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Abstract. Deep learning based 6-degree-of-freedom (6-DoF) direct cam-
era pose estimation is highly efficient at test time and can achieve ac-
curate results in challenging, weakly textured environments. Typically,
however, it requires large amounts of training images, spanning many
orientations and positions of the environment making it impractical for
medium size or large environments. In this work we present a direct
6-DoF camera pose estimation method which alleviates the need for ori-
entation augmentation at train time while still supporting any SO(3)
rotation at test time. This property is achieved by the following three
step procedure. Firstly, omni-directional training images are rotated to
a common orientation. Secondly, a fully rotation equivariant DNN en-
coder is applied and its output is used to obtain: (i) a rotation invariant
prediction of the camera position and (ii) a rotation equivariant predic-
tion of the probability distribution over camera orientations. Finally, at
test time, the camera position is predicted robustly due to an in-built
rotation invariance, while the camera orientation is recovered from the
relative shift of the peak in the probability distribution of camera ori-
entations. We demonstrate our approach on synthetic and real-image
datasets, where we significantly outperform standard DNN-based pose
regression, (i) in terms of accuracy when a single training orientation is
used, and (ii) in training efficiency when orientation augmentation is em-
ployed. To the best of our knowledge, our proposed rotation equivariant
DNN for localization is the first direct pose estimation method able to
predict orientation without explicit rotation augmentation at train time.

1 Introduction

Visual localization aims at finding the position and orientation of the input
camera sensor with respect to a known environment, using image alone. Its
significance in many practical applications, including autonomous driving [1],
robotics [2] and augmented reality [3, 4], inspires numerous publications over the
years [5–19]. Nevertheless, robust localization in complex environments remains
a challenge to-date [20–23].

Classical localization using feature correspondences dates back decades ago
[5–7], and some of these methods remain competitive today especially in mid- and
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Fig. 1. Given equirectangular input of arbitrary orientation (left images), our method
predicts 6-DoF camera poses (green - ground truth, red - predictions). Note that our
method does not require any rotation augmentation at train time and hence signif-
icantly increases convergence speed. Left column, shows query images from Stanford
2D3DS [51] dataset under arbitrary orientations and corresponding camera pose predic-
tions are highlighted on the right. Our method is capable of rotation invariant position
prediction and efficient orientation estimation.

large-scale environments [24, 21]. Nevertheless, recent advances in deep learn-
ing particularly improve upon localization with challenging lighting, appearance
changes and in run-time performance [19, 10, 14]. In our work, we target deep
localization with a particular focus on generalization for invariance to camera
orientation.

Localization with deep neural networks (DNNs) has been tackled using im-
age retrieval [8], relative pose regression [9–11], scene coordinate regression [12–
15] and direct camera pose estimation [16–19] approaches. Image retrieval ap-
proaches formulate localization as a problem of finding the image most similar
to the query image. Relative pose regression methods use image feature corre-
spondences between query and retrieved image to further refine the pose. Scene
coordinate regression methods perform an efficient image to point cloud feature
matching to find camera pose, while direct pose estimation approaches typically
regress the position and orientation of the camera directly, in an end-to-end
setup. We deal with the former type as we present a new approach to pose re-
gression under challenging rotations at test time, but our method is applicable
to other frameworks.

PoseNet [16] presents an early approach to direct pose estimation using
DNNs, and it has been a popular framework since [17, 19]. Recently, however,
[23] highlighted the limitations of direct pose regression methods, and compared
their performance to networks performing the image retrieval task. In particular,
both type of methods struggle to generalise to unseen, novel viewpoints, hence
collection of large amounts of images (or utilisation of rendered views) is required
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if good test performance is to be expected. In [25] image retrieval is improved
by enhancing original viewpoints with additional synthetically generated views.
Similarly, warped RGB images with depth data are exploited to improve deep
pose regression in [18], while [19] applies novel view generation for DNNs by
leveraging the sparsity of SIFT features [26].

