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Abstract. Robust object detection in 3D point clouds faces the chal-
lenges caused by sparse range data. Accumulating multi-frame data could
densify the 3D point clouds and greatly benefit detection task. However,
accurately aligning the point clouds before the detecting process is a
difficult task since there may exist moving objects in the scene. In this
paper a novel scene flow based multi-frame network named SDP-Net is
proposed. It is able to perform multiple tasks such as self-alignment, 3D
object detection, prediction and tracking simultaneously. Thanks to the
design of scene flow and the scheme of multi-task, our network is capa-
ble of working effectively with a simple network backbone. We further
improve the annotations on KITTI RAW dataset by supplementing the
ground truth. Experimental results show that our approach greatly out-
performs the state-of-the-art and can perform multiple tasks in real-time.

1 Introduction

Object detection is a fundamental task for the safety of autonomous driving [1].
Robust object detection in 3D point clouds faces the challenges caused by sparse
range points. Accumulating multiple frame data could densify the point clouds
and greatly benefit the detection task. YOLO4D [2] shows that temporal infor-
mation can improve the accuracy of 3D object detection by applying LSTMs
[3]. FAF [4] pre-registers the multi-frame point clouds, uses 3D convolution for
multi-frame feature extraction, and implements a multi-task network based on
3D object detection. However, pre-registration of point clouds requires location
information or special algorithms like ICP [5] which introduce extra sensor re-
quirement or pre-computation. In fact, accurately aligning is a difficult task
since there may exist moving objects in the scene. Traditional point registration
methods like ICP assume the static scene and cannot tackle this problem.
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Fig. 1. Architecture of proposed network. We take multi-frame point clouds as input
and perform multiple tasks jointly.

Besides detection, deeply understanding the scene’s dynamics requires fur-
ther prediction and tracking of the objects. When the observing platform itself
is also moving, self-localization is also required to describe all of the motion
dynamics in a unified world frame. These tasks are usually implemented sep-
arately. We believe it would be beneficial to fulfill them within a multi-task
network. However, some challenges exist in realizing this idea. On the one hand,
tracking by network requires multi-frame input, which means larger computation
burden and difficulty of real-time implementation. If we still want the network
to perform in real-time, only those with simple backbones can be considered. On
the other hand, dealing with this complex multi-frame situation requires the net-
work be sufficiently strong, so that all of the tasks can be correctly carried out.
The dilemma reveals the real challenge when developing a real-time multi-frame
multi-task network for perceiving the dynamic environment.

In this paper we propose SDP-Net, a novel fast and high-precision multi-
frame multi-task network based on the bird’s eye view (BEV) scene flow. It
is able to complete the tasks of self-alignment, 3D object detection, prediction
and tracking jointly from BEV. As shown in Fig. 1, we directly construct BEV
maps from the multi-frame point clouds, and estimate the flow map and the
ego-motion from them. After feature aggregation guided by BEV flow map,
we detect objects, predict their motion and perform object tracking. The en-
tire network uses 2D convolutions and shares features across multiple tasks to
get real-time performance. We conduct the experiments on KITTI [6, 7] RAW
dataset and apply automatic method and manual fine-tuning to complete the
annotations of unlabeled objects. Experimental results show that we can extract
the motion information of objects effectively, and perform these tasks accurately.
Importantly, we can perform accurate object detection even based on a simple
backbone, achieving the state-of-the-art performance and outperforms the simi-
lar networks by a large margin. The entire approach can run at 12 FPS, meeting
the real-time requirement. In summary, the key contributions of this paper are:
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– We propose a BEV scene flow based multi-frame alignment method, which
could estimate the correspondences of 3D features between consecutive frames
and adaptively aggregate multiple frame information to benefit the 3D object
detection task;

– We propose a multi-frame multi-task network based on the proposed BEV
scene flow. Multiple related tasks like self-alignment, ego-motion estimation,
object detection, object prediction and tracking are integrated in a unifying
framework. These tasks complement each other and contribute achieving
better performance than a single task;

– We improve the KITTI [6, 7] RAW dataset by supplementing the ground
truth, increasing the number of annotations by 10.58% for more accurate
and reliable evaluation. We only use the provided ground truth in KITTI
RAW dataset to guarantee the quality of the supplemented annotations;

– Our method is implemented end-to-end and verified on KITTI RAW dataset.
The experimental results demonstrated that our network can run in real-time
and achieve the superior performance on the tasks as detection and tracking.

