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Abstract. Deep learning based object detectors are commonly deployed
on mobile devices to solve a variety of tasks. For maximum accuracy, each
detector is usually trained to solve one single specific task, and comes
with a completely independent set of parameters. While this guarantees
high performance, it is also highly inefficient, as each model has to be
separately downloaded and stored. In this paper we address the ques-
tion: can task-specific detectors be trained and represented as a shared
set of weights, plus a very small set of additional weights for each task?
The main contributions of this paper are the following: 1) we perform
the first systematic study of parameter-efficient transfer learning tech-
niques for object detection problems; 2) we propose a technique to learn
a model patch with a size that is dependent on the difficulty of the task
to be learned, and validate our approach on 10 different object detection
tasks. Our approach achieves similar accuracy as previously proposed
approaches, while being significantly more compact.

1 Introduction

Mobile object detection models are fundamental building blocks for daily-used
mobile applications. For example, face detectors are used for locking/unlocking
the latest generation phones and for building social apps such as Snapchat. In
the early years, most computer vision models were deployed on servers, which
meant that images had to be sent from the device to the server and that users had
to wait for the server responses. This process was sensitive to network outages,
provided on-device latency that was often not tolerable, and burdened the server
clusters with high loads of client requests.

With the advance of mobile hardware technology, on-device computation
became more and more affordable. Meanwhile, advances in neural network ar-
chitectures made model inference increasingly more efficient. On the one hand,
MobileNets [1,2,3] optimize the network architecture by decomposing convolu-
tions into more efficient operations. Such designs provide general and compact
backbones for mobile inference. On the other hand, one-stage detection archi-
tectures such as SSD [4] and Yolo [5] provide mobile-friendly detection heads.

⋆ Work partially done during an internship at Google.



2 K. Ye et al.

10Mb

Update the 

existing mobile 

detector
10Mb

400Kb

Fig. 1: The challenge of updating a mobile object detector. Suppose a
general-purpose object detector is already deployed on-device. In a naive set-
ting, adding support for detecting new entities would require downloading a
completely separate model, with large network costs. Our goal is to reduce the
network costs by “patching” the existing model to also support the new entities.

Due to the combination of the above advancements, object detection mod-
els are now massively being moved from server-side to on-device. While this
constitutes great progress, it also brings new challenges (see Fig. 1). Specifically,
multiple isolated models are often downloaded to perform related tasks. Suppose
that a well-performing mobile model is downloaded for general-purpose object
detection, with 10MB data traffic costs. Suppose then that the user requests an
additional functionality that requires detecting new entities, like faces or bar-
codes: this will naively require to download a new model, with an extra 10MB
data cost. Each time a new task will need to be supported, the user and the net-
work operator will incur an additional 10MB data cost. The question is then: can
we instead “patch” the previously downloaded general-purpose object detector
to solve also the new tasks? If so, how can we minimize the size of the “patch”
while maintaining high accuracy on the new task? To answer these questions,
we studied two experimental scenarios that mimic two practical use-cases for
“patching” mobile detection models:
1. Adapting an object detector to solve a new task.
2. Updating an existing model, whenever additional training data is available.

To learn the model patch, we propose an approach simultaneously optimizing
for accuracy and footprint (see Fig. 2 for an overview): 1) for each layer, we
minimize the size of the patch by using a 1-bit representation of the weight
residuals; 2) we employ a gating mechanism to selectively patch only important
layers, while reusing the original weights for the remaining ones. We evaluate
our problem on ten different object detection tasks, using an experimental setup
similar to [6], which we refer to as “Detection Decathlon”. We also showcase
our method’s ability to efficiently update the model when new data becomes
available. To the best of our knowledge, this is the first systematic study of
parameter-efficient transfer learning techniques on object detection tasks.

2 Related Work

The most relevant approaches for our work fall into three main categories: (1)
Model footprint reduction, aimed at reducing the number of trainable param-
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Fig. 2: SpotPatch: demonstrating the gating mechanism. During training,
our model optimizes both the detection performance and the number of patched
layers by opening, or closing per-layer gates. During deployment, only the opened
routes constitute the model patch. We use a 1-bit representation for the weights
residuals, significantly reducing the patch footprint.

eters, or the bit-size representation for each parameter. (2) Dynamic routing,
adapting the network architecture at training time, based on well-designed cost
functions. (3) Transfer learning and domain adaptation, ensuring representation
transferability across tasks and domains.