Contribution In our work, we take a different approach to improving the deep
pose regression framework, as we leverage rotation equivariance to improve view
generalization. In particular, inspired by rotation equivariant deep learning on
spheres [27–29], we formulate localization for spherical, omni-directional input
(see Figure 1). We estimate camera position via regression from the feature re-
sponse of the rotation invariant decoder, while camera orientation is extracted
from the relative orientation in rotation equivariant feature response. Our con-
tributions are as follows:

1. We present the first rotation invariant, deep camera position regression net-
work.

2. We introduce rotation equivariant decoder and a sample efficient classifica-
tion loss to generate camera rotation estimation in full SO(3) from only one
rotation observation in training data, without rotation augmentation.

3. We evaluate our method on synthetic and real datasets.

The rest of this work is divided as follows. Section 2 discusses relevant work
in localisation. Section 3 provides details of our proposed localization method.
Sections 4 and 5 describe the experiment setup and corresponding results.

2 Related Work

In this section, we discuss relevant works on deep learning based localization,
and, in particular, direct pose regression methods. We also review equivariant
feature learning in the context of pose estimation and spherical deep learning.
The interested readers are referred to [20–23] for a more detailed review of lo-
calization approaches.

2.1 Localization using Deep Neural Networks

Localization methods which use deep learning have received much interest in
recent years [8–19]. Typical approaches tackle the task via place recognition,
relative pose regression, scene coordinate regression or direct camera pose esti-
mation.

Place Recognition methods formulate the localization task as image retrieval
problem where 6-DoF camera pose estimation is not required. Examples include
NetVLAD [8] which generates an image descriptor that is aggregated from local
descriptors taken from convolutional responses at pixel level. PlaNet [30] for-
mulates the place recognition task as a classification problem using quantized
camera coordinates.
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Relative Pose Regression methods use image retrieval followed by relative
pose estimation between query and retrieved images to refine the pose predic-
tion. In [9], a Siamese network is employed to find the pose transformation
between two images. Additionally, end-to-end implementations for the retrieval
and refinement are presented in [10] and [11].

Scene Coordinate Regression approaches predict 2D-to-3D point correspon-
dences via per pixel regression of scene coordinates. They obtain a 6-DoF camera
pose prediction by absolute pose estimation. Differentiable RANSAC optimiza-
tion is presented in [12] where a DNN is employed for hypothesis scoring. In
[13] an angle-based re-projection loss is optimized, while [14] produces a differ-
entiable score from RANSAC inlier counts. A scene coordinate regression with
semantic labels is presented in [15].

Direct Pose Estimation provides pose predictions directly using convolu-
tional DNNs. PoseNet [16] regresses to camera pose from image signals alone
using a simple deep learning framework. However, absolute pose regression has
poor generalization to unseen viewpoints and thus requires well sampled training
data [23] if good test performance is expected. An LSTM module is employed by
[17] to reduce overfitting in the final fully connected layers as structured feature
correlation is introduced. In [18] and [19] original dataset views for training are
enhanced with novel view generation, for RGB-D and RGB input respectively.

In our work we consider direct pose estimation due to its train and test
time speed and simplicity. We overcome the problem of overfitting by training
from densely sampled locations using artificially rendered images of the scene
of interest. Our method does not require different samples of orientations and
demonstrates orders of magnitude faster convergence at training, and significant
improved performance at test time.

2.2 Omni-directional Localization and Equivariant Features

Omni-directional sensor input increases the field of view for the localization
task and more importantly rotations are easily handled by simply moving the
pixels on the image sphere. Distortions due to camera pose, otherwise introduced
by the planar image projection are reduced [31]. Therefore, spherical images
present a very attractive input to camera pose estimation. Early works introduce
rotation invariant omni-directional localization using color histograms [32–34] or
Eigenspace models [35, 36]. Later, SIFT features [26] were adapted to spherical
input for wide angle localization tasks [37].