2 Related Work

2.1 Single-frame 3D Object Detection

In recent years, 3D object detection in a single frame has made great progress.
MV3D [8] and AVOD [9] merge the information of RGB image and LIDAR point
clouds to detect 3D objects. VoxelNet [10] and SECOND [11] detect objects by
extracting voxel features in point clouds. F-PointNet [12] generates 2D object
region proposals in RGB images to get the frustum point clouds, then applies
PointNet [13] for 3D object detection. PointRCNN [14] uses PointNet++ [15]
to extract features and optimizes the detection by box refinement. To improve
the real-time performance, Complex-YOLO [16] build BEV map from 3D point
clouds and apply YOLOv2 [17] to build a fast single-stage 3D object detector.
PIXOR [18] and PIXOR++ [19] use occupancy maps of the point clouds as
input, and perform 3D object detection with higher precision. PointPillars [20]
applies PointNet to encode point clouds, and uses SSD [21] for object detection.
MODet [22] extracts features in BEV and adopts prediction errors regression
to improve accuracy. STD [23] uses spherical anchor and predict IoU branch
to get great performance localization and classification. Fast Point R-CNN [24]
combines RefinerNet to do a further fusion. PV-RCNN [25] and SA-SSD [26]
combine voxel and points features to further improve the detection accuracy.

2.2 Multi-frame 3D Object Detection

The performance of object detection can be improved by utilizing temporal in-
formation. In the field of 2D video object detection, T-CNN [27] and MCMOT
[28] use post-processing techniques to improve the detection results. Associated
LSTM [29] and Bottleneck-LSTM [30] extract the multi-frame features with
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LSTMs. FGFA [31] shows that the features of multiple frames can be fused
through the guidance of optical flow to improve the detection performance. 3D
object detection can benefit from similar ideas. Complexer-YOLO [32] applies
multi-object tracking based on 3D object detection to increase accuracy and ro-
bustness. YOLO4D aggregates the 3D LIDAR point clouds over time as a 4D
tensor, then applies LSTMs on YOLO3D [33] to extract temporal features and
shows the advantages of incorporating the temporal dimension. FAF [4] pre-
registers the multi-frame point clouds before input, then extracts multi-frame
feature through 3D convolutions, and outputs the results of 3D object detec-
tion, prediction and tracking simultaneously. However, according to the same
authers’ work [19], FAF [4] still has lower object detection accuracy when com-
pared with a faster 3D single-frame detector such as PIXOR. The reason partly
lies in the misalignment error of moving objects in the scene, which is difficult
to be removed by rigid body registration methods like ICP.

2.3 Object Prediction and Tracking

For moving objects, prediction and tracking can be further applied to describe
the objects’ behaviour in near future. When the observing platform itself is also
moving, self-localization is also required to describe all of the motion dynamics
in a unified world frame. Usually, these tasks are fulfilled separately.
Self-localization with 3D Point Clouds. Most of localization methods are
presented in the field of SLAM. Given point clouds of different frames, DeepMap-
ping [34] estimates poses and converts the registration problem to the unsuper-
vised binary occupancy classification. L3-Net [35] uses PointNet to extract fea-
tures, and applies 3D convolution and RNNs to output poses. [36] uses LIDAR
Intensity Map to build embeddings, and estimates the localization by convolu-
tional matching between the embeddings. PointFlowNet [37] estimates the 3D
scene flow to endow the detected object with spatial velocity.
Prediction and Tracking. In order to predict the future location of objects,
[38] proposes a system based on acceleration motion model and maneuver recog-
nition respectively. [39] classifies vehicle motion with a Bayesian network for
trajectories prediction. Given the detection results of the current and the past
frames, the motion model or the appearance features is widely applied in data
association [40, 41]. Besides Hungarian algorithm [42], deep association networks
[43, 44] can also be employed. In order to track objects in 3D space, [45] pro-
poses a 2D-3D Kalman filter to use the information of the image and 3D points
jointly. AB3DMOT [46] extends the state space of Kalman filter with 3D object
parameters, and performs fast and accurate object tracking without CNNs.

3D object detection, prediction and tracking are highly relevant tasks. Instead
of completing these tasks separately, it would be a better way to fulfill them
within a multi-task network. Inspired by [4], we take advantages of temporal
information within multiple frames and perform object detection, prediction
and tracking simultaneously. Different from [4], we estimate the BEV scene flow
from multiple frames directly and do not require the frames to be pre-aligned.
We can also perform an extra task of self-localization for the ego-vehicle.
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3 SDP-Net

