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Abstract. We study the problem of talking head animation from a sin-
gle image. Most of the existing methods focus on generating talking heads
for human. However, little attention has been paid to the creation of talk-
ing head anime. In this paper, our goal is to synthesize vivid talking heads
from a single anime image. To this end, we propose cascade pose trans-
form network, termed CPTNet, that consists of a face pose transform
network and a head pose transform network. Specifically, we introduce
a mask generator to animate facial expression (e.g., close eyes and open
mouth) and a grid generator for head movement animation, followed by a
fusion module to generate talking heads. In order to handle large motion
and obtain more accurate results, we design a pose vector decomposi-
tion and cascaded refinement strategy. In addition, we create an anime
talking head dataset, that includes various anime characters and poses,
to train our model. Extensive experiments on our dataset demonstrate
that our model outperforms other methods, generating more accurate
and vivid talking heads from a single anime image.

1 Introduction

Talking head animation, as the name suggests, refers to the change of facial ex-
pression and head movement of anime characters. It is a very interesting task
which has broad application scenarios, including game production, filmmaking,
and virtual avatars. Recently, great progress has been made in human talk-
ing head generation with the introduction of Generative Adversarial Networks
(GANs) [1]. For instance, some methods [2-4] are able to synthesize different
expressions as well as change attributes of human face, such as hair color, skin
and age. However, there is a big difference between human faces and anime faces:
patterns of human faces are highly structured, while anime faces are rather di-
verse. Also, different anime style leads to significant different face patterns, such

* Chengxin Liu is the corresponding author.
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as small mouth, no nose, and large eyes. Therefore, such methods trained on hu-
man datasets (e.g., RaFD [5] and CelebA [6]) cannot be directly used for anime
talking head generation.

In this paper, we aim at designing a model for generating anime talking heads,
including the change of anime facial expression (e.g., close eyes and open mouth)
and the movement of anime head. Since there is no open source anime dataset
available on the Internet, we create an anime talking head dataset consisting
of 1842 anime IDs. Each anime ID has 150 face poses and 973 head poses with
corresponding pose vectors.
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Fig. 1. Some qualitative results on our anime dataset. Given a single anime image
(first column) and a target pose vector (last row), our method is able to generate vivid
talking heads (from the second column to the sixth column). Specifically, we encode
the change of facial expression and head movement into a pose vector (i.e., left eye,
right eye, mouth, top-down head, left-right head). Note that the values of eyes and
mouth vary from 0 to 1, while head ranges from -1 to 1.

To generate vivid talking heads from a single anime image, we disentangle the
problem into two stages: the change of anime facial expression and the movement
of anime head. In particular, we propose a two-stage CPTNet, that includes a
generator for facial expression, a generator for head movement, and a light-weight
combiner, for single image talking head animation. The two generators require
a straight anime image and a target pose vector as input, then generate the
change of anime facial expression and the movement of anime head, respectively.
The generator for facial expression change shares the same architecture and
weights with the mask branch of head generator. The head generator has two
branches: the mask branch [7] and the grid branch [8]. The mask branch is able
to preserve static area via the mask and generate new pixels, but is prone to
be blurred at uncertain area. The grid branch can generate clear predictions
by bilinear sampling, but it can only copy pixels from the input image and
cannot generate new pixels. In order to combine the advantages and make up
for the disadvantages of these two branches, we utilize the light-weight combiner
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to fuse the results of these two branches together. To handle large-scale pose
transformations, we further propose a pose vector decomposition and cascaded
refinement strategy for the mask branch. As shown in Fig. 1, given a single
anime image and a target pose vector, our method is able to generate high-
quality anime talking heads from a single image. Note that, by giving different
target pose vectors, different poses of talking heads can be generated.

It is worth mentioning that our approach is inspired by Pramook [9] that
builds a two-step system for talking head animation. However, our approach
is different from his work in three main aspects. First, our approach has no
constraints on input image format and anime characters, while Pramook requires
an RGBA input and restricts anime head in the center of 128 x 128 regions of
the input image. Second, we can handle larger-scale pose transformations via the
pose vector decomposition and cascaded refinement strategy. Finally, weights
sharing and light-weight fusion module ensure the efficiency of our model, which
only takes up 40M, while Pramook’s model exceeds 300M .