In recent years, many classical feature matching tasks have been revisited
with deep learning. For example, SIFT [26] is reformulated using spacial trans-
former networks [38] to introduce scale and rotation equivariance in DNNs [39,
40], all be it only approximately. In [41], DNNs exploiting harmonic filters are
used for guaranteed rotation equivariant features. Neither, however, are trivially
applicable to spherical input.

Research on spherical CNN computations include [42] which projects convolu-
tional filters onto the tangent plane of the sphere, [43–46] who apply convolutions
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on an unfolded icosahedron mesh, and [47] who employ kernels on a HEALPix
spheres. Most do not support rotation invariance, while non-trivial equivariance
is not supported by any.Rotation invariance is also only approximate due to re-
quired mesh alignments. Fundamental rotation equivariance for spherical CNNs
is first presented in [27] and [28]. We base our method on [28] which leverages
convolutions in a spherical fourier representation to ensure equivariance. In [29],
a simplification is introduce to [28] using the Clebsch-Gordan decomposition.

We apply omni-directional localization since it allows for (i) rotation invariant
camera position estimation, and based on the convolutions presented by [28] (ii)
efficient, rotation equivariant orientation estimation from feature responses. We
emphasize, to the best of our knowledge, we propose the first approach which
exploits rotation equivariance for the localization task.

3 Leveraging Rotation Equivariance for Localization

Our method, illustrated in Figure 2, consists of three modules: (i) the rotation
equivariant spherical encoder, (ii) the rotation invariant decoder for camera posi-
tion regression, and (iii) the rotationally equivariant orientation classifier which
shifts its prediction according to the camera rotation. Below, we describe each
part in detail.

3.1 Equivariant Spherical Encoder

The first module consists of a rotation equivariant feature encoder inspired by
the spherical convolutions introduced in [28] and the general architecture of
ResNet-18 [48]. Specifically, we adapt the work of [28] to perform rotationally
equivariant feature extraction for the localization task. Our intention is two-
fold. Firstly, theoretically sound rotation equivariant feature response can be
integrated [28] to provide rotation invariant feature response which is a useful
property for robustly predicting camera positions while being agnostic to ori-
entation. Secondly, rotation equivariance allows us to formulate a framework in
which only a single orientation needs to be observed during training.

We build our encoder in the following way. First, we apply S2Conv [28] on
the spherical input images to create an output feature map that is indexed by
rotations in SO(3). After that, we replicate the typical ResNet-18 architecture
[48] using three SO(3)Conv [28] based ResNet blocks (see Figure 2). Here, the
S2Conv convolution corresponds to a convolution of a 2D pattern with a 2D
surface on the spherical manifold, where the spherical manifold is shifted using
SO(3) rotations, analogous to filter translations in standard convolution opera-
tions on planar images. Since the output shifts with input orientation changes,
rotation equivariance is achieved, similar to translation equivariance in standard
CNN. Note, the output is now indexed by SO(3). The SO(3)Conv operates on
feature maps in SO(3), and, similarly to S2Conv convolutions, it applies a 2D
filter on the spherical manifold under rotations in SO(3) (also see [28] for more
detail). We emphasize, each output is fully rotation equivariant, as it changes
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Fig. 2. Training and testing frameworks are shown. For training, we use artificially ren-
dered images of fixed orientation in the global mesh. Our feature encoder is a spherical
CNN inspired by the ResNet-18 architecture [48], consisting of a S2Conv layer and
multiple ResBlocks composed of SO(3)Conv layers. By design feature maps are fully
rotation equivariant (also see Figure 3). The output features are fed into a rotation
invariant decoder for position regression, while orientation prediction leverages fur-
ther equivariant SO(3)Conv layers ending with a single channel SO(3) cube feature
response. In training we classify a particular cell of this cube for the fixed training
orientation. At test time we support arbitrary orientations, as the classification peak
rotates accordingly within the SO(3) cube response.

according to input orientation changes. The final layer’s output is represented
by a 3D cube, where feature responses are indexed using the XYZ Euler angles
representation of rotations.

