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Abstract. Accurate image keypoints detection and description are of
central importance in a wide range of applications. Although there are
various studies proposed to address these challenging tasks, they are far
from optimal. In this paper, we devise a model named MLIFeat with two
novel light-weight modules for multi-level information fusion based deep
local features learning, to cope with both the image keypoints detection
and description. On the one hand, the image keypoints are robustly de-
tected by our Feature Shuffle Module (FSM), which can efficiently utilize
the multi-level convolutional feature maps with marginal computing cost.
On the other hand, the corresponding feature descriptors are generated
by our well-designed Feature Blend Module (FBM), which can collect and
extract the most useful information from the multi-level convolutional
feature vectors. To study in-depth about our MLIFeat and other state-
of-the-art methods, we have conducted thorough experiments, including
image matching on HPatches and FM-Bench, and visual localization on
Aachen-Day-Night, which verifies the robustness and effectiveness of our
proposed model. Code at: https://github.com/yyangzh/MLIFeat

1 Introduction

For a long time, image keypoints detection and their local feature description
have been active and open research problems in computer vision. It is an essential
processing step for various visual-based applications such as SfM[1], SLAM[2–
6], Visual Localization[7, 8], and Image Retrieval[9]. With the industry’s rapid
development, these applications is required to deal with more complex and chal-
lenging scenarios (various conditions such as day, night, and seasons). As the
image keypoints detection and description are the critical components of these
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Fig. 1. Visualization samples of detecting and matching on FM-Bench[20], Aachen-
Day-Night[21] and HPatches[22]. The proposed method can successfully find image
correspondences even under large illumination or viewpoint changes.

high-level algorithms, there is an urgent need to improve their precision, which
is of great significance.

Over the past two decades, there are many excellent algorithms proposed
to solve the above problem. Both the traditional hand-crafted methods[10–14]
and the deep-learning-based methods[15–17] have made a breakthrough. Espe-
cially the deep-learning-based algorithms, such as SuperPoint[15], D2-net[16],
and R2D2[18], have greatly improved the accuracy of both the keypoints detec-
tion and the local feature description. However, most previous methods[15, 16,
18, 19] deploy the top-layer feature map to detect keypoints and extract descrip-
tors, which is problematic. Firstly, detecting keypoints on the top-layer feature
map with reduced spatial size will inevitably enlarge the detection error. More
importantly, it is hard for the descriptors extracted from the top-layer feature to
distinguish keypoints with the same high-level semantics but the different local
structures, as they lack the low-level structural information. Motivated by such
observation, we propose two novel lightweight modules to mitigate each limita-
tion separately. Specifically, to reduce the systematic detection error, we design a
Feature Shuffle Module (FSM), which can efficiently reorganize the feature maps
from low-resolution to high-resolution with marginal computing cost and detect
the keypoints with high precision from these shuffled feature maps. To encode
necessary structural information to each descriptor, we further devise a Feature
Blend Module (FBM), capable of collecting rich information from the multi-level
convolutional features and constructing the most discriminative descriptor.

In brief, there are three main contributions in this paper: 1) we design a
novel Feature Shuffle Module (FSM) to detect the keypoints accurately; 2) we
devise a novel Feature Blend Module (FBM) to generate robust descriptors; 3)
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with the power of the two lightweight modules, we present a novel model named
MLIFeat to detect keypoints and extract descriptors jointly. To analyze the
proposed method’s strengths, we have conducted comprehensive experiments on
HPatches[22], FM-Bench[20], and Aachen-Day-Night[21], which show that our
proposed MLIFeat reaches state-of-the-art performance.

2 Related Work

For a long time, the hand-crafted methods are the preference of most high-level
algorithms. Among them, SIFT[10] plays a vital role in computer vision[1], which
utilizes Difference-of-Gaussian to detect the keypoints and then constructs the
corresponding descriptors through gradients of their surrounding pixels. Besides,
ORB[11] is a commonly used algorithm due to its fast and robust features. More
comprehensive evaluation results can be found in [23, 24, 14].