The contributions of this work can be summarized as follows:

e We present CPTNet, a novel two-stage pose transform network for talking
head animation from a single anime image.

e We design a pose vector decomposition and cascaded refinement strategy
to handle large-scale pose transformations.

e Extensive experiments on our anime dataset demonstrate the effectiveness
of our approach, which outperforms other state-of-the-art methods.

2 Related Work

Generative Adversarial Networks. In recent years, GANs [1] have devel-
oped rapidly and have shown surprising results in computer vision, such as
image translation [10-14], pose transform [15, 16], image generation [17], super-
resolution imaging [18], and face expression editing [4,3,19]. A GAN-based ar-
chitecture contains a generator and a discriminator, while the generator aims at
generating realistic fake samples, the discriminator needs to be able to distin-
guish between the real samples and the fake samples generated by the generator.
In training, this idea is completed by an adversarial loss.

Conditional GANSs. Conditional GANs have also attracted the attention of
researchers. For example, multi-domain transfer [14], human pose transform [15,
16], and facial expression editing [4, 3, 20]. Prior studies have tried to add some
conditions to the basic GANSs, such as class information [21] and text descrip-
tion [22], to generate images highly relevant to these conditions.
Image-to-Image Translation. Recent studies have shown surprising results
in image-to-image translation [10-12, 23], e.g., pix2pix [10] can complete image-
to-image translation well with paired data. However, sometimes we are unable
to obtain paired data in practice. As a result, some unsupervised methods are
proposed [24, 11,12, 23]. For instance, CycleGAN [24], using the strategy of cycle
consistent loss to maintain the necessary attributes in input images, is able to
complete high-quality image translation with unpaired data. CartoonGAN [12]
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converts input images to cartoon style, and Art2Real [13] converts art images
and real images to each other. Our task is more related to those works that use
paired data due to our paired data.

Appearance and Pose Transform. Appearance and pose transform has at-
tracted great attention in recent years. Most works [4, 15,16] focus on human
appearance and pose transform, such as changing color of hair, gender aging,
and generating human talking head. GANimation [7], for instance, can change
the appearance and expression of human. It requires a source human image and
a target vector as input and then generates the changed image corresponding to
the target vector. A few-shot learning method [15] has been proposed to gen-
erate human talking head. This method takes a few source human images and
a target landmark as input, and generates the target human pose according to
the target landmark. However, these works are all designed for human appear-
ance and pose transform, they cannot handle anime characters well. Recently,
Pramook [9] proposed a method that can perform anime pose transform through
a single anime image and a target vector, which is most related to us. But his
model is cumbersome and cannot handle large scale motion. In contrast, our
method is efficient and is capable of handling large scale motion.

3 Method

Given an input straight image of anime character and a target pose vector, our
goal is to design a network to transform the anime character to arbitrary target
pose. Specifically, we disentangle this problem into two subtasks, including face
pose transform (e.g., close eyes and open mouth) and head pose transform. To
address these two subtasks, we propose a cascade pose transform network. As
shown in Fig. 2, our model consists of two stages: face pose transform stage and
head pose transform stage. First, a mask generator is applied to transform the
anime character to a target face pose (e.g., close eyes and open mouth), then
mask and grid branches generate two complementary head pose results according
to the target head pose vector. Finally, a light-weight combiner is used to fuse
these two results into our final result. Note that the mask generator in face
pose transform stage has the same architecture and weights as the mask branch
in head pose transform stage. More details will be introduced in the following
sections.

3.1 Data Generation

Since there is no related anime dataset on the Internet, we create an anime
pose dataset ourselves with a 3D software MikuMikuDance (MMD). Our dataset
contains two parts, which are the face pose dataset of anime characters and the
head pose dataset of anime characters. Below we will introduce them separately.

