directions, then the learning of
one domain can improve that of another domain. We propose Forward-
Backward Cyclic Adaptation to achieve gradient alignment, which itera-
tively computes adaptation from source to target via backward hopping
and from target to source via forward passing. In addition, we align
low-level features for adapting image-level color/texture via adversarial
training. However, the detector that performs well on both domains is
not ideal for the target domain. As such, in each cycle, domain diversity
is enforced by two regularizations: 1) maximum entropy regularization
on the source domain to penalize confident source-specific learning and
2) minimum entropy regularization on target domain to intrigue target-
specific learning. Theoretical analysis of the training process is provided,
and extensive experiments on challenging cross-domain object detection
datasets have shown our approach’s superiority over the state-of-the-art.

1 Introduction

Object detection is a fundamental problem in computer vision [1–5], which can
be applied to many scenarios such as face and pedestrian detection [6] and self-
driving cars [7]. However, due to the variations in shape and appearance, lighting
conditions and backgrounds, a model trained on the source data might not per-
form well on the target—a problem known as domain discrepancy. A common
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Fig. 1. (a) Due to domain discrepancy, the detector trained on the source domain does
not perform well on the target. Green boxes indicate false positives and red indicate
missing objects. (b) Feature visualization of the detection results on target images
generated by source-only model. It is difficult to align feature at instance-level without
category information due to the existence of false detections on the background.

approach to maximizing the performance on the target domain is via fine-tuning
a pre-trained model with a large amount of target data. However, annotating
bounding boxes for target objects is time-consuming and expensive. Hence, un-
supervised domain adaptation methods for object detection are highly desirable.

Unsupervised domain adaptation for image classification has been exten-
sively studied [8–13]. Most methods are developed to learn domain-invariant
features by simultaneously minimizing the source error and the domain discrep-
ancy through feature distribution alignment. Standard optimization criteria in-
clude maximum mean discrepancy [8, 9] and distribution moment matching [14,
15]. Recent adversarial training based methods have shown their effectiveness
in learning domain-invariance by matching the marginal distributions of both
source and target features [10, 16, 11]. However, this does not guarantee the
alignment of class conditional distributions [17–20]. For example, aligning the
target cat class to the source dog class can easily meet the objective of reducing
the cost of source/target domain distinction, but the semantic categories are
wrong. The limitation of adversarial learning is more evident when the domain
discrepancy between two domains is larger, such as in object detection.

In object detection, performing domain alignment is more challenging com-
pared to alignment in the image classification task in the following two aspects:
(1) the input image may contain multiple objects, while there is only one centered
object in the classification task; (2) the images in object detection are dominated
by background and non-objects. Therefore, performing global adversarial learn-
ing (i.e., marginal feature distributions) at the image-level is not sufficient for
such challenging tasks due to the limitations discussed above. Chen et al. [21]
made the first attempt to apply adversarial domain alignment to object detec-
tion, where the marginal feature distributions were aligned at both image-level
and instance-level. However, due to the domain shift, the detector may not be
accurate and many non-object proposals from the backgrounds are used for do-
main alignment (Fig. 1). This amplifies the limitation of adversarial domain
training and hence limited gains can be achieved.
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Fig. 2. The diagram of the proposed forward-backward cyclic adaptation for unsu-
pervised domain adaptive object detection. In each episode, the training proceeds to
achieve two goals: 1) gradient alignment across the source Xs and target Xt to achieve
domain invariant detectors; and 2) encouraging domain-diversity to boost the target
detector performance.

To tackle the limitation, efforts have been made to improve the image-level
adaptation [22] and instance-level adaptation [23, 24] respectively. Saito et al. [22]
proposed to weakly align the image-level features from the high-level layer, where
the globally similar images have higher priorities to be aligned. In instance-level
adaptation, Zhu et al. [23] proposed to filter the non-objects via grouping and
then select source-like target instances according to the scores of the domain
classifier. Zhuang et al. [24] proposed category-aware domain discriminators for
instance-level alignment, where each category has its own domain discriminator.

We argue that explicit feature distribution alignment is not a necessary con-
dition to learn domain-invariance. Instead, we remark that domain-invariance of
category-level semantics can be learned by gradient alignment, where the inner
product between the gradients of category-level classification loss from different
domains is maximized. Intuitively, if the inner product is positive, taking a gradi-
ent step at the examples from one domain can decrease the loss at the examples
from another domain. In other words, the learning of one domain can improve
the learning of another domain and therefore lead to domain-invariance. More
importantly, the gradients of category-level classification loss can encode class
conditional information. Therefore, gradient alignment shows its advantages on
the challenging instance-level adaptation for object detection.