With the development of deep learning technology, many learned local fea-
tures [17, 25, 26] emerge, which detect keypoints based on the hand-crafted meth-
ods and extract the descriptors via neural network. Among them, L2-Net[17]
proposed a network architecture stacking by several convolution layers to ex-
tract the descriptor of an image patch and deployed an n-pair loss to train the
model end-to-end. Hardnet[25] proposed a hard-mining strategy to train the net-
work more efficiently, which improved the model performance significantly. SOS-
Net [26] used the second-order similarity to regularize the descriptors’ potential
distribution. Since these methods take an image patch as input, the performance
of their descriptors is still limited in some challenge scenarios[14, 15].

In contrast to the above hybrid methods, many unified architectures have
proposed to detect the keypoints and describe[27, 28, 15, 16] the local feature
jointly in recent years. Among them, LIFT[27] and LF-Net[28] both proposed a
two-stage algorithm to first detect the keypoints via a score map predicted by
one sub-network and then input the corresponding image patches to another sub-
network to generate the descriptors. Different from the above two-stage methods,
SuperPoint[15] raised a more unified architecture constructed by a common en-
coder followed by two separate branches to detect the keypoints and extract the
descriptors. DELF[29] and D2-Net[16] proposed a describe-and-detect approach
that utilizes the dense feature descriptors to detect the keypoints. R2D2[18]
raised an algorithm that trains the model to detect and describe the keypoints
only in the discriminate image region. UnsuperPoint[30] deployed an unsuper-
vised pipeline to learn both the keypoints detector and the local feature descrip-
tor. Recently, ASLFeat[19] utilized the powerful DCN to extract the descriptors,
which can correctly match under challenging scenarios. However, most of these
methods ignore the importance of low-level structural information(e.g., shape,
scales) to the keypoints detection and descriptors extraction, resulting in sub-
optimal performance. To mitigate this limitation, in this paper, we carefully
devise two novel and intuitive light-weight modules to take the advantages of
multi-level feature maps to largely promote the precision of keypoints and the
robustness of descriptors.
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Fig. 2. The network architecture of our MLIFeat, which is designed by integrating
the common used VGG-like encoder with the Feature Shuffle Module(FSM) and the
Feature Blend Module(FBM). Specifically, the backbone encoder takes a single-scale
image I as input and output the feature maps at scales. The FSM further utilizes
these feature maps to predict the heatmap H. Besides, given a point p ∈ I and its
down-sampled location p(m)in each feature map Cm, the corresponding feature vector
Cm(p(m)) is looked up from Cm with bi-linear interpolation. Then the FBM blends all
feature vectors to generate the descriptor dp.

3 Proposed Method

3.1 Network Architecture

Our model consists of three core components: the backbone feature encoder,
the Feature Shuffle Module (FSM), and the Feature Blend Module (FBM). The
backbone feature encoder takes a single-scale image as input and generates a se-
ries of convolutional feature maps with semantic information from low to high.
The well-designed Feature Shuffle Module and Feature Blend Module further
take these feature maps as input and output the detected keypoints and their
corresponding descriptors. Since the detection and description are relatively in-
dependent of the feature extracting, we take the commonly used VGG-like[31,
15, 16] encoder as our backbone network due to its efficiency and accuracy. The
whole network architecture can be seen in Fig. 2.

Backbone Feature Encoder. The process of the encoder is a feed-forward
computation of the backbone network, which produces the feature maps at sev-
eral scales with a scaling step of 2. Considering the original image as I ∈ R

h×w,
the corresponding feature maps at scales can be denoted as Cm ∈ R

hm×wm×dm ,
where m ∈ {1, 2, 3, 4} and d ∈ {64, 64, 128, 128}. The size of Cm and the size of
I satisfies h = hm × 2m−1, w = wm × 2m−1. This feature extraction process can
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Fig. 3. The visualization of the pixel shuffle operation. Each depth channel’s features
are scattered into the corresponding spatial region according to a scale ratio r, resulting
in a high-resolution feature map with reduced depth channel. The whole process is fast
and casts no extra memory resources, which is very suitable for real-time keypoints
detection.

be formulated as:
C1, C2, C3, C4 = Encoder(I). (1)

Keypoint Detection with Feature Shuffle Module. Inspired by the pixel
shuffle operation raised in [32], we propose a novel Feature Shuffle Module
(FSM) that takes the multi-level feature maps as input and predicts the keypoint
heatmap with the same resolution as the input image.