Reducing the model footprint works involve various approaches that
directly reduce the model size. Instead of fine-tuning the whole network [7] or
the last few layers [8,9,10], [11] proposed to learn a set of parameters dispersed
throughout the network. They experimented with updating batch normalization
and depthwise convolution kernels, resulting in small model patches providing
high classification accuracy. Similar findings were also published in [12].

Quantization is a technique commonly used in on-device models to reduce
model size. Post-training quantization [13] can be applied to quantize a pre-
trained floating-point precision model, while quantization-aware training [14,15,16,17]
ensures that the quantization effects are already modeled at training time.

Ideas inspired by the quantization literature are used in transfer and multi-
task learning to reduce the footprint of the model for the target tasks. For
example, in [18], learned binary masks are element-wise multiplied to the source
kernels to obtain the convolutional kernels to be used on the target task. In [19],
the binary masks are augmented with floating-point scalars to produce an affine
transformation of the kernel. Our method learns similar kernel masks, but we
go one step further by automatically selecting the subset of layers to patch.

Dynamic routing works adapt the network structure to optimize a pre-
defined objective. [20] trained a gating network selecting a sparse combination
of experts based on input examples. [21] created a model allowing selective ex-
ecution. In their setting, given an input, only a subset of neurons is executed.
[22] reduced the number of ResNet [23] layers by bypassing residual blocks using
a gating mechanism. [24] built a dynamic routing network to choose between
using either the pre-trained frozen blocks, or the re-trained blocks.

Our approach differs from all these studies in that: (1) our dynamic model
architecture is conditioned on dataset rather than on input; (2) we optimize
(reduce) the number of patched layers; and (3) one of the route types, in our
design, is specialized to use binary weights to further reduce footprint.
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Transfer learning and domain adaptation works study the ability of
models to transfer across tasks, in terms of achieving optimal accuracy in novel
situations. In transfer learning, the target label set might differ from the source
task. In domain adaptation, the classes may be the same, but have inherently
different distributions. Some transfer and adaptation techniques minimize the
discrepancy between tasks or domains in terms of the feature representation
[25,26,27,28,29,30,31,32,33,34]. If the classes are the same, the deviation between
classifier weights across domains can be minimized [35,36]. One of the most
established recent benchmarks for transfer of classification networks is the Visual
Decathlon Challenge [6], in which a decathlon-inspired scoring function is used
to evaluate how well a single network can solve 10 different classification tasks. In
the object detection literature, [37] proposes to use a source domain to generate
boxes of different levels of class-specificity, to transfer to a target domain where
only image-level labels are available. In contrast to optimizing accuracy despite
limited data in the target domain, as is often the objective of domain adaptation,
in this work we are concerned with preserving high accuracy while minimizing
the footprint of the task-specific model patches.

3 Approach

To simplify notation, we assume a deep neural network M of depth N is com-
posed of a set of layers represented by their weights θ = {W1, . . . ,WN}, plus
an activation function Φ. The transformation computed by the network is rep-
resented using Eq. 1, where x is the input and zi denotes the i-th hidden state.

{

zi = Φ(Wizi−1), z0 = x

M(x) = WNzN−1

(1)

To adapt M to solve a new task, we seek a task-specific parameter θ′ =
{W′

1, . . . ,W
′

N} that optimizes the loss on the target dataset. In addition, since
we do not want to fully re-learn θ′, we look for a transformation with minimum
cost (measured in terms of footprint) to convert the original θ to θ′. Assume the
transformation function can be expressed as θ′ = f(θ,γ) where γ is an additional
set of parameters for the new task, and f is a function that combines the original
parameters θ with the parameter “patch” γ (as a very simple example, through
addition). Our goal is to reduce the bit size of γ. In our experiments, we use

relative footprint bitsize(γ)
bitsize(θ) and patch size bitsize(γ) as footprint metrics.