In our implementation, each ResBlock is made of SO(3)Conv-BN-ReLU-
SO(3)Conv-BN. At the end of each block, the input is added to the result before
ReLU. In comparison to 2D feature maps, a 3D feature map representation
requires significantly larger GPU memory resources. To reduce memory require-
ments, we resize input images to 64 × 64px in our experiments. Following [28],
bandwidths relating to the spatial dimension are 32, 16, 8, 8, 8, and the num-
ber of features are 3, 32, 64, 128, 128. The final output feature map is of size
128×16×16×16. The resulting 3D feature map encoder forms the input to our
position and orientation decoder heads. Figure 3 shows example filter responses.
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Fig. 3. Analysis of equivariance. (a) Random channels of feature map responses at
initial layer, after ResBlocks, and orientation decoder for varying input orientations
are shown (we average the output of the features indexed by the roll rotation of the
XYZ Euler angles for visualization). Note, feature map responses change following the
input image camera orientation. In the final layer for orientation, a strong single peak
is formed. We show train locations (blue) and test locations (red) of the SceneCity
Grid (b) and SceneCity Small (c) dataset from our experiments in Section 4.

3.2 Invariant Position Regressor

Our pose decoder includes two output heads. The position head is used to regress
the 3D camera position (x, y, z) ∈ R

3. To achieve this, we leverage the rotation-
equivariance of our encoder, as we integrate over SO(3) space to produce a
rotation-invariant position prediction. The final fully connected layer is used to
regress the position vector in R

3. Note, this is similar to standard PoseNet [16]
where spatial aggregation is followed by one or more fully connected layers to
perform pose regression. In contrast to the special aggregation in PoseNet, our
aggregation results in a theoretically fully rotationally invariant feature vector
and thus reduces the learning requirements for our network significantly.

Mean squared loss is used for training the position regression. Note that,
instead of predicting the position directly, we use PCA whitening to normalize
the GT coordinates. We find this helps the general position task, as input values
are consistent across training sets even if training coordinates vary largely in
scales for different datasets.

3.3 Equivariant Orientation Classifier

To the best of our knowledge, the orientation decoder represents the first ro-
tation equivariant CNN for orientation prediction. In particular, we formulate
the orientation prediction as an equivariant classification task. This is motivated
by the fact that S2Conv and SO(3)Conv convolutions preserve orientation in-
formation throughout layers, and hence the 3D feature response in the XYZ
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Euler angle-based cube feature map represents the change in the orientation
of inputs. We capitalize on this by forcing train time images to have the same
orientation throughout the dataset, without loss of generalization3, and provide
the classification to have a single channel SO(3)Conv layer with softmax and
cross entropy loss. We can then recover the orientation of images at test time
by finding the relative shift of the softmax layer output in the SO(3) cube of
XYZ Euler angles. Examples of feature responses obtained at different layers are
visualized in Figure 3. Notice, as we rotate the image along azimuth and eleva-
tion, the feature response moves accordingly. The orientation decoder is imple-
mented as SO(3)Conv-SO(3)Conv-Softmax. Note that, in our implementation,
the XYZ Euler angles relate to azimuth (α ∈ [−π, π)), elevation (β ∈ [−π

2
, π

2
])

and roll (γ ∈ [−π, π)). Since our output is quantized by the classification task,
the number of possible rotations is controlled by the output resolution of the
cube. Therefore, there is a trade-off between rotational accuracy and efficiency.
In our experiments, we show 643 to be a promising choice.

4 Experimental Setup

This section provides a brief description of datasets used, network training details
and evaluation protocol.

4.1 Datasets

Two datasets with known camera location and orientation are used to evalu-
ate and compare our method with two direct 6-DoF pose regression methods,
PoseNet[16] and SphereNet[42].