Specifically, our Feature Shuffle Module first reorganizes each low-resolution
feature map Cm ∈ R

hm×wm×dm to a high-resolution one Cs
m ∈ R

h×w×dm/4m−1

via the pixel shuffle operation, which is shown in Fig.3. Since the shuffled feature
maps have the same spatial size, they can be processed by a unified Conv layer
to generate the final heatmap, which implicitly fuses multi-level semantics and
naturally leads to a prediction with high precision. And the whole process can
be abstracted as:

H = FSM(C1, C2, C3, C4). (2)

During the model inference, the Non-Maximum-Suppression (NMS) is first
applied to the predicted heatmap. A point is then marked as a keypoint while
its response value in H exceeds a fixed detection threshold α.

Local Feature Description with Feature Blend Module To further make
full use of the multi-level semantics, we design a novel Feature Blend Module
(FBM) that can extract the most discriminative information from the multi-level
feature vectors to construct the descriptor.

For a point p = [x, y]T in the original image, its location in each feature map
Cm ∈ R

hm×wm×dm can be computed by p(m) = p/2i = [x/2m, y/2m]T and the
corresponding feature vector Cm(p(m)) ∈ R

dm is bi-linear interpolated from the
feature map Cm. After generating all the feature vectors corresponding to the
same point, a long feature vector Ccat is constructed by concatenation.

Though Ccat already contains multi-level semantics from low to high, directly
using this feature vector as a descriptor will certainly introduce noise and useless
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information. Therefore, one fully-connected layer is further deployed to filter
noise and compress the valid semantics to produce a compact descriptor dp ∈
R

dim, where dim = 128. The FBM is illustrated in Fig. 2 and the whole process
can be generalized as:

D = FBM(C1, C2, C3, C4, P ), (3)

where P = {p1, p2, ..., pn} denotes a bunch of keypoints and their corresponding
descriptors are denoted as D = {d1, d2, ..., dn}.

3.2 Data Preparation for Joint Training.

To train our MLIFeat with FSM and FBM jointly, we use the COCO[33] and
MegaDepth[34] as our training dataset. The former are collected from plenty of
diverse scenes, which ensures the robustness of the whole model. And the latter
contains image pairs with known poses and depth, which can further enhance
the local features’ distinguishability.

Image Keypoints Supervising. As the original COCO and MegaDepth do
not have ground truth labels for the keypoint detection, we deploy the Iterative
Homographic Adaptation[15] to generate the keypoints pseudo-ground truth la-
bel Y ∈ R

h×w for each image in both datasets: 1) Construct a synthetic dataset
as source dataset; 2) Use the source dataset to train a detector; 3) Label the
target dataset (COCO and MegaDepth); 4) Change the source to the newly la-
beled target datasets and back to the step two until converged. More details can
be found in our supplementary material.

Correspondences Generation. For the descriptor training, the correspon-
dences between the image pair are required. Different from the MegaDepth, the
images in COCO are relatively independent. Thus, for an image I in COCO, a
random homography is sampled and an image I ′ is synthesized based on the ho-
mography, resulting in the pairwise image. Then, for both dataset, n randomly
sampled correspondences are constructed based either on the homography in
COCO or on the pose in MegaDepth, which can be formulated as:

P = RandomSample(·) P ′, V = Transform(P ), (4)

where P, P ′ are the corresponding points between the image pair and V ∈ B
n

is a valid mask denoting the validity of each projected point, as not all the
transformed points are located in the image boundaries.

