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Fig. 1: Our hashing technique enables incremental video retrieval from incomplete
queries, as needed for real-time retrieval in live video streams. A streamed video of
archery is used for querying. On the last query all 3 returned videos are relevant.

Abstract. This paper tackles a new problem in computer vision: mid-
stream video-to-video retrieval. This task, which consists in searching a
database for content similar to a video right as it is playing, e.g. from a
live stream, exhibits challenging characteristics. Only the beginning part
of the video is available as query and new frames are constantly added
as the video plays out. To perform retrieval in this demanding situation,
we propose an approach based on a binary encoder that is both pre-

dictive and incremental in order to (1) account for the missing video
content at query time and (2) keep up with repeated, continuously evolv-
ing queries throughout the streaming. In particular, we present the first
hashing framework that infers the unseen future content of a currently
playing video. Experiments on FCVID and ActivityNet demonstrate the
feasibility of this task. Our approach also yields a significant mAP@20
performance increase compared to a baseline adapted from the literature
for this task, for instance 7.4% (2.6%) increase at 20% (50%) of elapsed
runtime on FCVID using bitcodes of size 192 bits.

1 Introduction

Video-to-video retrieval is an emerging problem in computer vision due to
the growth of large-scale video databases such as Youtube (720K hours uploaded



2 Tong Yu, Nicolas Padoy

daily) or Instagram. Current search modalities for those databases rely on key-
words, which are effective to some degree for an adequately tagged set of videos
but inevitably fail to capture the rich visual information contained in video data.

Solutions for visual search are already widely in use for static images, with
publicly available services such as TinEye or Google Image Search. These tools
take an image supplied by the user and return a list of visually similar pictures,
allowing the user to search for content that would otherwise be difficult to find
via a text-based search engine. Video, on the other hand, has not received nearly
the same amount of attention when it comes to retrieval tasks. Furthermore, the
few existing works on video retrieval treat the problem as a pure postprocess-
ing task by only considering prerecorded videos as inputs. There is, however,
huge potential for retrieving content directly from non-prerecorded live video
sources, in order to provide dynamic search results. Recent advances in
text-based search engines, which can now refresh results while the user is typ-
ing, prove how useful this innovation would be. This work therefore introduces
a framework for unsupervised real-time-stream-to-video retrieval (Fig-
ure 1) and proposes, to our best knowledge, the first solution to this problem.
Popular livestreaming platforms such as Twitch or Youtube Live would highly
benefit from such a method, which dynamically searches for content from the
live stream. This would enable on-the-fly content suggestion, a powerful feature
with a wide variety of potential applications:

– advertising: commercials, content curation relevant to a live stream
– sports & entertainment: highlights during live events, enhanced by re-

plays of similar past content
– education: live tutoring. A person films themself cooking or performing

repairs, while an algorithm follows and assists their process in real time with
retrieved instructional clips

– surveillance & security: anomaly detection from a live security feed. An
algorithm continuously searches a database of security events to provide
reference for monitoring the feed in real time

– healthcare: relevant surgical actions shown to a surgeon simultaneous to
real-time events in the intervention

This task presents two main challenges that make it particularly difficult:

A. The search protocol needs to be fast enough for real-time use. This is a brutal
constraint, considering the typical size of a large-scale video database, as well
as the size of video data itself compared to static image data.

B. The real-time streaming setting implies that the video is incomplete; at
the beginning of a video, most of the visual information is missing.

An efficient solution for technical challenge A is hashing [1–6]. Hashing em-
ploys a hashing function φ that maps high dimensional data entries - in our
case videos - to compact binary codes, or bitcodes. A good choice of φ should
respect visual similarity: two videos with similar visual content should yield bit-
codes differing only by a small number of bits. Once φ is determined, the video
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database to search from is mapped to a set of bitcodes referred to as the code-
book (also called gallery in certain papers). Search can then be performed in
the following manner: the query video is mapped to its bitcode, the hamming
distance between the query’s bitcode and each bitcode in the codebook is com-
puted, and finally the top K closest entries are returned. This search protocol can
be extremely fast: distance computation has linear complexity w.r.t. the number
codebook entries, and each distance computation can be performed as a bitwise
XOR operation. For mid-stream retrieval however, an additional highly desir-
able feature is incrementality: new information added by the currently playing
video should be incorporated into the bitcode without reprocessing the entire
video from its beginning. This keeps time and space requirements to a minimum,
which is crucial for scalability when considering extremely large video databases,
as well as large numbers of simultaneous queries to process.