There are 1842 model IDs in our anime face pose dataset, and each model
ID has 150 poses and corresponding pose vectors. The format of the face pose
vector is: (left eye, right eye, mouth), and the value ranges of the three elements
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Fig. 2. Overview of our network architecture. Our model consists of two stages:
face pose transform stage (e.g., close eyes and open mouth); and head pose transform
stage. In face pose transform stage, the mask generator transforms an anime character
to a target face pose. In head pose transform stage, mask generator and grid generator
are utilized to generate two complementary talking heads. Finally, the fusion module
fuses these two results to generate the final result.
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Fig. 3. Mask generator and Grid generator. Given a single anime image and a
target pose vector, on one hand, the mask generator generates a single channel mask
A and an RGB content image C. Then mask A linearly combines the source image and
the content C to obtain the output. On the other hand, the grid generator generates a
grid to get the output via bilinear sampling.
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Fig. 4. Fusion. The output I,, of mask generator and the output I, of grid generator
are made a concatenation as the input of fusion. The output of fusion is an attention
mask A, which guides two source images to fuse to obtain the final result.

are all [0, 1], 0 means the eyes and mouth are fully closed, and 1 means the eyes
and mouth are fully open.

Besides, there are 1868 model IDs in our anime head pose dataset, each
model ID has 972 poses and corresponding pose vectors. The format of the head
pose vector is: (top-down head, left-right head), and the value ranges of the
two elements are all [-1,1], corresponding angel [—20°, 20°]. Note that our image
resolution is 256 x 256 and the testing set for our task contains 260 anime models.
Some examples are shown in Fig. 5.

When we train and test the model, the format of a pose vector that we use
is (left eye, right eye, mouth, top-down head, left-right head), which means the
combination of face pose vector and head pose vector.
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Fig. 5. Dataset. The left is an example of the anime face pose dataset, the right is
an example of the anime head pose dataset, and the bottom row is the pose vector
corresponding to each column of images.

3.2 Network Architecture

Mask Generator. Inspired by the recent success of generating human facial
expression [7], we propose to use mask-guided generator to handle pose trans-
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form. Fig. 3 illustrates the details of mask generator. Given a single image I,
and a target pose vector y,, we first make a channel wise concatenation (I, ,y,)
as input of mask generator. Then the mask generator generates a single channel
mask A and an RGB content C, where mask A is designed to guide the network
to focus on the transforming pose-related regions.

For instance, in the face stage, the only areas where the input image needs
to be changed are the eyes and mouth, while the other areas are kept still, so
the network only needs to generate the changed dynamic areas, the remaining
static areas can be obtained directly from the input.

Finally, the output image can be obtained as:

I,,=(1-A)-C+A-I,, (1)

where - denotes element-wise multiplication. This strategy makes the learning
process easier as the network only needs to focus on the dynamic areas, the static
areas can be obtained from the input directly. However, mask generator is prone
to be blurred, and it cannot maintain the color of input image well if given a
large-scale pose vector.

Grid Generator. Since mask generator may produce blurry results, we adopt
grid generator as a complementary component to synthesize new pose. The de-
tails of grid generator are shown in Fig. 3. For the input image and target pose
vector, we use the same way as the mask generator. The main difference is that
the output of grid generator is a two-channel grid vector, not mask and content.
We use the grid vector to synthesize target image by bilinear sampling from the
input image, which is similar to appearance flow [8].

The motivation of the grid generator is that bilinear sampling can make full
use of the pixel information of the input image. The network only needs to
generate a two-channel grid vectors to guide the sampling process from input
image, rather than generating a complete RGB image, which significantly reduces
the difficulty of learning process. In addition, since bilinear sampling directly
copies pixels from the input image to the final image, the color identification of
the input image will be well preserved, and the resulting image will not produce
obvious blur.

However, the inherent limitation of this method is that it cannot generate

new pixels. Therefore, some areas that do not contain relevant pixel information
in the input image will not be generated well. Note that grid generator and mask
generator share the same weights in encoder and residual blocks [25].
Fusion. The fusion architecture is shown in Fig. 4. After the mask generator
and grid generator output the results I, and I, , we make a channel wise
concatenation (I, ,I,,) as the input of fusion. Similar to the mask generator,
the fusion outputs an attention mask A to guide the two source images to fuse.
Finally, the final image can be obtained as:

fyt:(l_A).Iym—i_A'Iygﬂ (2)

The motivation of applying fusion module is straightforward, the mask generator
can synthesize new pixels and regions that are not included in the input image,
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but it may produce a certain degree of blur and the quality of the generated
image is not stable, while the images generated by the grid generator are clearer
and more stable, but it cannot generate new pixels. Therefore, a fusion module
is adopted to combine the advantages of these two generators. It is noticeable
that the size of our fusion model is only 5 M B.