3.3 Definition of Loss Function

Detector Loss. Given a heatmap H ∈ R
h×w predicted from Eq.(2) and its

corresponding keypoints pseudo-ground truth label Y , the weighted binary cross
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entropy loss can be formulated as:

Lbce(H,Y ) =
1

hw

h,w∑

u,v

(−λYu,vlog(Hu,v)− (1− Yu,v)log(1−Hu,v)), (5)

where λ is used for balancing the ratio between positive and negative samples
because the number of positive samples is much smaller than the number of
negative samples. And in our paper, we empirically set λ = 200.

Descriptor Loss. Given the points set P in I and their corresponding points
set P ′ in I ′ generated from Eq.(4), the descriptors D,D′ of these points can be
extracted from FBM respectively. Then, for a descriptor dpi

∈ D, its positive

pair distance is defined as:

p(dpi
) = ||dpi

− dp′

i
||2, (6)

where dp′

i
∈ D′ is the corresponding descriptor of dpi

. And its hardest negative

pair distance is formulated as:

n(dpi
) = ||dpi

− dp′

k∗
||2, (7)

where

k∗ = argmin
k 6=i

||dpi
− dp′

k
||2 & ||p′k − p′i||2 > θ & p′k within the boundaries. (8)

The empirical threshold θ = 16 is used to ensure that the spatial distance be-
tween p′k∗ and p′i is beyond a certain value, as the two descriptors are too similar
to distinguish from each other when they are very close in the image, which is
harmful to the training. Besides, the selected negative sample dp′

k∗
is also re-

quired to locate within the image boundaries, or it is invalid. Given p(dpi
) and

n(dpi
), we define our hardest triplet descriptor loss as:

ltriplet(dpi
) = max(0, p(dpi

)− n(dpi
) + 1). (9)

And the whole loss constructed for the descriptors D,D′ is summed as:

Ltriplet(D,D′, V ) =

n∑

i=1

ltriplet(dpi
)vi∑n

j=1 vj
, (10)

where vi ∈ V indicating the validity of the correspondence between dpi
and dp′

i
.

Total Loss. Based on above definition, the total loss is formulated as:

Ltotal(H,H ′, D,D′;Y, Y ′, V ) = Lbce(H,Y ) + Lbce(H
′, Y ′) + Ltriplet(D,D′, V ).

(11)
The sampling of both the transformation and correspondences is processed with
the training procedure in parallel, which prevents the network from overfitting.
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3.4 Parameters Setting

For model training, we use Adam optimizer [35] with β1 = 0.9, β2 = 0.999,
lr = 0.001 and weight decay = 10−4. The training image size is set to 240× 320
with the training batch size setting to 16. The whole training process typically
converges in about 30 epochs. Besides, during the model evaluation, the NMS
radius is set to 4 pixels. And the detection threshold α is set to 0.9 to balance
the number and reliability of the keypoints.

4 Experiments

4.1 Image Matching on HPatches

Dataset. We use the popular HPatches[22], which includes 116 scenes with 580
image pairs exhibiting a large change in either illumination or viewpoints. The
ground truth homography between each image pair is provided for the evaluation.
Following D2net[16], we exclude eight high-resolution sequences, leaving 108
scenes for a fair comparison.

Evaluation protocols. For a comprehensive evaluation, three standard metrics
are used: 1) Homography accuracy (%HA), a.k.a the ratio of correct estimated
homography. 2) Matching score (%M.S.), a.k.a the ratio of correct matches
and the minimum number of keypoints in the shared view. 3) Mean matching
accuracy (%MMA), a.k.a the ratio of correct matches and possible matches.
Here, the matches are found by the mutual nearest search for all methods, and a
match is defined to be correct if the point distance is below some error threshold
after projecting from one image to another. Besides, the homography is estimated
based on the matches, and it is defined to be correct when its warping error is
below some error thresholds[15].