Our first contribution is therefore to propose the first incremental video
hashing method. It relies on a self-supervised binary video encoder consisting
of a 3D CNN combined with a RNN. RNNs are naturally suitable for incremental
tasks; their output at each timestep only depends on the corresponding new
input and the value of their internal memory, which accounts for all previous
timesteps on its own. Existing video hashing approaches, which did not consider
the case of partial videos, either use pooling [4], or employ RNNs with sampling
schemes that render them non-incremental [1–3, 5, 6]. The expected use case for
those methods is a single retrieval from a full video taken from beginning to end,
while our method generates bitcodes throughout the video’s duration, making it
capable of supporting repeated mid-stream queries.

In order to deal with the incomplete videos, our approach needs to learn to
anticipate the future video content. We therefore introduce our second contri-
bution, which is the first predictive hashing method. Instead of generating
bitcodes according to what is actually seen, which is the paradigm followed by all
image [7–10] and video [1–3, 5, 6] hashing methods up to this point, we generate
them according to what is expected. To achieve this, we introduce two unsu-
pervised knowledge distillation methods where the binary encoder, by learning
to anticipate future content from incomplete videos, generates bitcodes that ac-
count for the unseen part of the video in addition to the part it has already seen.
This form of distillation relies on binary embeddings, and is radically different
from other methods considering future frames [11–13], as these have employed
real-valued embeddings and targeted tasks completely different from retrieval.
The enriched bitcodes formed by our method produce better matches with rel-
evant content in the database and significantly improve retrieval results when
incomplete queries are used.

2 Related work

2.1 Video activity understanding

Due to the high dimensionality of the data involved, deep neural networks have
become the go-to approach in video activity understanding methods. Videos may
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be considered as sets of static frames with each frame processed individually -
for instance with a 2D CNN. However, a video-specific deep architecture should
account for temporal dependencies in video data. A wide range of methods were
designed for this purpose; we mention a few below that are relevant to this work.

The LRCN architecture [14] is an early example of temporal and spatial
model combination. A CNN maps video frames to low-dimensional visual feature
vectors. Those features are then fed to an LSTM [15], responsible for learning
the video’s temporal dynamics in order to perform tasks such as video caption-
ing. Similarly, [16] runs an LSTM autoencoder on VGG features. Trained in an
unsupervised manner, this model learns compact and discriminative representa-
tions of videos that can be repurposed for action recognition tasks. Two-stream
networks [17–19] approach the problem from a different angle, by combining two
2D CNNs: one for color data and one for optical flow. Instead of accounting for
the spatial aspect and the temporal aspect of the problem in two separate com-
ponents, the TSM [20] and 3D CNN approaches [21–25] combine them into a
single architecture. The C3D model[21], and later on the I3D model [22] employ
3D convolutions (one temporal and two spatial dimensions) in order to directly
process video inputs. I3D is the architecture we use for visual feature extraction.

2.2 Early activity recognition

In early activity recognition (EAR) tasks, a model attempts to classify an action
depicted in a video by only observing its beginning. The potentially large amount
of missing visual information introduces a level of difficulty that is not found in
general activity recognition tasks, but which we also encounter in our problem.

Methods such as [26] and [27] rely on elapsed time or progress. [26] trains
an LSTM model with a temporally weighted loss enhancing the importance
of predictions made early on in the video. [27] proposes a method for early
recognition based on soft labels at different levels of video progress. A different
type of approach for early recognition tasks is to synthesize the content in the
video’s future: [28] attempts to guess future frame embeddings in videos with
a multi-layer fully connected network. [13] employs video representations fed to
generator models trained to synthesize embeddings future frame embeddings.
Finally, teacher-student distillation methods train a student model that has not
seen future frames to replicate representations learnt by a teacher model that
has. [12] employs a distillation method that trains an LSTM to predict the state
of another LSTM at a further point in the input video. A different distillation
method, as introduced in [11], trains a forward-directional LSTM to match at
each timestep the hidden states of a trained bidirectional LSTM.