In this work, we propose a Forward-Backward Cyclic Adaptation (FBC) ap-
proach to learn adaptive object detectors. In each cycle, the games of Forward
Passing, an adaptation from source to target, and Backward Hopping, an adapta-
tion from target to source, are played sequentially. Each adaptation is a domain
transfer, where the training is first initialized with the model trained on the
previous domain and then finetuned with the images in the current domain. We
provide a theoretical analysis to show that by computing the forward and back-
ward adaptation sequentially via Stochastic Gradient Descent (SGD), gradient
alignment can be achieved. Our proposed approach is also related to the cycle
consistency utilized in both machine translation [25] and image-to-image transla-
tion [26, 27] with a similar intuition that the mappings of an example transferred
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from source to target and then back to the source domain should have the same
results. In addition to instance-level adaptation via gradient alignment, we lever-
age adversarial domain training for image-level adaptation. Low-level features
are aligned to learn the domain-invariance of holistic color and textures.

However, a detector with good generalization on both domains may not be
the optimal solution for the target domain. To address this, we introduce domain-

diversity into the training objective to avoid overfitting on the source domain and
encourage target-specific learning on the target domain. We adopt two regular-
izers: (1) a maximum entropy regularizer on source domain and (2) a minimum
entropy regularizer on the target domain.

We conduct experiments on four domain-shift scenarios and experimental re-
sults show the effectiveness of our proposed approach. Contributions: (1) We
propose a forward-backward cyclic adaptation approach to learn unsupervised
domain adaptive object detectors through image-level adaptation via adversar-
ial domain alignment and instance-level adaptation via gradient alignment; (2)
The proposed gradient alignment effectively aligns category-level semantics at
the instance-level; (3) To achieve good performance on the target domain, we
explicitly enforce domain-diversity via entropy regularization to further approx-
imate the domain-invariant detectors closer to the optimal solution to target
space; (4) The proposed method is simple yet effective and can be applied to
various architectures.

2 Related Work

Object Detection. Deep object detection methods [28, 1, 3, 2, 5, 29] can be
roughly grouped into two-stage detectors, e.g., Faster R-CNN [1] and single-stage
detectors, e.g., SSD [2] and YOLO [3]. Faster R-CNN consists of two networks:
a region proposal network and an R-CNN that classifies the proposals. Other
methods like FPN [5] and RetinaNet [29] proposed to leverage a combination of
features from different levels to improve the feature representations.
Unsupervised Domain Adaptation for Image Classification. A vast num-
ber of deep learning based unsupervised domain adaptation methods are pre-
sented for image classification. Many adaptation methods [8, 9, 14, 30, 10, 16, 11]
are proposed to reduce the domain divergence based on the following theory:

Theorem 1 (Ben-David et al. [31]). Let h : X → Y be a hypothesis in the

hypothesis space H. The expected error on target domain ǫT (h) is bounded by

ǫT (h) ≤ ǫS(h) +
1

2
dH∆H(DS ,DT ) + λ, ∀h ∈ H , (1)

where ǫS(h) is the expected error on the source domain,

dH∆H(DS ,DT ) = 2 sup
h,h′∈H

∣

∣

∣

∣

Pr
x∼DS

[h(x) 6= h′(x)]− Pr
x∼DT

[h(x) 6= h′(x)]

∣

∣

∣

∣

measures domain diver-

gence, and λ is the expected error of ideal joint hypothesis, λ = minh∈H[ǫS(h) + ǫT (h)].

To minimize the divergence, various methods have been proposed to align the dis-
tributions of features from source and target domains, e.g., maximum mean dis-
crepancy [8, 9], correlation alignment [14], joint distribution discrepancy loss [30]
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and adversarial training [10, 16, 11]. Adversarial training based methods [10, 16,
11] align the marginal distributions of source and target features, where the
feature generator is trained to confuse the domain classifier. Although these
methods have demonstrated impressive results, recent works [17, 22, 18, 32, 33]
have shown that aligning marginal distributions without considering class con-
ditional distributions does not guarantee small dH∆H(DS ,DT ). To address this,
Luo et al. [19] proposed a semantic-aware discriminator and Xie et al. [17] pro-
posed to align the semantic prototypes for each class. Some works [17, 32, 33]
proposed to minimize the joint hypothesis error λ with pseudo labels in addition
to the marginal distribution alignment. Some other methods proposed to use
the predictions of a classifier as pseudo labels for unlabeled target samples [34,
12, 35]. Lee et al. [36] argued that training with pseudo labels is equivalent to
entropy regularization, which favors a low-density separation between classes.