Comparative methods. We compare our methods with 1) hand-craft method
ROOT-SIFT[36] and DSP-SIFT[13]. 2) learned shape estimator HesAffNet[37]
plus learned patch descriptors HardNet++[25]. 3) Joint local feature learning
state-of-the-art approaches including SuperPoint[15], D2net[16], R2D2[18], and
recent ASLFeat [19]. To ensure the fairness and reproducibility of results, we
report all the results based on the public implementations with default param-
eters. Except for speed evaluation, all evaluations are conducted based on the
original resolution images in HPatches.

Baseline. In this paper, we use the same backbone as SuperPoint and present
our reimplementation of SuperPoint(our impl) as our baseline. Specifically, our
impl is differs from the original SuperPoint(orig) in mainly two aspects: 1)
Different training dataset (COCO and MegaDepth vs. only COCO). 2) Differ-
ent loss formulation (hardest-triplet[25] vs. pairwise-contrastive[15]). Under the
same training protocol, it is fair to compare our MLIFeat with the new baseline.
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Table 1. Ablation experiments of proposed modules. orig means the SuperPoint pub-
licly released model, and impl is the reimplemented baseline under our training pro-
tocol. SuperPoint + FSM replaces the SuperPoint detection head with our Feature
Shuffle Module. SuperPoint + FBM replaces the SuperPoint description head with our
Feature Blend Module. And MLIFeat is the backbone of SuperPoint plus two proposed
modules that significantly improves the baseline model’s performance.

HPatches dataset(error threshold @3px)

Configs
Total Illumination Viewpoint

M.S. MMA HA M.S. MMA HA M.S. MMA HA

SuperPoint orig 0.424 0.645 0.726 0.456 0.694 0.892 0.394 0.599 0.571

SuperPoint impl 0.456 0.683 0.713 0.502 0.734 0.889 0.413 0.637 0.557

SuperPoint + FSM 0.464 0.710 0.730 0.489 0.742 0.896 0.439 0.679 0.575

SuperPoint + FBM 0.460 0.698 0.734 0.496 0.748 0.915 0.427 0.651 0.575

MLIFeat 0.475 0.728 0.756 0.500 0.763 0.892 0.453 0.696 0.629

Ablation on Training protocol. Due to the newly added dataset and more
powerful loss function, as shown in Tab.1, our impl outperforms orig in %MMA

and %M.S.. However, it’s interesting to find that the %HA of our impl is slightly
worse than the orig. It lies in that the %HA is not a direct metric to assess and
is affected by both the homography estimation algorithm’s accuracy and the
quality of the matched points. Generally speaking, only when the matching is
sufficiently good can the corresponding estimated homography be improved.

Ablation on FSM. When replacing the original detection head in SuperPoint
with our proposed Feature Shuffle Module, it is evident in Tab.1 that this variant
outperforms the baseline in almost metrics. Such improvement is reasonable
that FSM detects keypoints from the high-resolution multi-level information
fused feature map. Especially when viewpoint changes, points detected from
low-resolution prone to large errors. However, applying FSM, the accuracy of the
keypoints improves obviously, e.g., %MMA from 0.637 to 0.679, which indicates
that FSM will reduce the systematic errors caused by low-resolution feature map.

Ablation on FBM. Similarly, utilizing the Feature Blend Module yields better
results, for it promotes the discriminability of the descriptors by the multi-level
feature vectors. The lower-level feature vector contains more structural infor-
mation about the neighbor of the keypoints. Meanwhile, the high-level feature
vector encodes more semantics information from a wider spatial region. Such a
combination is simple but effective. And it is convenient to take our FBM in
most current methods to further improve their descriptors’ performances.

Comparisons with other methods. The comprehensive comparisons results
with other methods are illustrated in Fig.4. Within a small threshold (3px),
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Fig. 4. Comparisons on HPatches Dataset[22] with Homography Accuracy (%HA),
Matching Scores (%M.S.), and Mean Matching Accuracy (%MMA). Our method
achieves either the best or the comparable performances within a threshold of 3px.