Although EAR and mid-stream video retrieval operate on similar inputs,
which are the early parts of videos, EAR is entirely different from our problem
in the very same sense that recognition is different from retrieval. Retrieval
involves comparisons to all items in a database to retrieve those that are similar.
Similarity in this context can consist of much more than simply having identical
class labels, although the evaluation protocol relies on class labels to provide
quantitative results. EAR, on the other hand, is entirely label-dependent. The
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output of EAR is a class, while the output of our approach consists of a large
selection of items from an entire video database.

2.3 Video hashing

For static image data, a large number of hashing methods exist in the litera-
ture [7–10]. Video data is substantially more challenging. First, video data re-
quires capturing rich temporal dependencies. Second, the sequence length
is variable: reducing a video to a fixed-length representation is not straight-
forward. Third, data dimensionality is considerably higher: a minute of
video at 30 fps contains 1800 times the amount of data contained in any of
its frames. Capturing enough visual information from it in a single vector of a
few hundreds, if not tens of bits is a tough challenge. Finally, large-scale video
databases require considerably larger amounts of time than images to annotate;
unsupervised learning is therefore heavily favored.

Six unsupervised video hashing methods have addressed the first challenge
in a significant manner by incorporating some degree of temporal modeling:
SSTH [1] uses an encoder-decoder pair of RNNs with a binary state for the
encoder in order to learn rich, discriminative bitcodes. SSVH [2] improves over
this architecture by aggregating information at different time scales in the video
with stacked RNNs. JTAE [5] also follows the encoder-decoder type of approach
with separate encoders for appearance and temporal dynamics. NPH [6] uses an
encoder-decoder similarly to the previous approaches, but trained with losses
that attempt to preserve neighborhood structures from the embeddings it re-
ceives. UDVH-LSTM [3] applies geometric transformations to embeddings ob-
tained from temporally pooled features from a CNN-LSTM, before binarizing
those embeddings. UDVH-TSN [4] employs a similar approach, replacing the
CNN-LSTM with a modified Temporal Segment Network [29].

All those methods deal with the issue of variable sequence length by resorting
to fixed-rate sampling schemes, rendering them non-incremental. Those schemes
select a set number of evenly-spaced frames in all input videos and discard the
rest. This results in a fixed-length but variable-rate and sparse representation
that would be unsuitable in a live setting, as explained in Section 3.2. All meth-
ods other than SSTH also exhibit additional characteristics that are unsuitable
for incremental use in real-time: feature pooling from the beginning to the end of
a video [5, 3, 4], hierarchical aggregation of timesteps [2], video anchor fetching at
query time [6]. For this reason, we build our baseline approach on SSTH. None
of the aforementioned approaches have examined the mid-stream, in-
complete video case.

3 Methods

3.1 Overview

The problem can be formally stated as follows: given a level of observation
α ∈ (0, 1], a video Q with duration T (Q), a query Qα consisting of Q truncated
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mid-stream at time αT (Q), and a database of videos B = {V0...VN}, use only
Qα to find the K videos from B most similar to Q.

Since hashing is the method employed here, B and Q are represented by
binary codes during search operations. The overall protocol is therefore com-
posed of the following steps: video-level feature extraction, self-supervised hash
function training, codebook mapping and finally query operations.

3.2 Sampling & feature extraction

As mentioned in the related work section, previous approaches have chosen
sparse, fixed-length video-level representations which can result in the loss of
large amounts of visual information in long videos. More importantly, such sam-
pling and feature extraction schemes are inadequate for real-time usage: the
sampling rate in that case is dependent on the length of the full video, which
would be unknown mid-stream. An early retrieval algorithm should be capable
of delivering search results at a fast and steady pace.