Unsupervised Domain Adaptation for Object Detection. Domain adap-
tive object detection has received much attention in the past two years [21, 23, 22,
37–40, 24]. The DA-Faster [21] was proposed to align domains at both image-level
and instance-level by adding two domain classifiers to the Faster R-CNN. How-
ever, due to the limitation of domain adversarial training and inaccurate instance
predictions, the improvement is limited. To improve the efficiency of image-level
adaptation, multi-feature alignment [22, 37, 39, 24] has been proposed. In strong-
weak domain alignment (SWDA) [22], Saito et al. proposed to strongly align low-
level image features and weakly align high-level image features. Through weak
alignment, the target images that are globally similar to source images have
higher priorities to be aligned. Focal loss [29] is used in the domain classifier to
achieve it. To address the inaccurate instance problem in instance-level adapta-
tion, Zhu et al. [23] proposed to first filter non-object instances via grouping and
then emphasize the target instances that are similar to the source for adversarial
domain alignment. However, the category-level semantics are not studied in the
traditional adversarial alignment. Zhuang et al. [24] proposed image-instance
full alignment (iFAN) for category-aware instance-level adaptation, where each
category owns a domain discriminator. Unlike using adversarial training, our
proposed method aligns category-level semantics via gradient alignment.

Gradient-based Meta Learning and Continual Learning. Our method is
also related to recent gradient-based meta-learning methods: MAML [41] and
Reptile [42], which are designed to learn a good initialization for few-shot learn-
ing and have demonstrated good within-task generalization. Reptile [42] sug-
gested that SGD automatically maximizes the inner products between the gra-
dients computed on different minibatches of the same task, and results in within-
task generalization. Riemer et al. [43] integrated the Reptile with an experience
replay module for the task of continual learning, where the transfer between
examples is maximized via gradient alignment. Inspired by these methods, we
leverage the generalization ability of Reptile [42] to improve the generalization
across domains for unsupervised domain adaptation via gradient alignment.

Entropy Regularization. The maximum entropy principle proposed by Jaynes [44]
has been applied to reinforcement learning [45, 46] to prevent early convergence
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Fig. 3. (a) Illustration of the model updates in our proposed forward-backward cyclic
adaptation method. The θ0 is the initial model and the θ∗S and θ∗T are the optimal solu-
tions for source and target domain, respectively. (b) We propose that domain-invariance
occurs when the gradients of source and target samples are pointing in similar direc-
tions. (c) The domain diversity is implemented by maximum entropy regularization on
the source domain and minimum entropy regularization on the target domain.

and supervised learning to improve generalization [47–50]. On the contrary,
the entropy minimization has been used for unsupervised clustering [51], semi-
supervised learning [52] and unsupervised domain adaptation [9, 53] to encour-
ages low density separation between clusters or classes.

3 Forward-Backward Domain Adaptation for Object

Detection

3.1 Overview

In unsupervised domain adaptation, NS labeled images {XS ,YS} = {xi
S , y

i
S}

NS

i=1

from the source domain with a distribution DS are given. We have NT unlabeled
images XT = {xj

T }
NT

j=1 from the target domain with a different distribution DT ,

but the ground truth labels YT = {yjT }
NT

j=1 are not accessible during training.
Note that in object detection, each label in YS or YT is composed of a set of
bounding boxes with their corresponding class labels. Our goal is to learn a
neural network (parameterized by θ) fθ : XT → YT that can make accurate
predictions on the target samples without the need for labeled training data.

In this work, we argue that aligning the feature distributions is not a nec-
essary condition to reduce the dH∆H(DS ,DT ) in Theorem 1. Unlike the above-
mentioned distribution alignment based methods, we cast the domain adaptation
into an optimization problem to learn the domain-invariance. We propose to uti-
lize gradient alignment for category-aware instance-level adaptation. For image-
level adaptation, local feature alignment via adversarial training is performed.
As the ultimate goal of domain adaptation is to achieve good performance on
the target domain, we further introduce domain-diversity into training to boost
the detection performance in the target space.

3.2 Gradient Alignment via Forward-Backward Cyclic Training

Recent gradient-based meta-learning methods [41, 54, 42], designed for few-shot
learning, have demonstrated their success in approximating learning algorithms
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and shown their ability to generalize well to new data from unseen distribu-
tions. Inspired by these methods, we propose to learn the domain-invariance via
gradient alignment to achieve generalization across domains.