3.3 Pose Vector Decomposition

In head pose transform stage, we observe that for large-scale pose vectors, the
image generated by the mask branch is very blurry. We infer the reason is that
the large-scale transform leads to few static regions, which significantly increases
the difficulty of generating dynamic regions for mask generator. To solve this
problem, we introduce the pose vector decomposition and cascaded refinement
strategy as shown in Fig. 3. Specifically, we decompose large-scale pose vec-
tor of head movement into k small-scale pose vectors and pass them through
k cascaded mask generators that share weights parameters. For instance, sup-
pose the original large-scale pose vector is (0,0,0,0,1), we first transform the
anime character to a target pose (0,0,0,0,1/k), then the pose (0,0,0,0,2/k)
is generated based on the result of (0,0,0,0,1/k). This process repeats until
(0,0,0,0,1) is reached. In practice, we observed that k = 4 is sufficient to han-
dle large-scale pose transforms. In this way, the mask generator can repeatedly
perform small-scale transform to complete large-scale transform, which improves
the final result.

3.4 Learning the Model

At the training stage, our loss function mainly consists of three terms: 1) the
adversarial loss for improving the photo-realism of generated pose transformation
images. 2) the content loss to improve consistency of generated images with
ground truth 3) the perceptual loss to improve the clarity and details of the
output.

Adversarial Loss. To make the generated images indistinguishable from real
images, we adopt an adversarial loss as

Laav = By, p, |0 (,)] = Bty opivea [P (1,)] (3)

where fyg is the final generated image and I, is the corresponding ground truth,
P, stands for the data distribution of synthesized images, Py,:, the distribution
of real images. The generator needs to generate real fake images so it tries to
maximize this objective, while the discriminator D needs to distinguish between
real and fake images so it tries to minimize this objective.

Content Loss. Since our dataset contains pairs of samples, we use L1Loss to
measure the distance between the generated image and the ground truth and
then update the generator. The content loss is defined as

] o

LPaiT - EIygNPdata |:HIyg - Iyg
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Perceptual Loss. Only a L1Loss constraint on the generated image and ground
truth may cause the image to be blurred. So we adopt the perceptual loss [26]
as another constraint. We let the generated image and its corresponding ground
truth pass through the pre-trained VGG19 network [27], and extract the features
of convl_1, conv2_1, conv3_1, and conv4_2 layers for L1Loss, and finally weighted
summation. So the perceptual loss can be obtained as

L, = ZElyg~Pdam [H‘bj (Iyg) —®j (jyg) HJ (5)

where ¢; (-) represents the features of jth layer in VGG19, the j here specifically
refers to the layers of convl_1, conv2_1, conv3_1, and conv4_2. We find that this
loss function can make the result smoother and clearer.

Full Loss. To generate the target image, we build a loss function L by linearly
combining all previous partial losses:

L = Laav + Aleair + /\2Lp (6)

where A1, Ay are the hyper-parameters that control the relative importance of
every loss term.

4 Experiments

In this section, we evaluate our model on our own anime pose dataset. First we
give the details about our experimental setting. Then we show the results of the
face pose transform stage, head pose transform stage, and the final mixed pose
separately to analyze the role of each module. Finally, we compare our model
with some recent methods on our dataset.

4.1 Experimental Setting

Our generators and discriminator networks are build upon StarGAN [2], as it
proved to achieve impressive results for image-to-image transform. For the mask
generator, we made slight modification by adding a branch on the last convo-
lutional layer so as to generate a single-channel mask A and an RGB content
image C. For the grid generator, we change the last convolutional layer to output
a two-channel grid to perform bilinear sampling on input image. As the discrim-
inator, we remove the classification layer. Our fusion module contains only two
downsampling layers and two upsampling layers, and output a single-channel
mask.