To solve this issue, we have chosen a dense, fixed-rate sampling and feature
extraction scheme that leverages a 3D CNN to aggregate visual information
over short time windows. The chosen architecture is I3D [22], pretrained on the
Kinetics [30] dataset for action recognition. Input frames from the videos are
center-cropped to 224 × 224. Clip input length is 64 frames (roughly 2 seconds
at 30 fps). This yields a feature tensor with dimensions 8× 7× 7× 1024, which
we average pool into a feature vector of size Nf = 1× 2× 2× 1024 = 4096. The
entire video is processed in consecutive clips, resulting in a 30 / 64 = 0.47 Hz
constant feature output rate.

3.3 Binary RNN encoder

An RNN (Figure 2) takes the feature vectors f0, f1, ..., ft, ..., fT (V ) from I3D in
chronological order and maps each one to a bitcode of size Nbits. This RNN
is built on two stacked LSTMs, with a binary LSTM as introduced in [1]. The
hidden state circulating from one RNN timestep t to the next is the above
mentioned bitcode noted b(V, t) for a video V . Batch normalization is applied
to the cell state as done in [1]. This RNN is trained as the encoder part of an
autoencoder model. The final hidden state of the decoder - the video’s bitcode -
is passed to two decoder RNNs tasked with reconstructing the sequence of input
feature vectors in opposite orders. This training process encourages the encoder
to incorporate rich, discriminative information into the bitcodes.

Formally, the autoencoder is trained to minimize the following unsuper-

vised loss function: Ldecoder(V ) =
∑T (V )

j=0 ‖fj −
←−
f j‖2 + ‖fj −

−→
f j‖2

with
←−
f ,
−→
f being the reverse and forward reconstructed sequences, respec-

tively.
Backpropagation relies on the gradient substitution method shown in [1].

Trained as such with full videos, we call this configuration SSTH-RT (Figure
3, top left) for real-time, as each new increment of the video playing in real-time
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Fig. 2: Illustration of the self-supervised binary video autoencoder [1].

is incorporated into the bitcode. This is, in the form presented here, our first
baseline approach.

3.4 Data-augmentated encoder via truncated training duplicates

Since the training process for the baseline setting always involves complete
videos, a straightforward data augmentation method for training the autoen-
coder is to simply give the autoencoder videos truncated at various levels of
observation to reconstruct (Figure 4, left). This approach provides some train-
ing exposure to videos that are incomplete. This is referred to as SSTH-RT+

in the later sections.

3.5 Augmented codebook with truncated database duplicates

Another idea to improve early retrieval results is to incorporate trimmed videos,
both during training - as in SSTH-RT+ - and codebook construction (Figure 4,
center). We refer to this later on as SSTH-RT++. While this idea might seem
appealing at a first glance, it causes the search protocol to slow down due to the
insertion of bitcodes from trimmed duplicates. This requires inserting as many
duplicates per video as levels of observation employed - in our case: 10 from
0.1 to 1.0 - which is also a source of scalability issues. Assuming Nα levels of
observation are employed, search time and storage space requirements both get
multiplied by Nα. Duplicates in the search results, namely, videos truncated at
different levels of observations from the same original video, would also need to
be purged, the cost of which has Ncb × Nα complexity, Ncb being the size of
the codebook without duplicates. Correctly retrieved results that are duplicates
may improve retrieval metrics, but do not suit general application cases: a search
operation returning truncated versions of the same video would be unhelpful to
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the user. The approaches proposed in the next section are faster as they employ
codebooks with the exact same population size as the original video database.

3.6 Look-ahead distillation for encoders

We propose two forms of distillation in order to train predictive encoders that
can anticipate the future content when presented with incomplete videos, and
therefore generate richer, more discriminative bitcodes that are more likely to
yield better search results.

Indirect distillation: look-ahead reconstruction (LA-RECO) loss An
encoder, which will from now on be referred to as the primary encoder (P in
Figure 3), is trained following the same process as SSTH-RT+ jointly with a
decoder. Once this training is done, the main encoder is set aside and a secondary
encoder (S in Figure 3, top right) is introduced. Only incomplete videos are
fed into it - i.e. videos truncated to αT (V ) with randomized alpha for each
training step. The resulting bitcode is passed to the trained decoder with frozen
parameters. The output of the decoder is compared to the full sequence in the
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loss, not just the truncated part fed to the secondary. This forces the secondary
encoder to guess a representation accounting for future video frames.