Gradient Alignment for Domain-invariance Suppose that we have neu-
ral networks that learn the predictions for source and target samples as fθS :
XS → YS and fθT : XT → YT . The network parameters θS and θT are updated

via minimizing the empirical risks, LθS (XS ,YS) =
1

NS

∑NS

i=1 ℓ(fθS (x
i
S), y

i
S) and

LθT (XT ,YT ) =
1

NT

∑NT

j=1 ℓ(fθT (x
j
T ), y

j
T ), where ℓ(·) is the cross-entropy loss. In-

spired by methods for continual learning [43, 55], when the parameters θS and
θT are shared and the gradient updates are in small steps, we could assume the
function Lθ is linear. If the following condition is satisfied, the gradient updates
at source samples could decrease the loss at target samples and vice verse:

∂LθS (XS ,YS)

∂θS
·
∂LθT (XT ,YT )

∂θT
> 0 , (2)

where the · is the inner-product operator. This indicates that the learning of one
domain could improve the learning of another domain. Therefore, we propose
that domain-invariance could be learned by maximizing the inner products of
gradients from different domains. Moreover, this gradient alignment can encode
category-level semantics as the gradients are generated from the classification
losses LθS (XS ,YS) and LθT (XT ,YT ). It is different from the feature alignment
by a domain classifier in adversarial training based methods [10, 16, 11, 21, 22],
where class information is not explicitly considered. Thus, we use gradient align-
ment for instance-level adaptation.

Recall Theorem 1, once dH∆H(DS ,DT ) is minimized, the generalization error
on target domain ǫT (h) is bounded by the shared error of ideal joint hypothesis,
λ = minh∈H[ǫS(h) + ǫT (h)]. As suggested in [31], it is important to have a
classifier performing well on both domains. Therefore, similar to the previous
works [36, 17, 33], we resort to using pseudo labels ŶT = {ŷjT }

NT

j=1 to optimize
the upper bound for the λ. These pseudo labels are the detections on the target
images produced by the source detector fθS and are updated with the updates
of fθS . Our objective function of gradient alignment is to minimize the Lg:

LθS (XS ,YS) + LθT (XT , ŶT )− α
∂LθS (XS ,YS)

∂θS
·
∂LθT (XT , ŶT )

∂θT
. (3)

Forward-Backward Cyclic Training To achieve the above objective, we pro-
pose an algorithm that sequentially plays the game of Backward Hopping on the
source domain and Foward Passing on the target domain, and a shared network
parameterized by θ is updated iteratively. We initialize the shared network θ with
ImageNet [56] pre-trained model. Let us denote a cycle of performing forward
passing and backward hopping as an episode. In the backward hopping phase of

episode t, the network parameterized by θ
(t)
S is first initialized with the model

θ
(t−1)
T from the previous episode t−1. And the model θ

(t)
S is then optimized with

one image per time via stochastic gradient descent (SGD) on NS labeled source
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images {XS ,YS}. In forward passing, the model θ
(t)
T is initialized with θ

(t)
S and

trained with pseudo labeled target samples {XT , ŶT }. The training procedure is
shown in Fig. 2.

Theoretical Analysis. We provide a theoretical analysis to show how our pro-
posed forward and backward training strategy can achieve the objective of gradi-
ent alignment in Eq. 3. For simplicity, we only analyze the gradient computations
in one episode and denote the gradient obtained in one episode as ge. We then

have ge = gS + gT , where gS is obtained in backward hopping gS =
∂LθS

(XS ,YS)

∂θS

and gT is the gradient obtained in forward passing gT =
∂LθT

(XT ,ŶT )

∂θT
.

According to Taylor’s theorem, the gradient of forward passing can be ex-
panded as gT = ḡT + H̄T (θT − θ0) + O(‖θT − θ0‖

2), where ḡT and H̄T are the
gradient and Hessian matrix at initial point θ0. Then the overall gradient ge can
be rewritten as:

ge = gS + gT = ḡS + ḡT + H̄T (θT − θ0) +O(‖θT − θ0‖
2) . (4)

Let us denote the initial parameters in one episode as θ0. In our proposed
forward and backward training strategy, the model parameters of backward hop-
ping are first initialized with θS = θ0 and are updated by θ0 − αgS . In forward
passing, the model is initialized with the updated θS and thus θT = θ0 − αgS .
Substitute this to Eq. 4 and we have

ge = ḡS + ḡT − αH̄T ḡS +O(‖θT − θ0‖
2) . (5)

It is noted in Reptile [42] that E[H̄S ḡT ] = E[H̄T ḡS ] =
1
2 [

∂
∂θ0

(ḡS · ḡT )]. There-
fore, this training is approximating our objective function in Eq. 3. More details
are shown in the supplementary materials.