SceneCity [49]: This dataset contains equirectangular images rendered from
two artificial cities, one big and one small. The small city, used in our experiments
is first applied to localization in [50]. The environment contains 102 buildings
and 156 road segments. Additionally to images, the dataset provides a 3D tex-
tured mesh which can be used to render additional images with desired camera
locations and orientations. In our evaluations, we use the dataset in two ways:
(i) We take a small street segment of the map (about 6m×20m) and render 147
training images and 100 test images. This dataset is denoted SceneCity Grid,
shown in Figure 3(b). Training images are densely sampled with equal spacing.
And the test images are sampled along a sin curve. (ii) We use the original Small
SceneCity locations from [50] for training and testing. The training set consists
of 1146 locations, while the test set has 300 locations as shown in Figure 3(c).

3 Since input is omni-directional image, camera orientation can be adjusted with min-
imal loss.
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Stanford 2D3DS [51] This dataset consists of 1413 equirectangular images
captured in an indoor environment. The dataset covers 6 areas of approximately
6000 m2. It has been widely used in spherical semantic segmentation and depth
estimation tasks [43, 52, 46]. The dataset is accompanied by 3D point clouds
with textures and ground truth camera poses of provided images. In this work
we present the effectiveness of our approach on two scenarios. In both cases,
we train the model on synthetically rendered images. They differ in the testing
stage. The first is to test on synthetic images, while the latter involves testing
on images captured in real scenes. Note, the second task is especially challenging
due to the simulation to real gap [53]. In summary, we use all 1413 real images
as well as their rendered counterparts as test data. For training data, we render
images with random origins within a radius of 30cm around the test locations.
In total, 7065 synthetic training images are generated. Following the protocol
in [53], we use aggressive non-geometric augmentation (Gaussian blur, additive
Gaussian noise, contrast change, image-wise and channel-wise brightness change)
of Blender rendered images in order to increase localization performance on real
images (see supplementary material for details).

4.2 Training Setup and Evaluation Protocol

Our localization network in Section 3 is implemented in PyTorch [54]. Equirect-
angular images are resized to 64×64px as input to the network in all experiments
unless stated otherwise. We use an Adam optimizer with polynomial learning
rate scheduler with initial learning rate set to 10−4. We train the network with
batch size 20 and up to 3k epochs. We use an ℓ2-norm for position regression loss
and a cross entropy loss for orientation. We weight the position loss at ×100, as
we find the rotation task converges faster. Our network is trained from scratch,
as no pretraining is performed.

We evaluate our method based on average (avg) and median (med) Eu-
clidean distance on position and angular divergence. Our method is compared
with standard implementations of direct pose regression using planar and spher-
ical convolutions. Full omnidirectional images are provided as input. In particu-
lar, PoseNet [16] is implemented with a ResNet-18 [48] backbone followed by two
fully connected layers for pose regression. The ResNet-18 features are pretrained
on ImageNet [55]. We employ the convolutions in SphereNet [42] to implement
a version of PoseNet for spherical input. Here, unlike PoseNet, the convolutions
are designed to work on spherical data by applying distortion corrected grid
kernels on equirectangular images. In essence, this method applies 2D convolu-
tions on the tangent planes of the sphere. A pretrained spherical VGG-16 [56]
backbone is used as the encoder of SphereNet since filters are easily applied to
the spherical convolutions. Following [16], the position regression loss is based
on ℓ2-norm while orientation loss is based on ℓ2-norm using quaternion.
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Method

A
u
g
.

T
y
p
e

E
p
o
ch
s Original Rot. Rand. y-axis Rot. Random SO(3)

Pos.(m) Rot.(◦) Pos.(m) Rot.(◦) Pos.(m) Rot.(◦)
avg med avg med avg med avg med avg med avg med

PoseNet
none 30k 0.20 0.20 0.00 0.00 4.85 4.66 90.0 90.0 5.78 5.43 128 128
y-axis 30k 0.29 0.29 1.22 0.99 0.31 0.30 1.81 1.62 5.73 5.19 120 118
SO(3) 30k 0.36 0.34 3.94 3.52 0.39 0.39 5.48 5.37 0.35 0.35 5.62 5.30