The model is trained on our anime pose dataset mentioned above. We use
Adam [28] with learning rate of 0.0001, 8; = 0.5, 82 = 0.999 and batch size 8. We
train for 600000 iterations and linearly decay the learning rate to zero over the
last 100000 iterations. We perform one generator update after five discriminator
updates. We set Ay = 1000, Ao = 200. It takes about three days to train the
model with a single GeForce RTX 2080 Ti GPU.
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Fig. 6. Face stage. The results of face stage. A represents mask, while C' represents
content. The last row means the target pose vectors, and every column is the generated
mask A, content C, and output corresponding to the target pose vector.

4.2 Ablation Study

In this section, we performed an ablation study to evaluate the role of each of
our modules: face stage only, head stage only, and the whole two-stage network.
In head stage, we first evaluate the effectiveness of the mask generator, the
grid generator and fusion module. Then we perform analysis on our pose vector
decomposition and cascaded refinement strategy. We perform a qualitative and
quantitative comparison for each of them in Fig. 6 and Table 1.

Face Stage. The face stage is trained to transform the input anime image to a
target facial expression (e.g., close eyes and open mouth) according to the target
pose vector. Fig. 6 shows the mask A, the content C and the final generated result
I,,. Note that the mask generator has learned to focus on the dynamic areas
(darker areas) according to the target pose vector. Mask A can well locate the
eyes and mouth in the input image, and cover them with gray pixels, which
means that these areas need to be obtained from content C, and other white
areas mean that they need to be obtained from the input image. In the content
C, only the pixels related to the dynamic regions of the eyes and mouth will be
carefully generated, the rest are only noise.

Head Stage. The task of the head stage is to complete the movement of the
anime character head, including swinging up and down, swinging left and right.
Compared with the change of face pose during the face stage, it is obviously
more difficult to realize the change of head pose, because most of the regions in
the input image are still for the change of face pose, only the eyes and mouth
need to be changed, while the head movement requires large areas of change,
especially for large-scale target pose vectors. Below we will evaluate the role of
each module in the head stage. Some visual results are shown in Fig. 7. “Mask”
means we only use the single-stage mask generator, “Mask + MS” means we use
the mask generator and pose vector decomposition strategy, “Grid” means we
use the grid generator only, “Mask + MS 4 Grid” means the complete model of
head stage.
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Fig. 7. Head stage. The ablation study of head stage. The first column is the input,
while the rest columns are generated images corresponding to the pose vectors on the
bottom row. Each row corresponds to a variant of our model. “Mask” means we only
use the single-stage mask generator, “Mask + MS” means we use the mask generator
and pose vector decomposition strategy, “Grid” means we use the grid generator only,
“Mask + MS + Grid” means the complete model of head stage.

The results of “Mask” show the limitation of the single-stage mask generator.
It can only handle small-scale head movements , for large-scale head movements,
the generation results become very blurry, especially in the hair part. The reason
is that large-scale head movement will cause the generated image cannot use the
mask to obtain pixels from the corresponding position of the input image, the
entire head can only rely on the generator to generate the corresponding content,
so the advantage of the mask is basically useless here.

As the results of “Mask + MS” show, when we adopt pose vector decom-
position and cascaded refinement strategy for the mask generator, significant
improvement can be achieved. Due to the decomposition of the pose vector, the
mask generator only needs to perform a small-scale transformation at a time, so
that the mask can be used to obtain and copy pixels from the same position in
the input image, reducing the blur and improving the quality of the generated
image. Also, small-scale transformations reduce the difficulty of learning process.
But it still cannot preserve the color identification of the input image.

From the results of “Grid”, we can observe that it can perform well in the
head movement of anime characters. The final output image is obtained by
performing bilinear sampling on input image, so the generated image has several
advantages: 1) It eases the blur caused by the direct output image of the deep
convolution network [29]. 2) It can preserve the color identification of the input
image. However, it can only copy pixels from the relevant areas in the input
image, so for some areas that have no relevant information in the input image,
such as the neck, messy pixels will appear.

The complete model “Mask + MS + Grid” means we adopt pose vector
decomposition and cascaded refinement strategy, and fuse the results of mask
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generator and grid generator. The visualization demonstrate that the fusion

results can not only retain the advantages of each branch, but also alleviate the
problems to a certain extent, which leads to more fine-grained results.