3.3 Local Feature Alignment via Adversarial Training

Domain adversarial training has demonstrated its effectiveness in reducing do-
main discrepancy of low-level features, e.g., local texture and color, regardless of
class conditional information [21, 22]. Therefore, we align the low-level features
at the image-level in combination with gradient alignment on the source do-
main. We utilize the gradient reversal layer (GRL) proposed by Ganin and Lem-
pitsky [10] for adversarial domain training, where the gradients of the domain
classifier are reversed for domain confusion. Following SWDA [22], we extract
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local features F from a low-level layer as the input of the domain classifier D

and the least-squares loss [57, 26] is used to optimize the domain classifier. The
loss of adversarial training is as follows:

Ladv =
1

2

1

NSWH

∑

i,w,h

D(F (xi
S))

2
wh +

1

2

1

NSWH

∑

j,w,h

(1−D(F (xj
T ))wh)

2 , (6)

where H and W are the height and width of the output feature map of the
domain classifier.

3.4 Domain Diversity via Entropy Regularization

The ultimate goal of domain adaptation is to achieve good performance on the
target domain. However, a model that only learns the domain-invariance is not
an optimal solution for the target domain, as

ǫT (h) ≤ ǫT (h
a) + ǫT (h, h

a), (7)

where ha = argminh∈H[ǫS(h) + ǫT (h)]. Moreover, in the absence of ground
truth labels for target samples, the learning of domain-invariance largely relies
on the source samples, which might lead to overfitting on the source domain and
limiting its ability to generalize well on target domain. Therefore, it is crucial
to introduce the domain-diversity into the training to encourage more emphasis
on target-specific information.

We define the domain diversity as a combination of two regularizations:
(1) maximum entropy regularization on the source domain to avoid overfitting
and (2) minimum entropy regularization on unlabeled target domain to lever-
age target-specific information. Low entropy corresponds to high confidence. To
avoid the overfitting when training with source data, we utilize the maximum
entropy regularizer [47] to penalize the confident predictions with low entropy:

max
θS

H(fθS (XS)) = −

NS
∑

i=1

fθS (x
i
S) log(fθS (x

i
S)) . (8)

On the contrary, to leverage unlabeled target domain data, we exploit the min-
imum entropy regularizer. The entropy minimization has been used for un-
supervised clustering [51], semi-supervised learning [52] and unsupervised do-
main adaptation [9, 53] to encourages low density separation between clusters or
classes. Here, we minimize the entropy of class conditional distribution:

min
θT

H(fθT (XT )) = −

NT
∑

j=1

fθT (x
j
T ) log(fθT (x

j
T )) . (9)

We define the objective of domain diversity is to minimize the following function:
Ldiv(XS ,XT ) = −H(fθS (XS)) + H(fθT (XT )) . (10)

3.5 Overall Objective

To learn domain-invariance for adapting object detectors, we perform gradient
alignment for high-level semantics and domain adversarial training on local fea-
tures for low-level information. The loss function of domain-invariance is:

Linv(XS ,YS ,XT ) = Lg(XS ,YS ,XT ) + λLadv(XS ,XT ) , (11)
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Algorithm 1 Forward-Backward Cyclic Domain Adaptation for Object Detec-
tion

Input: Source samples {xi
S , y

i
S}

NS

i=1, target samples {xj
T }

NT

j=1, ImageNet pre-trained
model θ0, hyperparameters α, β, γ, λ, number of iterations Nitr

Output: A shared model θ
1: Initialize θ with θ0
2: for t in Nitr do

3: //Backward Hopping:

4: θ
(t)
S ← θ

5: for i, j in NS , NT do

6: θ
(t)
S ← θ

(t)
S − α∇

θ
(t)
S

(L
θ
(t)
S

(xi
S , y

i
S) + λLadv(xi

S , x
j
T )− γH(f

θ
(t)
S

(xi
S)))

7: end for

8: θ ← θ − βθ
(t)
S

9: Generate pseudo labels ŷT = f
θ
(t)
S

(xj
T ), j = 1, ..., NT

10: //Forward Passing:

11: θ
(t)
T ← θ

12: for j in NT do

13: θ
(t)
T ← θ

(t)
T − α∇

θ
(t)
T

(L
θ
(t)
T

(xj
T , ŷ

j
T ) + γH(f

θ
(t)
T

(xj
T )))

14: end for

15: θ ← θ − βθ
(t)
T

16: end for

where λ balances the trade-off between gradient alignment loss and adversarial
training loss.