Direct distillation: look-ahead bitcode (LA-CODE) loss A secondary
encoder is introduced as in the previous section, however this time the primary
is put to use and the decoder is set aside (Figure 3, bottom right). During
training, the primary encoder, which has its parameters frozen, receives the
entire video while the secondary encoder is only fed the αT first frames, again
with randomized alpha. From the secondary, we extract the real-valued input
β to the sgn function that leads to the last bitcode - we refer to this as the
prebitcode - and compare that to the bitcode b given by the primary using an
L2 loss function:

LLA−CODE = ‖β(V, αT )− b(V )‖2. (1)

This conditions the encoder, despite being only fed part of a video, to mimic
the full video’s bitcode.

3.7 Experimental setup

Datasets For our experiments we employed two datasets. The first is FCVID
[31], a public video dataset used for research on video retrieval and activity
understanding depicting various activities, objects, sports and events. 234 video
classes are present. The average video duration is 134 ± 92 seconds. Data was
split as follows: 45K for training, 45K for testing. Within the test videos, 42.5K
constitute the database while the remaining 2.5k (about 10 videos per class on
average) are used for querying. The second dataset we employed is ActivityNet
[32]. We used the 18K videos available for download. 200 activity classes are
featured. A number of videos had their labels concealed by the organizers of the
ActivityNet challenge; those videos were put in the training set. The average
duration is 117 ± 67 seconds. Data was split as follows: 9K for training, 9K for
testing, and within the testing videos 8K for the codebook, 1K (about 5 per class
on average) for the query. In both datasets, the videos are untrimmed, which
implies that the content reflecting a given video’s class may not be shown for its
entire duration. All videos have been resampled at 30 fps and a few excessively
long videos have been cropped to 4 min 30s.

Training Video-level features are extracted separately by I3D and reloaded
from binary files. Training is done in batches; to achieve batching with variable
sequence lengths we grouped videos of similar length into buckets and randomly
pick batches from a single bucket at a time during training. Batches are then
trimmed to the shortest duration present in each of them. Encoder/decoder
pairs are trained for 60 epochs with a learning rate of 5.10−3 and a batch size
of 40. With Nbits being the size of the bitcode, the encoder is a 2-layer RNN
with 2 · Nbits in the first layer and Nbits units in the second. The decoder also
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has two layers, with Nbits in the first layer and 2 · Nbits units in the second.
Secondary encoders in LA-RECO or LA-CODE are trained for 15 epochs with
a learning rate of 5.10−4. Their weights are initialized from the values of the
trained primary encoder’s weights.

Evaluation Evaluation is performed as in classical video retrieval by performing
queries and comparing them to the search results based on their class labels. This
way of assessing visual similarity is limited but also the only available option for
quantitative evaluation; qualitative results (Section 4.1) show that information
much richer than the classes is captured during retrieval. Once the primary and
secondary encoders are trained, we use the primary to generate the codebook
from the corresponding videos picked from the test set, as shown in Figure 4.
The remainder of the test set forms the query set. The query encoder generates
a bitcode for each query video, truncated at αT frames. The code is compared
to codebook entries, which are then ranked by Hamming distance to the query
bitcode starting from the nearest. Query videos are truncated using 10 different
values for α ranging from 0.1 to 1.0, representing different stages of elapsed
video.

Average precision at K for a single video, as employed in [1], is given by

AP@K = 1
K

∑K

j=0
Ncorrect(j)

j
, where Ncorrect(j) is the number of matching re-

sults among the top j. The mean over all query videos is the Mean Average
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Precision at K - or mAP@K. We report this metric by level of observation for all
methods and all bitcode sizes for K = 20. Lower values of K are more relevant
in a real-time use case, where one can only handle a small number of search re-
sults; nonetheless we provide mAP@K curves for K up to 100 for our best model.
We also provide qualitative retrieval results for two cases. All experiments are
repeated for four different bitcode sizes: 96, 128, 192, 256 bits. The compared
approaches are:

– SSTH-RT: binary autoencoder trained to reconstruct full sequences from
full sequences. This provides a point of comparison against the lit-
erature, since it is SSTH [1] implemented with a different feature
extraction scheme to cope with fixed-rate sampling(see Section 3.2)