We propose two approaches to compress the patch γ, namely task-specific
weight transform and spot patching. The former is inspired by the early Adaptive-
SVM approaches such as [38,36], their Deep Neural Network counterparts such as
[19], as well as quantization methods [15] and the low-rank representations [39].
The latter is inspired by the dynamic routing approaches such as [24] and channel
pruning methods such as [40,41].
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Fig. 3: The weight patching model. The pre-trained weights are augmented
using a task-specific scaled sign matrix. For deployment, only the binary masks
Mi and the scaling factors ωi are stored in the model patch.

3.1 Task-specific weight transform

We denote the pre-trained weights by θ = {W1, . . . ,WN} and define the task-
specific weight trasformation as:

W′

i = Wi + ωiSi (2)

where Si is a 1-bit matrix of the same shape as Wi containing {−1,+1} and
ωi is a scaling factor. For implementation convenience we use Mi as a 1-bit
mask tensor with values in {0, 1}, and define Si = 1− 2Mi. This formulation is
equivalent to Eq. 2 in [19], with k0 set to 1, and k2 set to −2k1. The reason we
instead chose our formulation is that we empirically found the learned k2 in [19]
to be roughly distributed as −2k1. We thus directly formulated Eq. 2 as learning
a properly scaled zero-centered residual.

The incremental footprint of the model in Eq. 2 is {ωi,Mi| i ∈ {1, . . . , N}},
or roughly 1-bit per model weight, with a negligible additional cost for the per-
layer scalar ωi. To learn the 1-bit mask Mi, we follow the same approach as [18]
and [19]. We define the process in Eq. 3, and illustrate it in Fig. 3. During train-
ing, real-valued mask variables are maintained (Ri in Eq. 3) and differentiable
binarization is applied to learn the masks. The binarization function is a hard
thresholding function, and its gradient is set to that of the sigmoid function σ.
After training, only the binarized masks and the per-layer scaling factors are
used to deploy the model patch.

Mi = Binarize(Ri) (3)

3.2 Spot patching

Assuming a 32-bit float representation, the task-specific weight transform pro-
duces patches 1/32 the size of the original network, regardless of the target
dataset. However, our intuition is that the difficulty of adapting a model should
also depend on the target dataset, so the footprint should vary for different tasks.
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We design a gating mechanism to adapt the model complexity to different
tasks. The process is defined in Eq. 4, and Fig. 2 shows the idea. Simply speaking,
we add a gate gi for each network layer. The layer uses the original pre-trained
weights if the gate value is 0; otherwise, the layer uses weight transform to update
the parameters. The benefit of using the gating indicator gi is that it allows
to search for a task-specific subset of layers to patch, rather than patching all
layers. Compared to patching the whole network, it reduces the patch footprint
to γ = {ωi,Mi| i ∈ {1, . . . , N} and gi = 1}.

W′

i = Wi + gi
︸︷︷︸

gating

ωi(1− 2Mi) (4)

gi = Binarize(fi) (5)

To learn gi, we simply use the same differentiable binarization trick as for learn-
ing the Mi. In Eq. 5, fi is real-valued, and it is only used during training. To
force the number of patched layers to be small, we minimize the number of
patched layers

∑N

i=1 gi in the training loss (see next Section 3.3).
SpotPatch gating module design follows the same vein of dynamic routing

approaches, especially [24]. The difference with respect to [24] lies in the fact that
SpotPatch applies binary quantization to the tuning route (Sec. 3.1), greatly
reducing the footprint. On the one hand, SpotPatch gating module can be seen
as a simpler version of [24], in that we use the same differentiable binarization
trick for both generating the binary masks, and directly optimizing the gating
variables. On the other hand, our loss function explicitly minimizes the number of
patched layers (see next Section 3.3), hence delivering a task-adaptive footprint,
rather than a fix-sized one as in [24]. For example, [24] would provide a 300%,
or 1000% footprint increase (they provided two models) to solve 10 classification
tasks, while our method only requires an extra 35% footprint to solve 9 additional
object detection tasks.