SphereNet
none 30k 0.19 0.17 0.00 0.00 5.33 5.31 90.0 90.0 7.48 6.47 128 128
y-axis 30k 0.41 0.33 4.41 4.05 6.05 3.56 44.3 44.9 8.84 6.48 122 120
SO(3) 30k 0.35 0.32 5.25 4.89 0.42 0.39 7.18 5.86 0.38 0.36 6.98 6.68

Ours(643)
none 3k 0.11 0.09 4.20 4.20 0.12 0.10 4.20 4.20 0.17 0.16 5.05 5.05
SO(3) 3k 0.22 0.17 2.54 2.51 0.19 0.17 4.21 4.20 0.19 0.16 2.54 2.32

Ours(323) none 3k 0.12 0.11 8.34 8.34 0.15 0.14 13.4 14.0 0.18 0.17 13.2 13.6
Ours(1283) none 3k 0.15 0.15 2.10 2.10 0.22 0.21 3.12 3.18 0.31 0.28 2.78 3.02

PoseNet∗ SO(3) 30k 0.63 0.55 3.44 3.26 0.51 0.56 4.51 3.53 0.72 0.67 7.88 7.57
Ours∗(643) none 3k 0.16 0.17 4.20 4.20 0.36 0.31 4.69 4.90 0.37 0.31 4.73 5.14

Table 1. Ablation study on SceneCity Grid. Our method is compared to PoseNet and
SphereNet under varying rotation augmentation on training data, and tested on differ-
ent positions and (i) original training rotations, (ii) random y-axis rotations, and (iii)
random SO(3) rotations. The average (avg) and median (med) position and orientation
errors are reported. The most challenging experiments include random orientations in
testing (bold). We highlight the version of PoseNet, SphereNet and our method used in
remaining experiments. Additionally, we show results for varying orientation decoder
resolution (shown in parentheses), and PoseNet and our method trained without PCA
whitening (denoted by PoseNet∗ and Ours∗(643) respectively).

5 Results

In this section we present the following results: (i) an ablation study on augmen-
tation, orientation decoder resolution and PCA whitening, (ii) experiments on
larger synthetic datasets and (iii) experiments on real data.

5.1 Ablation Studies on SceneCity Grid

Our ablation uses the SceneCity Grid dataset, which consists of densely sampled
training and testing locations to provide optimal data for pose regression net-
works, and will not suffer from interpolation or extrapolation issues [23]. Results
are shown in Table 1.

Rotation Augmentation: It is known that PoseNet [16] and its variants are
prone to overfitting to training data [23]. In this section we investigate how ge-
ometric training augmentation based on rotations affects the performance. In
particular, we investigate testing on images from new positions but with original
training rotations, horizontally rotated (rotations around y-axis), and randomly
rotated by any SO(3) rotation. Unsurprisingly, both SphereNet and PoseNet
demonstrate relatively good performance for the matching pairs of train and
test data rotations, achieving better than 0.5m accuracy for position. Neverthe-
less, they overfit to training data and poorly generalize to unseen orientations,
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decreasing performance to above 5m position errors. Note, only with full rota-
tional augmentation, localization with arbitrary camera orientations is success-
ful. We also emphasize, more training epochs (30k versus 3k in our method)
are required to make this kind of methods competitive. In contrast, our method
demonstrates good position and orientation predictions in all scenarios archiving
below 0.2m position error with about 5◦ error on orientations. Such results are
even reached for the most challenging case with one rotation during training
and any orientation at testing. Thus, our method successfully generalizes one
training orientation to arbitrary test orientations.

Orientation Decoder Resolution: Our decoder for orientation prediction is
parameterized by the size of the output feature cube. Hence, its predictions are
inherently quantized. In a second ablation study we evaluate our method with
output cube of size 323, 643 and 1283. Here, higher resolution improves the ori-
entation accuracy at the expense of slightly reduced position accuracy: 13.2◦

error with 0.18m error for 323, 5.05◦ error with 0.17m error for 643 and 2.78◦

error with 0.31m error for 1283. This is due to the fact that the difficulty of
the classification task is increased, and thus reduces capacity for improved posi-
tion loss. Finally, we note that the usage of full rotational augmentation reduces
the effect of quantization (from 5.05◦ to 2.54◦ error at 643), but at the cost of
training efficiency. Hence we conclude that a resolution of 643 without rotation
augmentation is most suitable for our method.