– SSTH-RT+: binary autoencoder trained to reconstruct full sequences from
full sequences, as well as partial sequences from partial sequences

– SSTH-RT++: same encoder as SSTH-RT+, with truncated duplicates hashed
into the codebook

– LA-RECO: SSTH-RT+ as primary encoder, with secondary trained to re-
construct full sequences from partial sequences

– LA-CODE: SSTH-RT+ as primary encoder, with secondary trained to pre-
dict the primary’s full sequence bitcodes from partial sequences
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Implementation details & performance considerations We timed the
search protocol in a separate experiment combining all its steps from beginning
to end. This includes the I3D forward pass, the encoding, the xor computation
with the codebook and the ranking. Results on FCVID show that one search
operation using 256b bitcodes and a codebook of 42.5k videos takes 2.7s with
a 1080Ti GPU. This enables a query rate of 22 queries per minute, which is
sufficient for an end user.

4 Results

96 bits 128 bits 192 bits 256 bits

FCVID VE E O VE E O VE E O VE E O

SSTH-RT 17.8 23.5 27.6 20.2 25.9 29.9 20.9 27.4 31.8 11.5 20.6 27.9

SSTH-RT+ 20.3 24.2 26.6 22.9 27.6 30.6 24.2 29.4 32.6 18.5 25.6 31.0
SSTH-RT++ 22.5 26.2 28.2 25.5 29.7 32.1 26.2 30.9 33.6 25.4 31.6 35.6

LA-RECO 21.5 24.6 26.2 25.7 28.8 30.5 28.4 31.5 33.0 28.6 31.2 32.6
LA-CODE 24.8 27.5 28.8 27.4 30.2 31.4 30.3 33.5 35.0 32.0 34.9 36.3

ActivityNet VE E O VE E O VE E O VE E O

SSTH-RT 7.8 12.2 14.9 8.3 13.4 16.5 7.8 14.0 17.9 8.0 15.7 20.6

SSTH-RT+ 9.7 12.1 13.7 10.4 14.2 16.5 12.1 16.4 18.5 13.3 17.3 19.6
SSTH-RT++ 10.9 13.6 15.0 12.2 15.8 17.8 14.2 18.4 20.3 15.4 19.5 21.4

LA-RECO 11.3 13.2 14.0 12.7 14.8 15.6 14.5 17.2 18.1 16.8 19.3 19.9
LA-CODE 12.9 14.6 15.0 14.7 17.9 19.4 16.8 19.1 19.8 17.0 19.2 19.9

Table 1: Results breakdown by α range. For each bitcode size: left column shows
very early results (VE, average mAP@20 for α from 0.1 to 0.2); Middle column shows
early results (E, average for α from 0.1 to 0.5); Right column shows overall results (O,
average over all α).

The mAP@20 results are compared by level of observation for each method
in Figure 5 with separate graphs for each size of bitcode. SSTH-RT serves as the
reference baseline and point of comparison against the literature. SSTH-RT+ is
a much more competitive model to compare to, SSTH-RT++ even more so, but
at the cost of 10 times the space requirements and search time.

We start with a general overview of the results. The general tendency
observed is that retrieval degrades as the observed portion of video
decreases. With 128 bits and complete videos (α = 1), mAP@20 for SSTH-RT
on FCVID reaches 34% but drops to 30 % when only the first 40% of the video
are available, down to 17% with 10% observation. The trend on ActivityNet is
similar with 20%, 17% and 5% mAP@20 respectively.

When considering different bitcode sizes, the tendency observed in Figure 5
is that retrieval performance generally increases with size, as more bits enable
richer encodings. Looking at one method, bottom mAP@20 for LA-CODE on
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Fig. 9: Retrieval over time with LA-CODE, illustrating a successful live retrieval (a)
and a less successful one (b) on two videos depicting the action decorating a christmas

tree. Red borders indicate a mismatch.

FCVID starts at 22.5% for 96 bits, then moves up to 25.3% for 128 bits, 28.0%
for 192 bits and 29.8% for 256 bits. In similar fashion, bottom mAP@20 for
LA-CODE on ActivityNet respectively reaches 11.4%, 12.8%, 15.0% and 15.4%.