Maximizing the domain-diversity contradicts the intention of learning domain-
invariance. However, without access to the ground truth labels of target samples,
the accuracy of the target samples relies on the domain-invariance information
learned from the source domain. Consequently, it is important to accomplish
the trade-off between learning domain-invariance and domain-diversity. We use
a hyperparameter γ to balance the trade-off. Our overall objective function is

min
θ

Linv(XS ,YS ,XT ) + γLdiv(XS ,XT ) . (12)

The full algorithm is outlined in Algorithm 1.

4 Experiments

In this section, we evaluate the proposed forward-backward cycling adaptation
approach (FBC) on four cross-domain detection datasets.

4.1 Implementation Details

Following DA-Faster [21] and SWDA [22], we use the Faster-RCNN [1] as our de-
tection framework. All training and test images are resized with the shorter side
of 600 pixels and the training batch size is 1. Our method is implemented using
Pytorch. The source only model is fine-tuned on the pre-trained ImageNet [56]
model with labeled source samples without adaptation For the evaluation, we
measure the mean average precision (mAP) with a threshold of 0.5 across all
classes. More details are shown in supplementary materials.
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Table 1. Results (%) on the adaptation from PASCAL [58] to Clipart Dataset [59].
The DA-Faster†is the reported result in SWDA [22].

Method aero bike bird boat
bot-
tle

bus car cat chair cow
ta-
ble

dog
hor-
se

mo-
tor

prsn plnt sheep sofa train tv mAP

Source Only 24.2 47.1 24.9 17.7 26.6 47.3 30.4 11.9 36.8 26.4 10.1 11.8 25.9 74.6 42.1 24.0 3.8 27.2 37.9 29.9 29.5

DA-Faster†[21] 15.0 34.6 12.4 11.9 19.8 21.1 23.2 3.1 22.1 26.3 10.6 10.0 19.6 39.4 34.6 29.3 1.0 17.1 19.7 24.8 19.8
SWDA [22] 26.2 48.5 32.6 33.7 38.5 54.3 37.1 18.6 34.8 58.3 17.0 12.5 33.8 65.5 61.6 52.0 9.3 24.9 54.1 49.1 38.1

FBC (ours) 43.9 64.4 28.9 26.3 39.4 58.9 36.7 14.8 46.2 39.2 11.0 11.0 31.1 77.1 48.1 36.1 17.8 35.2 52.6 50.5 38.5

4.2 Adaptation between Dissimilar Domains

We evaluate the adaptation performance on two pairs of dissimilar domains:
PASCAL [58] to Clipart [59], and PASCAL [58] to Watercolor [59]. For the two
domain shifts, we use the same source-only model trained on PASCAL. Following
SWDA [22], we use ResNet101 [60] as the backbone network for Faster R-CNN
detector and the settings of training and test sets are the same.

Datasets. PASCAL VOC dataset [58] is used as the source domain in these two
domain shift scenarios. This dataset consists of real images with 20 object classes.
The training set contains around 15K images. The two dissimilar target domains
are Clipart dataset [59] with comic images and Watercolor dataset [59] with
artistic images. Clipart dataset has the same 20 object classes as the PASCAL,
while Watercolor only has six. Clipart dataset contains 1K comic images, which
are used for both training (without labels) and testing. There are 2K images in
the Watercolor dataset: 1K for training (without labels) and 1K for testing.

Results on the Clipart Dataset [59]. In the original paper of DA-Faster [21],
they do not evaluate the Clipart and Watercolor datasets. Thus, we follow with
the results of DA-Faster [21] reported in SWDA [22]. As shown in Table 1,
in comparison to the source only model, DA-Faster [21] degrades the detection
performance significantly, with a drop of 8 percentage points in mAP. DA-Faster
[21] adopts two domain classifiers on both image-level and instance-level features.
However, the source/target domain confusion without considering the semantic
information will lead to the wrong alignment of semantic classes across domains.
The problem is more challenging when domain shift in object detection is large,
i.e., PASCAL [58] to Clipart [59]. In Clipart, the comic images contain objects
that are far different from those in PASCAL w.r.t. the shapes and appearance,
such as sketches. To address this, the SWDA [22] conducts a weak alignment on
the image-level features by training the domain classifier with a focal loss. With
the additional help of a domain classifier on lower level features and context
regularization, the SWDA [22] can boost the mAP of detection from 27.8%
to 38.1% with an increase of 10.3 points. Our proposed FBC can achieve the
highest mAP of 38.5%. In the ablation studies (Table 2), we can see that using
gradient alignment only could also obtain good performance in this challenging
adaptation scenario.