PCA Whitening: Finally we investigate the effect of PCA whitening to con-
clude our ablation. PCA whitening of position coordinates improves the position
prediction for both, PoseNet and our method, by about twice the accuracy (to
0.72m and 0.37m respectively). It normalizes the position coordinates to a com-
mon range which makes training easier.

5.2 Testing on Larger Synthetic Environments

In this section, we evaluate our method on two larger environments: SceneCity
Small and Stanford-2D3DS, as described in Section 4.1.

SceneCity Small: Similarly to SceneCity Grid, SceneCity Small is adjusted to
have fixed camera orientations for all training poses. During test time, random
orientations are used. For PoseNet and SphereNet, full SO(3) rotation augmen-
tation is applied, while our method only sees a single training rotation. Figure 4
shows the performance curve over the evaluated epoch. Our method performs
best, and converges much quicker than PoseNet and SphereNet. We emphasize,
our decoder for rotation with cross entropy loss converges especially fast. Overall,
our method achieves 2.22m error for position, while PoseNet and SphereNet have
4.39m and 6.07m error respectively. Our rotation error is competitive with 9.41◦

error. Finally we note, PoseNet with only horizontal orientation augmentation
fails.
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Number of EpochsNumber of Epochs(a) (b)

Method
Aug.
Type

Pos. Rot.
avg med avg med

PoseNet
y-axis 73.2 65.0 125 123
SO(3) 4.39 3.99 9.06 8.47

SphereNet SO(3) 6.07 5.20 11.6 10.8
Ours none 2.22 1.71 9.41 9.13

Fig. 4. Evaluation on SceneCity Small for our method compared to PoseNet and
SphereNet. (a) Position and (b) orientation errors are shown over epochs. Note, our
method achieves high performance (< 2m) within 2k epochs, while rotation error of
< 10◦ is reached after less than 600 epochs (close to theoretical limit due to quan-
tization which is about 5◦). In the table we compare the methods quantitatively on
the test set of SceneCity Small with random orientations. Additionally, PoseNet with
y-axis augmentation is presented.

Method
Aug
Type

Synthetic Images Real Images
Orig. Rotation Rand. Rotation Orig. Rand. Rotation
Pos. Rot. Pos. Rot. Pos. Rot. Pos. Rot.

avg med avg med avg med avg med avg med avg med avg med avg med

PoseNet
y-axis 1.76 1.58 9.70 5.70 20.3 18.4 121 117 2.75 1.95 15.4 7.45 20.2 18.5 123 119
SO(3) 1.92 1.59 25.6 21.3 2.10 1.75 27.7 23.2 4.59 2.41 40.6 28.0 6.25 3.40 51.3 36.5

SphereNet SO(3) 1.89 1.53 24.7 20.0 2.35 1.78 32.7 26.5 3.86 2.29 38.5 26.7 4.81 2.92 50.5 38.3

Ours none 0.98 0.84 10.9 8.47 1.79 1.54 13.3 12.6 3.07 1.64 18.2 9.15 3.57 2.45 25.6 13.1

Table 2. Quantitative results on Standford 2D3DS, comparing our method to PoseNet
and SphereNet. A set of columns on the left side of the table, contain testing results
on synthetic images, while the columns on the right side contain equivalent results on
real images. Our network significantly outperforms competing methods on the random
orientation test data for both synthetic and real images.

Stanford 2D3DS: Synthetic results of our method in comparison with PoseNet
and SphereNet are shown on the left set of columns of Table 2. For random
test rotations, our method with single training orientation outperforms PoseNet
and SphereNet on rotation estimation, achieving 13.3◦. Notice also, we improve
upon position error since our aggregation in the rotation invariant position head
simplifies the learning task for the fully connected layer of the regression – here
PoseNet and SphereNet perform with 2.10m and 2.35m respectively while our
method produces only 1.79m error. Finally, we emphasize, our method is limited
by the classification quantization in the orientation decoder as we use a 643

output resolution. Qualitative results are shown in Figure 6.