MLIFeat outperforms other methods on almost all error metrics. Even within
a relaxed error bound, our method is still at the top three ranks in all models.
Furthermore, when comparing with the most recent ASLFeat who utilizes the
complex Deformable Convolutional network to generate descriptors with high
precision, our MLIFeat still generates comparable results, which strongly verifies
the effectiveness of the proposed two modules.

In addition, experiments are conducted to compare the size and speed of
the proposed model and other joint learning methods, which is shown in Tab.2.
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Table 2. Size and speed comparisons of the joint learning methods. The speed is
averaged on HPatches(480× 640) with TitanV. We can see that our MLIFeat reaches
the fastest speed under the same experimental protocol.

MLIFeat SuperPoint ASLFeat R2D2 D2Net

Size 2.6Mb 5.0Mb 5.2Mb 1.9Mb 29Mb

Speed 32fps 28fps 21fps 8fps 6fps

Specifically, the speed is average on HPatches with the same image size(480×640)
under TitanV, and the size is the sum of all the parameters contained in each
model. With the light-weight FSM and FBM, our MLIFeat reaches the fastest
speed. Though R2D2 has the smallest model size, it cast too much time to detect
keypoints and extract descriptors, making the whole algorithm very slow.

4.2 Image Matching on FM-Bench

The widely used HPatches dataset may not comprehensively reflect the algo-
rithm’s performance in real applications[19], since it exhibits only homography.
Therefore, the same as ASLFeat, we resort to the newly proposed FM-Bench [20]
to further evaluate each method’s matching performance.

Dataset. FM-Bench comprises four datasets captured in practical scenarios:
the TUM dataset[38] in indoor SLAM settings, the KITTI dataset[39] in driving
scenes, the Tanks and Temples dataset(T&T)[40] for wide-baseline reconstruc-
tion and the Community Photo Collection(CPC)[41] for wild reconstruction from
web images. For each dataset, 1000 overlapping image pairs are chosen for eval-
uation, with ground-truth fundamental matrix pre-computed.

Evaluation protocols. A full matching pipeline including outlier rejection
(ratio test) and geometric verification(RANSAC) is performed, and the final
estimated pose accuracy is evaluated. FM-Bench utilizes ground-truth pose to
generate a set of virtual correspondences, then use the estimated pose to measure
the average of normalized symmetric epipolar distance, and finally computes the
ratio of correct estimates as %Recall. A pose is defined as correct for its distance
error is below a certain threshold (0.05 as default). Besides, FM-Bench also
reports intermediate results such as the inlier ratio (%Inlier/%Inlier-m) and
correspondence number (%Corr/%Corr-m) after/before RANSAC.

Comparisons with other methods. As we can observe in Tab.3, for the Recall
metric, MLIFeat is superior to other methods in T&T and CPC dataset, which
are scenes with wide baseline, and it is slightly inferior to ASLFeat in TUM and
KITTI dataset, which are scenes with short baseline. Since the baseline of image
pair in TUM and KITTI dataset is short[20], image from one to another does not



12 Y. Zhang et al.

Table 3. Evaluation results on FM-Bench[20] for pair-wise image matching, where
Recall denotes the percentage of accurate pose estimation(within the error threshold
0.05), Inlier and Inlier-m, Corrs and Corrs-m denote the inlier ratio and correspon-
dence number after/before RANSAC. The results of other methods come from the
paper[19] except ASLFeat, ROOT-SIFT, and DSP-SIFT, which the are evaluated us-
ing their publicly released models with the default setting. The best and the second
best are marked red and blue, respectively.