3.3 Our final task-adaptive detector

Our final model on a new task is similar to Eq. 1, with the parameters replaced
by Eq. 4. During training, we use floating-point numbers and differentiable bi-
narization (Eq. 3 and Eq. 5). During deployment, bit representations are used
to efficiently encode the learned patch. Since the Batch Normalization layers did
not constitute much of the footprint, we also trained task-specific Batch Normal-
ization layers in addition to the convolutional weight residuals ([19] also patches
BN layers). We use Eq. 6 to optimize the task-specific patch γ:

L(γ) = Ldet(γ) + λspsLsps(γ) + λadpLadp(γ) (6)

where: Ldet(γ) is the detection loss optimizing both the class confidence scores

and the box locations. Lsps(γ) =
∑N

i=1 gi is the sparsity-inducing loss, pushing

the number of patched layers to be small. Finally, Ladp(γ) =
∑N

i=1‖ωi‖
2
2 is the

domain-adaptation loss forcing the scaling factors ωi to be small, and thus θ′ to
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be similar to θ. In this way, the pre-trained general-purpose source model serves
as a strong prior for the task-specific target model. A similar loss to Ladp has
been employed in prior domain adaptation works [36,38], to force the adapted
weights to be small and train accurate models with limited data. We provide an
ablation study for λsps in Sec. 4.4, while for λadp we use the constant value of
2E-5, as selected in preliminary experiments.

4 Experiments

We propose two scenarios for patching a mobile object detector, and design
experiments to validate our model for both use-cases.

Adapting an object detector to solve a new task. For this scenario (Sec. 4.1),
assume that we released a mature generic object detector to our users. However,
if the user wants to perform a new unsupported detection task, we need to adapt
the generic detector to solve the new task. For example, we may transform it
into a product detector, or we may turn it into a pet detector. In this scenario,
the challenge is to accurately and efficiently solve the new task.

Updating an existing detection model, whenever additional training data for
the same task is available. For this use-case (Sec. 4.2), suppose we released an
initial mobile model. We gather more training data after the model is released
to the users. We then want to update the users models to improve the accuracy,
while keeping the download byte size to be small. In this case, we assume that
there is no significant shift in the data distribution, yet the initial model may
be inaccurate because of the cold start.

In addition to the above settings, in Sec. 4.3 we consider the more practical
8-bit model quantization scenario. In Sec. 4.4 we study the effect of the sparsity
constraint. In Sec. 4.5 we provide visualizations of the learned model patches.

Implementation details. Our experimental configuration is based on the SSD-
FPNLite architecture [42,43], a practical mobile-friendly architecture. Slightly
departing from the original configuration, we use the MobileNetV2 [3] architec-
ture with 320× 320 inputs.

Baselines. We compare with the following transfer learning baselines:
– Fine-Tuning [44]: This method fine-tunes the whole network. It provides a

strong baseline in terms of accuracy, at the expense of a very large footprint.
– Tower Patch [44]: This method re-trains only the parameters in the detec-

tion head of the model. It is an adaptation and enhancement of the classifier
last layer fine-tuning method, for object detection.

– Bn Patch [11], Dw Patch [11], Bn+Dw Patch [12,11]: These methods
learn task-specific BatchNorm, Depthwise, or BatchNorm + Depthwise lay-
ers, respectively. They provide a patch with a tiny footprint.

– Piggyback [18]: Learns task-specific binary masks, and uses element-wise
multiplication to apply the masks and obtain the task-specific convolutional
kernels. Since the masks are binary, the 1-bit patch has a very low footprint.
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Table 1: Detection Decathlon datasets. Number of samples and classes for
each dataset used in our benchmark. Some datasets did not provide testing
annotations; we thus evaluate on the held-out validation sets.
Name #Trainval #Eval #Classes Name #Trainval #Eval #Classes

OID[45] 1,668,276 - 601 Face[46] 12,880 3,226 1
Birds[47] 3,000 3,033 200 Kitti[48] 6,981 500 2
Cars[49] 8,144 8,041 196 Pet[50] 3,180 500 37
COCO[51] 118,287 5,000 80 RPC[52] 5,400 600 200
Dogs[53] 12,000 8,580 120 VOC[54] 16,551 4,952 20

– WeightTrans [19]: This baseline also relies on binary masks. It applies
affine transformations on the masks to get the task-specific kernels.
We reproduced all approaches using the SSD-FPNLite architecture for the

following reasons: 1) most papers only report results for classification tasks,
or for a few detection datasets; 2) implementations based on different network
architectures make comparing the footprint challenging. In all our experiments
we thus use our implementation of these methods. We did not re-implement and
evaluate [24], as this approach creates weight residuals with the same bit-size
as the original ones, i.e. full float kernels. It is thus not effective at significantly
reducing the patch footprint, requiring as large as 3x or 10x (compared to the
original model) additional footprints on the Visual Decathlon Challenge. As
explained in next Section 4.1, we use finetuning as the baseline for parameter-
inefficient transfer learning.