Results on the Watercolor Dataset [59]. The adaptation results are sum-
marized in Table 3. In Watercolor, most of the images contain only one or two
objects with less variations of shape and appearance than those in the Clipart.
As reported in SWDA [22], the source only model can achieve quite good results
with an mAP of 44.6% and DA-Faster [21] can improve it slightly by only 1.4
points. SWDA [22] performs much better than DA-Faster [21] and obtain a high
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Table 2. Ablation studies of the proposed method on the adaptation from PAS-
CAL [58] to Clipart Dataset [59]. G: gradient alignment, L: local feature alignment
and D: domain diversity.

G L D aero bike bird boat
bot-
tle

bus car cat chair cow
ta-
ble

dog
hor-
se

mo-
tor

prsn plnt sheep sofa train tv mAP

X 28.8 64 21.1 19.1 39.7 60.7 29.5 14.2 46.4 29.3 21.8 8.9 28.8 72.7 51.3 32.9 12.8 28.1 52.7 49.5 35.6
X X 32.1 57.6 24.4 23.7 34.1 59.3 32.2 9.1 40.3 41.3 27.8 11.9 30.2 72.9 48.8 38.3 6.1 33.1 46.5 48 35.9

X 31.8 53.0 21.3 25.0 36.1 55.9 30.4 11.6 39.3 21.0 9.4 14.5 32.4 79.0 44.9 37.8 6.2 35.6 43.0 53.5 34.1
X X X 43.9 64.4 28.9 26.3 39.4 58.9 36.7 14.8 46.2 39.2 11.0 11.0 31.1 77.1 48.1 36.1 17.8 35.2 52.6 50.5 38.5

Table 3. Results (%) on the adaptation from PASCAL [58] to Watercolor [59]. The
DA-Faster†is the reproduced result in SWDA [21]. G: gradient alignment, L: local
feature alignment and D: domain diversity.

Method G L D bike bird car cat dog prsn mAP
Source Only (ours) 66.7 43.5 41.0 26.0 22.9 58.9 43.2
DA-Faster† [21] 75.2 40.6 48.0 31.5 20.6 60.0 46.0
SWDA [22] 82.3 55.9 46.5 32.7 35.5 66.7 53.3

FBC (ours)
X 90.0 46.5 51.3 33.2 29.5 65.9 52.9
X X 88.7 48.2 46.6 38.7 35.6 64.1 53.6

X 89.0 47.2 46.1 39.9 27.7 65.0 52.5
X X X 90.1 49.7 44.1 41.1 34.6 70.3 55.0

mAP of 53.3%. The gain from adaptation is 8.7 points. The mAP of our pro-
posed FBC is 55.0%, which is 1.5% higher than that of SWDA. Even without the
local feature alignment via adversarial training, our proposed forward-backward
cyclic adaptation method (53.6%) can achieve state-of-the-art performance.
Feature Visualization. To visualize the adaptability of our method, we use the
Grad-cam [61] to show the evidence (heatmap) for the last fully connected layer
in the object detectors. The high value in the heatmap indicates the evidence why
the classifiers make the classification. Fig. 5 shows the differences of classification
evidence before and after adaptation. As we can see, the adapted detector is able
to classify the objects (e.g., persons) based on more semantics (e.g., faces, necks,
joints). It demonstrates that the adapted detector has addressed the discrepancy
on the appearance of real and cartoon objects.

4.3 Adaptation from Synthetic to Real Images

As the adaptation from the synthetic images to the real images can potentially
reduce the efforts of collecting the real data and labels, we evaluate the adapta-
tion performance in the scenario of Sim10k [62] to Cityscapes [63].
Datasets. The source domain, Sim10k [62], contains synthetic images that
are rendered by the computer game Grand Theft Auto (GTA). It provides
58,701 bounding box annotations for cars in 10K images. The target domain,
Cityscapes [63], consists of real images captured by car-mounted video cameras
for driving scenarios. It comprises 2,975 images for training and 500 images for
validation. We use its training set for adaptation without labels and validation
set for evaluation. The adaptation is only evaluated on class car as Sim10k only
provides annotations for car.
Results. Results are shown in Table 4. The reported mAP gain of DA-Faster [21]
in its original report (7.8 points) is significantly different from its reproduced gain
(-0.4 points) in SWDA [22]. It implies that a lot of efforts are needed to reproduce
the reported results of DA-Faster [21]. Our proposed FBC has a competitive
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Fig. 5. Feature visualization for showing the evidence for classifiers before and after
domain adaptation using Grad-cam [61].

Table 4. Results (%) on the adaptation from Sim10k [62] to Cityscapes [63]. The DA-
Faster†is the reproduced result in SWDA [21]. G: gradient alignment, L: local feature
alignment and D: domain diversity.