FM-Bench Dataset(error threshold @0.05)

Methods
TUM[38](indoor SLAM settings) KITTI[39](driving SLAM settings)

Recall Inlier Inlier-m Corrs(-m) Recall Inlier Inlier-m Corrs(-m)

ROOT-SIFT[36] 58.40 75.33 62.46 68 (308) 92.20 98.34 91.11 158 (520)

DSP-SIFT[13] 55.60 74.54 56.44 66 (380) 92.40 98.22 87.60 154 (573)

HesAffNet+HardNet++[37] 51.70 75.70 62.06 101 (657) 90.40 98.09 90.64 233 (1182)

D2Net-MS[16] 34.50 67.61 49.01 74 (1279) 71.40 94.26 73.25 103 (1832)

R2D2 [18] 57.70 73.70 61.53 260 (1912) 78.80 97.53 86.49 278 (1804)

ASLFeat[19] 59.10 76.17 69.13 149 (742) 92.00 98.64 96.27 446 (1459)

SuperPoint orig [15] 45.80 72.79 64.06 39 (200) 86.10 98.11 91.52 73 (392)

SuperPoint impl 49.80 73.95 68.32 43 (193) 87.70 98.28 93.95 76 (367)

MLIFeat 52.90 74.10 67.29 65 (358) 89.10 98.25 95.07 140 (772)

T&T[40](wide-baseline reconstruction) CPC[39](wild reconstruction)

ROOT-SIFT[36] 78.00 81.38 63.38 93 (756) 41.20 78.31 62.27 65 (369)

DSP-SIFT[13] 74.50 79.80 60.07 90(846) 34.00 75.83 56.29 58(367)

HesAffNet+HardNet++[37] 82.50 84.71 70.29 97 (920) 47.40 82.58 72.22 65 (405)

D2Net-MS[16] 68.40 71.79 55.51 78 (2603) 31.30 56.57 49.85 84 (1435)

R2D2 [18] 73.00 80.81 65.31 84 (1462) 43.00 82.40 67.28 91 (954)

ASLFeat[19] 88.60 85.56 79.08 297 (2070) 52.90 87.88 82.29 177 (1062)

SuperPoint orig [15] 81.80 83.87 70.89 52 (535) 40.50 75.28 64.68 31 (225)

SuperPoint impl 85.00 85.95 78.00 57 (491) 44.60 86.16 79.98 40 (273)

MLIFeat 88.80 86.21 78.63 103 (1006) 53.50 86.52 80.78 72 (535)

vary too much. The transformation between the image pair can be approximated
to an affine transformation, which is precisely the advantage of ASLFeat whose
descriptors are generated by the affine-constraint DCN [19].

In contrast, the image pair in T&T and CPC dataset exhibits large viewpoint
and illumination changes. To correctly match the keypoints, it is required that
the descriptors contain not only the local structural information but high-level
semantics as well. Though FBM is not as powerful as DCN to extract the affine-
invariant descriptors, the multi-level semantics fused descriptors are much more
robust in these challenging wide-baseline dataset.

4.3 Visual Localization

In this section, we evaluate our MLIFeat and other methods under the task of vi-
sual localization[42, 18], where the goal is to retrieve the pose of an image within
a given environment. In this benchmark, methods will face challenges such as
day-night transitions and significant viewpoint changes between scene modeling
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Table 4. Evaluation results on the Aachen-Day-Night dataset. We report the average
feature number of each method, the descriptor’s dimension, and the percentages of
successfully localized images within three error thresholds. The best and second best
are marked in red and blue, respectively. It can be observed that our MLIFeat achieves
the best results within the most strict threshold.

Aachen-Day-Night Dataset

Methods #Features Dim
Correctly localized queries(%)

0.25m, 2◦ 0.5m, 5◦ 5m, 10◦

ROOT-SIFT[36] 11K 128 49.0 53.1 61.2

DSP-SIFT[13] 11K 128 41.8 48.0 52.0

HesAffNet+HardNet++[37] 11K 128 52.0 65.3 73.5

D2Net-SS[16] 19K 512 72.4 88.8 100

D2Net-MS[16] 14K 512 75.5 88.8 100

R2D2[18] 10K 128 74.5 85.7 99.0

ASLFeat[19] 10K 128 77.6 87.8 98.0

SuperPoint[15] Orig 7K 256 73.5 79.6 88.8

SuperPoint Impl 7K 256 76.5 86.7 94.9

MLIFeat 7K 128 78.6 88.8 96.9

and image localization. It is particularly meaningful to evaluate each method’s
performance under this real-world application because it further reflects the local
feature’s robustness.