Metrics. To evaluate the detection performance, we use the mAP@0.5, which
is the mean Average Precision over all classes, considering the generous threshold

of IoU ≥ 0.5. For the footprint, we report the ratio bitsize(γ)
bitsize(θ) between the size

of the additional parameters γ necessary to solve the new tasks, and the size of
the original model θ. Sec. 4.1 and 4.2 consider 32-bit float models, in which the
footprint metric is identical to that of Visual Decathlon Challenge [6]. In this
case (32-bit float), the 1-bit binary masks (e.g., [18,19]) reduce the representation
footprint by 32x. Sec. 4.3 considers instead the 8-bit representation, as it is more
relevant for mobile applications.

4.1 Detection Decathlon

We use the OpenImages V4 [45] as the dataset for training the generic ob-
ject detection model. This is a large-scale dataset featuring 1.74 million images
of common objects from 600 different classes. Our fully-trained mobile model
achieves 27.6% mAP@0.5 on the OpenImage V4 validation set. We then con-
sider adapting the OpenImage V4 pre-trained model to nine additional detection
tasks (see Tab. 1), and compare models on the basis of how well they solve all
the problems (mAP@0.5), and how small is their footprint.

Below is a description of the detection datasets used in the Detection De-
cathlon problem. The Caltech-UCSD Birds [47] (Bird), Cars [49] (Car), and
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Fig. 4: Per-dataset footprint. SpotPatch footprint varies between that of
Piggyback and that of BN Patch, depending on the complexity of the task.

Stanford Dogs [53] (Dog) are fine-grained categorization datasets. They provide
center-view objects with bounding box annotations. The WiderFace [46] (Face)
and Kitti [48] (Kitti) are human-related datasets. The former features human
faces in different contexts and scales; the latter features vehicles and pedestri-
ans for self-driving studies. The Oxford-IIIT Pet [50] (Pet) and Retail Product
Checkout [52] (RPC) require both the fine-grained classification as well as lo-
calization. They involve many categories that appear in different locations and
scales. Finally, the Pascal VOC [54] (VOC) and COCO [51] (COCO) are com-
mon object detection datasets. The class labels defined in them are subsets of
those in OpenImage V4.

Different from the Visual Decathlon challenge, we assume the performance
and footprint of the model on the original task (OpenImages V4) are unchanged,
and only compare the models accuracy and footprint on the remaining nine tasks.
We refer to the above problem as the Detection Decathlon problem. Similarly
to [6] we also provide a decathlon-inspired scoring function to evaluate the per-
formance of each method on the benchmark:

Score = 10000
1

D

D∑

d=1

(

|sd − bd|
+

1− bd

)2

(7)

where: the score sd is the mAP of the considered approach on the d task; bd is the
score of a strong baseline on the d task; 10,000 is the maximum achievable score,
andD is the total number of tasks to be solved. Similarly to [6], we select bd to be
the mAP of Fine-Tuning on task d, and normalize it so that its total score on
the benchmark is 2,500. Specifically we set: bd = 2 mAPd(Fine-Tuning) − 1.

To compare efficiency and effectiveness of different methods using one single
metric, we finally report the Score/Footprint ratio [19]. For a given method, this
metric practically measures the performance achieved for every Mb of footprint.

Tab. 2 and Fig. 4 shows our main results. Our first observation is that patch-
ing an object detector is more challenging than patching a classifier. Notably,
none of the tested methods matches the Fine-Tuning Score, or mAP. The
enhanced last layer fine-tuning method, Tower Patch, only achieves 33% of
the Fine-Tuning score. Patching dispersed bottleneck layers provides reason-
able improvements. For example in terms of Score, Bn Patch, DW Patch,
and Bn+Dw Patch are 10.0%, 8.6%, and 22.4% relatively better than Tower