4.3 Qualitative Experimental Results
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Fig. 8. Qualitative comparison with state-of-the-art. The results of StarGAN,
GANimation, and ours. Each column represents a pose corresponding to the pose vector
on the bottom row. Our method can generate much clearer results.
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Fig. 9. Qualitative comparison with Pramook’s. The results of ours and
Pramook’s. Each anime input corresponds to two generated poses. Our method can
get better results.

Fig. 8 shows qualitative experimental results. The first column is the input
image, while each remaining column corresponds to a target pose vector. We
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compare our method with the state-of-the-art facial expression editing methods:
StarGAN [2] and GANimation [7].

As shown in Fig. 8, StarGAN and GANimation are prone to generate blurs
and artifacts, especially for the large-scale target pose vectors. Instead, our
method generates more realistic images with much less blurs and artifacts. Even
for the large-scale target pose vectors, our method can still perform well. This is
contribute to the pose vector decomposition and cascaded refinement strategy,
which is designed to performs anime-like progressive pose transformation rather
than a single-step one.

Fig. 9 shows the comparison of our and Pramook’s method [9]. Due to our
pose vector decomposition and cascaded refinement strategy, we can get better
results for the large-scale transform.

Table 1. Pose transformation comparison with other methods and our variants.

Method LlJ RMSE | SSIM T
StarGAN [2] 0.0670 0.1974 0.7680
GANimation [7] 0.0611 0.1921 0.7878
Ours(mask) 0.0600 0.1885 0.7899
Ours(grid) 0.0545 0.1867 0.8069
Ours(mask+grid) 0.0541 0.1855 0.8072
Ours(mask+grid+ms) 0.0525 0.1800 0.8101

Table 2. Pose transformation comparison with Pramook’s and our method.

Method L1,  RMSEJ] SSIMT
Pramook’s [9] 0.0664 0.2481 0.8022
Ours 0.0401 0.1434 0.8417

4.4 Quantitative Experimental Results

We use L1 norm, RMSE, and SSIM similarity [30] for quantitative evaluations.
For the L1 norm and RMSE, the lower the score, the smaller the distance between
the generated image and ground truth, in contrast, for SSIM, the higher the
score, the greater the similarity between the generated image and ground truth.

As shown in Table 1, “Ours(mask)” means we only use the single stage mask
generator, “Ours(grid)” means we use the grid generator only, “Ours(mask-+grid)”
means we use fusion to fuse the results of mask generator and grid generator,
“Ours(mask+grid4+ms)” means the complete model, including the pose vector
decomposition and cascaded refinement strategy. Compared to other two meth-
ods, our method obtains higher SSIM score and lower L1, RMSE scores.
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It is worth mention that Pramook’s method requires RGBA format images,
while images in our dataset are RGB format. So we chose about 100 models from
our testing set and manually made them into RGBA format, then we use his
open source weights and test code to obtain quantitative results on our dataset.
As shown in Table 2, the calculated L1 and RMSE results are much higher than
our method. For possible reasons, first we cannot refine the RGBA images to
be consistent with his training dataset, because he has his own set of processing
code and is not open released, while we can only make them manually. Besides,
his method needs the character’s head in the 128 x 128 position in the center
of the image, while our dataset and method does not have this constraint. In
addition, our method can handle larger motion of head than his.

4.5 Generalization and Yaw Rotation Results

ADNAA

Fig. 10. Generality and Yaw Rotation. The upper part is the generalization results
of our model, where input anime images in the first column are downloaded from the
Internet. The bottom is the yaw rotation results, our model can handle it as well.

The upper part of Fig. 10 demonstrates the generality of our model, where the
input images are downloaded from the Internet, our model shows good generality.
For yaw rotation, it is essentially the same as pitch and roll, our model can handle
it as well, two examples are shown in the bottom of Fig. 10.

5 Conclusion

In this work, we present a novel cascade pose transform network for talking
head animation. Different from previous methods, our approach is capable of
generating vivid anime talking heads from a single anime image. Extensive ex-
periments on our anime dataset validate the effectiveness of our approach. In the
future, we plan to improve the generalization ability of the model and increase
the resolution of the generated image.
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