Method G L D AP on Car
Source Only (ours) 31.2
DA-Faster [21] 39.0
DA-Faster† [21] 34.2
MAF [37] 41.1
SWDA [22] 42.3
Zhu et al. [23] 43.0
iFAN [24] 46.2

FBC (ours)
X 38.2
X X 39.2

X 41.4
X X X 42.7

result of mAP, 42.7%, which is 0.4% higher than that of SWDA and on par
with that of Zhu et al. (43 %). iFAN et al. [24] achieve the best performance
with an mAP of 46.2%. We note that for image-level adaptation, iFAN adopts
four domain classifiers for aligning multi-level features, whereas we only align
the features from a single layer. Despite this, our proposed method could obtain
better results than iFAN in the adaptation from Cityscapes to FoggyCityscapes.

4.4 Adaptation between Similar Domains

Datasets. The target dataset, FoggyCityscapes [64], is a synthetic foggy dataset
where images are rendered from the Cityscapes [63]. The annotations and data
splits are the same as the Cityscapes. The adaptation performance is evaluated
on the validation set of FoggyCityscapes.

Results. It can be seen in Table 5 that our proposed FBC method outperforms
the baseline methods, which boosts the mAP to 36.7%. It is noteworthy that
MAF (34.0%), iFAN (35.5 %) and Xie et al. (36.0 %) utilize multiple domain
classifiers for multi-layer image-level feature alignment, whereas we only use
single-layer features. If without the local feature alignment, our proposed method
can only obtain limited gain. It is because, in this scenario, the main difference
between these two domains is the local texture. But with the combination of
gradient alignment and domain diversity, our full model could achieve state-of-
the-art performance.

t-SNE Visualization. We visualize the differences of features before and after
adaptation via t-SNE visualization [65] in Fig. 6. The features are output from
the ROI pooling layer and 100 images are randomly selected. After adaptation,
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Table 5. Results (%) on the adaptation from Cityscapes [63] to FoggyCityscapes
Dataset [64]. G: gradient alignment, L: local feature alignment and D: domain diversity.

Method G L D prsn rider car truck bus train motor bcycle mAP
Source Only (ours) 22.4 34.2 27.2 12.1 28.4 9.5 20.0 27.1 22.9
DA-Faster [21] 25.0 31.0 40.5 22.1 35.3 20.2 20.0 27.1 27.6
Zhu et al. [23] 33.5 38.0 48.5 26.5 39.0 23.3 28.0 33.6 33.8
MAF [37] 28.2 39.5 43.9 23.8 39.9 33.3 29.2 33.9 34.0
SWDA [22] 29.9 42.3 43.5 24.5 36.2 32.6 30.0 35.3 34.3
Diversify&Match [38] 30.8 40.5 44.3 27.2 38.4 34.5 28.4 32.2 34.6
iFAN [24] 32.6 48.5 22.8 40.0 33.0 45.5 31.7 27.9 35.3
Xie et al. [39] 33.2 44.2 44.8 28.2 41.8 28.7 30.5 36.5 36.0

FBC (ours)
X 25.8 35.6 35.5 18.4 29.6 10.0 24.5 30.3 26.2
X X 29.0 37.0 35.6 18.9 32.1 10.7 25.0 31.3 27.5

X 31.6 45.1 42.6 26.4 37.8 22.1 29.4 34.6 33.7
X X X 31.5 46.0 44.3 25.9 40.6 39.7 29.0 36.4 36.7

Source and Target Features  Target Features

Before Adaptation

Source object Detected target object Non-detected target object

After Adaptation
(mAP: 22.9) (mAP: 36.7)

Source and Target Features  Target Features

Fig. 6. t-SNE visualization of features before and after domain adaptation from
Cityscape to FoggyCityScape. Different colors represent different classes. Target fea-
tures are displayed alone on the right for better visualization.

the distributions of source and target features are well aligned with regard to the
object classes. More importantly, as shown in Fig.6, different classes are better
distinguished and more target objects are detected for each class after adapta-
tion. This demonstrates the effectiveness of our proposed adaptation method for
object detection.

5 Conclusions

We address unsupervised domain adaptation for object detection task where
the target domain does not have labels. A forward-backward cyclic adaptation
method is proposed. This method was based on the intuition that domain invari-
ance of category-level semantics could be learned when the gradient directions of
source and target were aligned. Theoretical analysis was presented to show that
the proposed method achieved the gradient alignment goal. Local feature align-
ment via adversarial training was performed for learning domain-invariance of
holistic color/textures. Furthermore, we proposed a domain diversity constraint
to penalize confident source-specific learning and intrigue target-specific learning
via entropy regularization.
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