Patch, and they all provide less than 0.50 footprints. However, the gap with
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Table 2: Detection Decathlon. Footprint, per-dataset mAP, Average mAP,
Score and Score / Footprint for each method. Best method (other than fine-
tuning) in bold, second-best underlined. High score, low footprint, and high
score/footprint ratio is good. Ours is the most parameter-efficient method in
terms of Score/Footprint. It achieves mAP and Score comparable to the most
accurate approach (WeightTrans 65.2%), with a 24% reduction in footprint.
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Fine-Tuning 9.00 40.8 90.4 39.7 68.5 35.6 71.9 90.9 99.5 68.3 67.3 2500 278

Tower Patch 0.35 10.0 25.5 31.4 21.2 29.1 49.7 66.1 87.6 70.6 43.5 827 2362
Bn Patch 0.19 22.6 71.6 30.2 47.8 26.0 50.7 80.6 92.0 71.1 54.7 910 4789
Dw Patch 0.34 22.6 69.2 30.7 43.6 26.4 52.1 80.0 92.6 70.8 54.2 898 2642
Bn+Dw Patch 0.50 27.3 80.9 31.0 52.7 28.0 53.1 83.3 95.7 70.6 58.1 1012 2023
Piggyback 0.30 32.2 87.5 32.4 60.8 28.6 57.4 87.7 97.0 66.0 61.1 1353 4509
WeightTrans 0.46 36.6 90.3 37.2 66.6 30.6 65.3 90.5 98.7 70.7 65.2 19874319

Ours 0.35 35.8 89.8 36.6 63.3 30.1 64.0 90.3 98.9 70.6 64.4 1858 5310

respect to Fine-Tuning is still large. They only maintain less than 40.5% of
the Fine-Tuning Score. The kernel quantization methods Piggyback and
WeightTrans maintain at least 54.1% of the Fine-Tuning Score, while keep-
ing the footprint below 0.46. SpotPatch achieves comparable performance to
WeightTrans at only a 0.35 footprint. It also maintains 74.3% of the Fine-

Tuning Score.
Our approach provides the best tradeoff by being parameter-efficient and yet

accurate, as measured by the Score/Footprint ratio. This is achieved by learning
patches with a task-adaptive footprint, resulting on average in a 24% footprint
reduction with respect to WeightTrans, with only minor loss in accuracy.

4.2 Model updating

For this experiment, we use the COCO dataset [51]. First, we trained detection
models (initialized from ImageNet[55] pre-trained model) on 10%, 20%, 40%, and
80% of the COCO training set. These models achieved 20.9%, 24.2%, 31.4%, and
35.7% mAP@0.5 on the COCO17 validation set, respectively. Then, we applied
different patching approaches to update these imprecise models, using 100% of
the COCO data. We then compared mAP@0.5 of the patched models, as well as
the resulting patch footprints.

Tab. 3 shows the results. Similar to the Detection Decathlon, we observe that
none of the tested approaches is able to achieve the same mAP as fine-tuning.
Ours is the only method that can adapt the footprint according to the source
model quality and the amount of new training data: At 10% training data, we
achieve comparable mAP as WeightTrans (32.0% v.s. 32.7%) at a comparable
footprint (5.04% v.s. 5.15%). However, when more data is available, the patch
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Table 3: Model updating. Our method achieves comparable mAP and smaller
footprint than the strongest baseline. The percentages (e.g. 10%) indicate the
amount of data to train the source model. The best method is shown in bold,
second-best underlined. Only one footprint number is shown for the baseline
methods because they generate the same footprint regardless of the task.

Method
Footprint (%) mAP (%)

10% 20% 40% 80% 10% 20% 40% 80%

Fine-Tuning 100.0 37.6 37.6 38.2 38.5

Tower Patch 3.85 24.5 26.7 32.4 35.8
Bn Patch 2.08 26.2 28.1 33.0 35.8
Dw Patch 3.76 25.9 27.8 33.1 36.0

Bn+Dw Patch 5.59 26.8 28.7 33.4 35.9
Piggyback 3.32 26.4 28.3 32.0 35.3
WeightTrans 5.15 32.7 32.4 34.8 35.9

Ours 5.04 4.98 4.21 2.08 32.0 31.4 34.2 35.8

footprint generated by our approach is smaller than WeightTrans (2.08% v.s.
5.15%), while accuracy remains comparable (35.8% v.s. 35.9%).

To summarize, our method can effectively adapt the patch footprint to the
amount of new data to be learned by the patch, while maintaining high accuracy.