5.3 Results on a Real Image Testing Set

We use the real images for evaluation on Stanford 2D3DS. Note, training data is
synthetically rendered using Blender as described in Section 4.1. Again, we com-
pare our method with no rotation augmentation with PoseNet and SphereNet
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(a) (b)

Fig. 5. ROC curve of position and rotation errors. We plot the percentage of data points
with predictions below a given threshold for either position (a) or orientation (b) for
our method, PoseNet and SphereNet, trained on synthetic images and tested on real
images from Stanford 2D3DS. While our method is comparable for position predic-
tion, we significantly improve upon orientation prediction. Here more than 50% of the
data points are predicted within 10◦ error. Competing methods only achieve such an
accuracy for predictions within 30◦.

with full SO(3) rotation augmentation in training. We test on two versions of
test data: one with original orientations and one with random orientations.

The final columns of Table 2 show the results. The performance of PoseNet
is slightly improved with horizontal augmentation since the dataset is biased to-
wards horizontally consistent data. Here, PoseNet achieves 2.75m while we reach
3.07m accuracy. Nevertheless, this version of PoseNet overfits and does not gener-
alize to random rotations. Overall, our method performs best, at 3.57m position
error and 25.6◦ orientation error. Qualitative results are shown in Figure 6.

We draw the receiver operating characteristic (ROC) curve in Figure 5, which
calculates the percentage of test images within a specific position error or rota-
tion error threshold. The results are generated by testing on real images with
original camera location and rotation. Comparing position accuracy, our method
obtains competitive results to other methods that need full augmentation. In
terms of orientation, our method outperforms other methods with a large mar-
gin, having 80% orientations predicted within 15◦. This demonstrates our gain
of formulating orientation estimation as a classification problem with rotation
equivariant response.

Finally we note, in general the performance on real images drops compared
to synthetic images in Section 5.2. For example, the performance of our method
reduces from 1.79m to 3.57m and 13.3◦ to 25.6◦ when moving from synthetic
to real data. Similar performance drops are observed by all methods. Although
intensive data augmentations is used (Section 4.1), there is a significant perfor-
mance gap between synthetic and real data. We attribute this issue to direct pose
regression being sensitive to the difference of training and testing data. A possi-
ble remedy for reducing such a domain gap is to apply image domain translation



14 C. Zhang et al.

GT Pose – Predictions on Artificial Images GT Pose – Predicitions on Real Images

Various Poses – Predictions on Artificial Images

Fig. 6. Qualitative predictions of our method (red), PoseNet (blue) and SphereNet
(black) on Stanford-2D3DS, quantitative results of which are reported in Table 2. Green
camera poses correspond to the ground truth. Pose prediction results on synthetic
images at original camera locations is shown top-left, while evaluation on real images
is shown top-right. Results of synthetic tests with random orientations are shown at
the bottom. Overall, our method predicts poses closer to ground truth. For real images,
pose prediction suffers, but our method still provides good camera orientations.

[57] during the test stage before feeding input to the network. Another approach
could be to consider auxiliary tasks such as scene coordinate regression or depth
estimation to improve the generalization ability. We leave such investigation to
future work.

6 Conclusion

In this work we proposed a novel network for rotation equivariant camera pose
estimation. This work is motivated by spherical equivariant convolutions, and
the need of scalable 6-DoF camera pose estimation networks which can be ef-
ficiently trained. Our method learns arbitrary camera orientations from only a
single orientation in training, significantly improving training efficiency in terms
of epochs needed. In our evaluation, we demonstrate our approach on synthetic
and real image input, where we significantly outperform standard DNN-based
pose regression. Finally, we emphasize, to the best of our knowledge, our pro-
posed rotation equivariant DNN for omnidirectional localization is the first di-
rect pose estimation method able to predict orientation without explicit rotation
augmentation at train time.
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