Dataset. The evaluation is conducted on the Aachen-Day-Night dataset[21]: For
each of the 98 night-time images in the dataset, up to 20 relevant day-time images
with known camera poses are given. After exhaustive feature matching between
the day-time images in each set, their known poses are used to triangulate the
scenes’ 3D structure. Finally, these resulting 3D models are used to localize the
night-time query images[16].

Evaluation protocols. We follow the public evaluation pipeline proposed in
The Visual Localization Benchmark, which takes the custom features as input,
then relies on COLMAP [43] for image registration, and finally generates the
percentages of successfully localized images within three tolerances (0.25m, 2◦)
/ (0.5m, 5◦) / (5m, 10◦). It is noting that the evaluation rule and tolerances are
changed after recent updating in the website, and all of our results are based on
the new rule.

Comparisons with other methods. The comparison results are illustrated
in Tab.4. Consistent with the above evaluation, our MLIFeat outperforms other
methods in the most strict tolerance. However, it is interesting to find that D2Net
recovers all the query images’ poses for the most relaxed tolerance(5m, 10◦). On
the one hand, D2Net is fine-tuned from the VGG pre-trained on ImageNet, mak-
ing its descriptors implicitly contain much more semantics than others. On the
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other hand, the dataset MegaDepth used for fine-tuning D2Net is close to the
scenes contained in Aachen. Therefore, despite having large keypoints localiza-
tion error, the matched keypoints still belong to the same place, which ensures
the recovery of poses within the most relaxed tolerance.

Analogously, when contrast SuperPoint impl and SuperPoint orig in Tab.4,
there is an evident improvement from orig to impl (79.6 to 86.7 and 88.8 to
94.9). With the above analysis of D2Net, it is easy to find that such an improve-
ment is mainly due to the extra MegaDepth training dataset. Since the scenes
in MegaDepth are close to Aachen, the descriptors trained from MegaDepth
perform much better in Aachen than that in other test datasets (HPathces and
FM-Bench). Furthermore, it is interesting to find the DSP-SIFT, ROOT-SIFT
and HardNet++ performs much worse in this task. It might due to the descrip-
tors from these methods are extracted from the image patch, which lacks enough
global semantics to handle large illumination changes(day v.s night). Thus, for
the challenge localization task, to learn descriptors with rich semantics or add
auxiliary semantic learning, e.g., classification, will both increase the accuracy
of such a problem.

5 Conclusion

In this paper, we propose a novel deep model for multi-level information fusion
based deep local features learning (MLIFeat), to cope with the image keypoints
detection and description simultaneously. Two novel feature fusion modules, Fea-
ture Shuffle Module (FSM) and the Feature Blend Module (FBM), are cascaded
to the commonly used encoder (SuperPoint backbone used in our paper). The
Feature Shuffle Module can efficiently utilize the multi-level feature maps to de-
tect the keypoints with high precision via the pixel shuffle operation. And the
Feature Blend Module can make the full use of the multi-level feature vectors to
generate the discriminative descriptors. To evaluate our model and other state-
of-the-art methods, we have conducted extensive experiments, including image
matching on HPatches and FM-Bench, and visual localization on Aachen-Day-
Night. These evaluation results not only validate the effectiveness of our MLIFeat
but also give insight into the performances of current methods under different
tasks, which is beneficial to the development of the related algorithm.
Future work. To further improve the deep local feature’s precision, better key-
points supervisory signals should be developed, as the current pseudo-ground
label still contains noise. Besides, as analyzed above, additional semantic infor-
mation should be embedded in the descriptors, enabling the model to handle
more challenging scenarios.
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