4.3 Accuracy-footprint tradeoff in 8-bit models

To compute the footprint, both Sec. 4.1 and 4.2 account for the binary mask size
as 1/32 of the float kernel size. This convention is widely accepted by the par-
ticipants in the Visual Decathlon Challenge. However, in practical mobile appli-
cations, quantization-aware training [14,15,16,17] is often used to train a model
using 8 bits per weight – i.e., reduce the model size by 4x, without losing accu-
racy. In the 8-bit model scenario, the relative footprint gains achieved by binary
masks are thus 4x smaller than in the 32-bit model scenario. We estimate the
footprint of 8-bit models in the Detection Decathlon and assume quantization-
aware training does not significantly hurt the detection performance [15]. I.e., we
did not train the 8-bit models but assume the mAP to be roughly the same as the
32-bit counterpart. To compare with the relative gains in the 32-bit scenarion,
we show both of them side-by-side in Fig. 5.

As shown in Fig. 5, in the 8-bit scenario our method becomes more parameter-
efficient than Piggyback and WeightTrans. The reason lies in the fact that
ours is the only mask-based approach to explicitly minimize the number of masks
in each patch. In Tab. 4, our model is thus as much as 26% and 36% more
parameter-efficient than Piggyback andWeightTrans, respectively (0.83 v.s.
1.12, 1.29). Our method would save additional 0.9Mb in network costs compared
to WeightTrans per download. Please note that while adding more tasks does
not directly translate into mAP losses, footprint gains keep cumulating. In prac-
tical mobile application this effect would be amplified, as the same patch would
need to be downloaded as many times as there are users. We thus argue that
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(b) 8-bit models

Fig. 5: Detection Decathlon: mAP v.s. Footprint. We show the object
detection mAP versus footprint, for both 32-bit and 8-bit models. The x-axis
denotes the patch footprint for the Detection Decathlon while the y-axis indicates
the detection performance measured by mAP@0.5. We expect a good model to
have both a high mAP and a low footprint.

Table 4: Detection Decathlon: mAP and patch size. The patch size is
measured by the expected download bytes to solve the additional nine tasks.
It depends on both the model backbone and the method. Excluding the final
layer in the classification head, the size of a single Mobilenet-v2 SSD-FPNLite
detector is 7.99Mb for a 32-bit model, and 2.00Mb for an 8-bit model.

Type Fine-

Tuning

Tower

Patch

Bn

Patch

Dw

Patch

Bn+Dw

Patch

Piggy

back

Weight

Trans

Ours

mAP (%) - 67.3 43.5 54.7 54.2 58.1 61.1 65.2 64.4

Footprint
32-bit

9.00 0.35 0.19 0.34 0.50
0.30 0.46 0.35

8-bit 1.12 1.29 0.83

Patch size
32-bit 71.9Mb 2.77Mb 1.50Mb 2.71Mb 4.02Mb 2.39Mb 3.70Mb 2.79Mb
8-bit 18.0Mb 692Kb 374Kb 677Kb 1.01Mb 2.25Mb 2.58Mb 1.66Mb

in practical mobile applications the 36% footprint reduction achieved by our
method over WeightTrans, with only a 0.8% average mAP loss (64.4% v.s.
65.2%), constitutes a significant improvement over WeightTrans.

To summarize, in practical 8-bit scenarios our method can potentially reduce
WeightTrans footprint by 36%, with only a negligible loss in performance. It
is also the most parameter-efficient mask-based method.

4.4 Impact of the sparsity constraint

Next, we show the tradeoff between footprint and performance can further be
selected by tuning λsps. We perform a study on the Detection Decathlon tasks:
we vary λsps while keeping all other hyper-parameters the same.

Tab. 5 shows the results. We observed that the λsps has a direct impact on
the percentage of patched layers and the patch footprint. In general, a large λsps

value forces the footprint to be small, while a small λsps leads to a more accurate
model. If we only use a small value (λsps=1.00E-05), the method still patches the
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Table 5: Impact of sparsity constraint. We show the percentage of patched
layers, relative footprint, and mAP regarding models trained using different λsps.