When considering the different methods, results for non-predictive approaches
(SSTH-RT, SSTH-RT+ and SSTH-RT++) tend to be heavily imbalanced with
much higher mAP@20 at high α values. In comparison, results for predictive
methods are more even across the α range. An example of this can be seen for
256 bits on ActivityNet, where LA-CODE starts at 30% and ends at 36% while
SSTH-RT starts at 7% and ends at 36%.

To allow for clearer comparison, we break down our results into
ranges of observation levels. We consider the average of mAP@20 over very
early observations (VE, α from 0.1 to 0.2), early (E, α from 0.1 to 0.5) and
overall (O, α from 0.1 to 1.0) in Table 1.

We first consider all levels of observation together, (O) in Table 1. On Ac-
tivityNet for 96, 192 and 256 bits SSTH-RT++ ranks best overall. This comes,
however, at the cost of a codebook 10 times larger and 10 times longer search
time, which puts it at a severe disadvantage compared to LA-CODE. For all bit-
code sizes on FCVID, for 96 and 128 bits on ActivityNet, LA-CODE is however
the top ranking approach.

Although sustaining good performance at higher levels of observation is valu-
able due to the current level of observation being potentially unknown during
streaming in a real use case, the focus of this work is on lower levels of
observation (under 50%). In this range, the main novel challenge specific to
our problem, namely missing visual information, is the most manifest.

The performance increase in the very low α range is generally accentuated
compared to the whole range of α. This makes sense since the losses employed
emphasize anticipation. For 192 bits on FCVID, LA-RECO surpasses SSTH-RT+

by 2.1% for early observations, and 4.2% for very early observations. Similar
results are obtained with LA-CODE, which even beats SSTH-RT++ by a 2.6%
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margin for low α and 4.1% for very low α. It surpasses SSTH-RT+ by 4.1% in the
early α range and 6.1% in the very early α range. Finally, it solidly outperforms
SSTH-RT by 6.1% and 9.4% for early and very early observations, respectively.

We display mAP@K for LA-CODE for increasing observation levels, com-
pared with SSTH-RT++’s evaluated on complete queries (SSTH-RT++

α=1) in Fig-
ure 7. With 10% of video observed at 192 bits, LA-RECO loses to SSTH-RT++

α=1

by 5%, which is expected since it has access to far less information. However
LA-RECO catches up with 30% of video observed. At 80% of video observed
LA-RECO even surpasses SSTH-RT++

α=1 by a small margin. MAP@K plots for
other bitcode sizes and methods are provided in the supplementary material.

4.1 Qualitative results

We selected two FCVID queries from the query set on which LA-RECO returned
successful results at the end of the video, i.e. the top 10 results are correct. We
followed the evolution of the top 5 search results at different points in time. Both
query videos depict the action ”decorating a christmas tree”. Retrieval might be
subpar early on in the video, but the model should ideally adapt and return
more relevant database entries as the video plays.

Figure 9a shows an example of a successful case. A mistake is made early on
at 20%, but the top 5 search results improve to a perfect 5/5 after 50% of the
video is seen. On the other hand, in Figure 9b the model starts with 3/5 correct
results, then drops to 1/5 in the middle. Retrieval eventually improves towards
the end with 4/5 correct results at 81% progression. The video supplementary
material (https://youtu.be/Eq-lIUipd4E) shows examples of label-agnostic
similarity in the retrieved videos. For instance at 2:25 a video of a person op-
erating a lawnmower is the query. Certain results have mismatched labels
such as cello or archery, while retaining the same fine-grained motion
semantics, in these examples the arm movement.

5 Conclusion

In this paper, we present an unsupervised video hashing approach designed for
incremental retrieval performed mid-stream using incomplete video queries. To
tackle this challenging new problem, we propose a predictive encoder that learns
to generate enhanced bitcode representations of incomplete queries by acquir-
ing knowledge distilled from another encoder trained on complete videos. Our
approach yields a large performance improvement over the baseline. It also out-
performs a naive approach that inflates the codebook by adding codes generated
from truncated copies of the videos in the database, while being at the same time
much faster and more scalable for live hashing and retrieval on video streams.
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