Patched layers (%) Footprint (%) mAP (%)
1E-03 1E-04 1E-05 1E-03 1E-04 1E-05 1E-03 1E-04 1E-05

Bird 12.7 8.5 7.0 3.93 2.97 2.93 35.8 35.8 34.0
Car 12.7 25.4 29.6 3.39 3.89 3.92 89.3 89.8 89.7
COCO 19.7 42.3 53.5 4.12 4.62 4.76 35.5 36.6 36.8
Dog 22.5 19.7 87.3 4.14 3.54 5.09 64.9 63.3 66.0
Face 29.6 32.4 95.8 3.45 3.39 5.12 28.6 30.1 30.4
Kitti 31.0 69.0 81.7 4.08 5.01 4.77 58.8 64.0 63.3
Pet 22.5 53.5 52.1 4.24 4.97 4.32 90.9 90.3 90.5
RPC 42.3 53.5 67.6 4.67 4.37 4.68 98.3 98.9 98.9
VOC 0.0 0.0 2.8 2.08 2.08 2.54 70.5 70.6 69.9

Avg Patched layers (%) Sum Footprint (%) Avg mAP (%)

21.4 33.8 53.1 34.1 34.8 38.1 63.6 64.4 64.4

majority of the model layers (53.1% in average), with a corresponding mAP of
64.4%. However, if we increase λsps to 1.00E-03, the proportion of patched layers
is significantly reduced (21.4%) and mAP is only slightly reduced to 63.6%. We
use λsps=1.00E-4 throughout the paper.

Tab. 5 also highlights how the patching difficulty on different tasks varies. For
example, the VOC target task is the most similar to the OpenImages source task.
Our method learned that updating the batch normalization layers is enough. It
thus degraded to Bn Patch, as almost none of the layers were patched.

4.5 Visualization of model patches

Next, we shed light on the nature of the patches learned by SpotPatch, and the
effect of the source/target task similarity. Fig. 6 shows the results for all the
convolutional layers of the FPNLite model. For the Detection Decathlon prob-
lem, our approach patched fewer layers on the target tasks most similar to the
source one, while modified more layers on the most dissimilar target tasks. Our
model learned that it is okay to leave all of the convolutional layers unchanged,
for the VOC dataset. In this case, it degraded to the Bn Patch approach, which
tunes only the batch normalization layers. The reason, we argue, is that VOC
labels are a subset of the OpenImages V4 labels. In contrast, our model patched
69.0% of the model layers for the Kitti task. Though the Kitti dataset features
everyday objects such as vehicles and pedestrians, the appearance of these ob-
jects is significantly different from OpenImages V4 because they are captured
by cameras mounted on cars for autonomous driving research.

Similar observations are made on the model updating. To patch the pre-
trained models armed with 40% and 80% COCO information, our method patched
28.2% and 0.0% of the layers. However, for the imprecise and low-quality pre-
trained models, for example, the models with 10% and 20% COCO information,
our model patched 67.6% and 54.9% of the layers.
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Fig. 6: Patched layers for different tasks. We emphasize our method learned
different model patches based on the complexity of the tasks. In the figure, each
row denotes a patching policy for a specific dataset, and each column represents
the gating indicator of a particular layer. For each row, a red block means that
the learned model patch includes the weights residuals of the specific kernel.
White blocks indicate that the source kernel is reused as is, with no contribution
to the footprint. We show the proportion of patched layers on the right.

The patched models also shared some common patterns. Our method did not
patch the first few convolutional layers and the FPN upsampling layers for most
tasks. We argue the reason is that these layers are responsible for recognizing
fundamental visual features that can be shared across domains.

5 Conclusion

In this paper we drew the foundations for investigating parameter-efficient trans-
fer learning in the context of mobile object detection. We introduced the Detec-
tion Decathlon problem, and provided the first systematic study of parameter-
efficient transfer learning on this task. We proposed the SpotPatch approach,
using task-specific weight transformations and dynamic routing to minimize the
footprint of the learned patch. We also demonstrated how to use our technique
for updating a pre-trained model. In all the considered benchmarks SpotPatch
was shown to provide similar mAP as standard Weight-Transform, while being
significantly more parameter-efficient. Additional potential gains were shown in
the case of 8-bit quantization. We also noted how differently from classification
benchmarks, none of the tested approaches was actually able to beat fine-tuning
mAP, which calls for more work on the Detection Decathlon task.
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