3.1 Network Structure

As shown in Fig. 1, the entire network is mainly composed of four modules, i.e.,
feature extraction, motion estimation, feature aggregation, and object detection
and prediction. We build binary occupancy BEV map from point clouds of each
frame, then perform feature extraction and motion estimation. During motion
estimation, we estimate the BEV flow maps of multiple frames and output the
2D ego-motion relative to the previous frame. In feature aggregation module,
we warp the feature maps of the past frames according to the corresponding
BEV flow maps, and get the aggregated feature map with adaptive weights. In
the module of object detection and prediction, we fuse the aggregated feature
map and the object motion information, detect objects in the current frame and
predict their motion offset in the future frames. Finally, the tracking can be
carried out by association with simple overlap area of the current detection and
the past predictions. In the following we describe our input representation first,
and then introduce each module of the network in detail.
Point Cloud Processing. By constructing a BEV map, we can represent 3D
space effectively and use 2D convolution for fast feature extraction. We take the
point clouds from the current and the pastN frames as input, and construct BEV
maps separately. Following [22], we make a rough ground plane estimation to
correct the height of point clouds. Then, we perform voxelization on point clouds,
and build binary representation of each voxel. For each frame, we construct a
binary occupancy tensor with a voxel size of 0.1m×0.1m×0.2m to speed up the
following computation. When there is a point in the corresponding voxel, the
value of the voxel is 1, otherwise the value is 0.
Feature Extractor. In the feature extraction stage, we apply a fairly simple
network for real-time purpose. As shown in Fig. 1, for each BEV map, we perform
only 4 convolutional layers and 3 max-pooling layers with 32, 64, 64 and 128
channels respectively, which result in an 8× downsampled feature map.
BEV Flow based Motion Estimation. Point clouds are sparse and unevenly
distributed in 3D space, it is difficult to make fast and accurate scene flow
estimation for each 3D point. Considering that most of the objects in the scene
stay in the ground, we focus on estimating the horizontal motions only. Given all
of the binary voxel pillars in the scene, we focus on obtaining accurate motion
flow for voxels on objects.

As shown in Fig. 2, the BEV flow map describes the relative motion of the
pixels on each object in X and Y directions. For each pixel in the BEV flow map,
if it belongs to an object, the value is the corresponding motion offset; otherwise
it belongs to the background and the value is required to be zero. For computing
efficiency, an 8× downsampled flow map is used.

The resulting BEV flow maps represent the motion of objects between the
current and the past N frames. Based on them, the features of objects in the
past frames can be warped into the current frame by:

F (t−n)→t(p) = F t−n(p+ flowt−n(p)) . (1)
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Fig. 2. BEV map (left) and the corresponding flow map (right). Voxel pillars of two
neighboring frames are marked in blue and red respectively in BEV map. The BEV
flow map contains the motion of the pixels on each object in direction X and Y.
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Fig. 3. Detailed structure of motion estimation module.

where 1 ≤ n ≤ N , F (t−n)→t is the resulting feature map warped from frame
t − n to t, and flowt−n(p) is the computed flow offset of the pixel p between
frame t and t− n. For possible non-integer coordinates, bilinear interpolation is
used for warping.

The detailed network structure of motion estimation module is illustrated in
Fig. 3. Instead of performing estimation for every two frames, we concatenate the
BEV maps of the current and the past N frames and extract features directly.
Then, we estimate the BEV flow maps relative to the past N frames and the
ego-motion on two branches simultaneously. On the BEV flow map estimation
branch, we use pyramid structure to fuse features at different scales with up to
32× down-sampling. Then, after 3 layers of further convolution with 64, 32 and
N×2 channels, a tensor of H/8×W/8× (N × 2) corresponding to the BEV flow
maps of the past N frames is obtained. The BEV flow map of each frame has 2
channels, which represent the motion offset relative to current frame in X and
Y directions respectively. Another branch of this module is to estimate the ego-
motion. On this branch, we perform convolution and fully-connected operations
based on the 64× downsampled feature map, and estimate the motion offset
(dx, dy, dθ), which represents the translation and rotation of ego-vehicle.

BEV flow branch and self-localization branch are essentially extracting the
motion information of the foreground and background respecticely. They share
most of the layers in the sub network, which can speed up their convergence.
We can have the ground truth for these two tasks from the labeled objects and
GPS respectively for supervised training.
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Feature Aggregation. Because the same object have different coordinates on
the successive feature maps, direct aggregation will cause severe misalignment.
We use BEV flow maps to guide the warping of multi-frame features in BEV
and align the features of the same object as shown in Eq. (1).

In order to further suppress the impact of residential alignment error, we
apply adaptive weights to the warped feature maps before aggregation. We use
a 3-layer convolution operation with shared parameters on the warped feature
maps, extract 1024-dimensional feature vectors at each pixel, and calculate the
cosine similarity [31] with the feature vectors of current frame. Then, the nor-
malized weights are computed as:

wt−n(p) =
exp(st−n(p))∑
j exp(s

t−j(p))
. (2)

where 0 ≤ n ≤ N , 0 ≤ j ≤ N , st−n(p) is the cosine similarity between the 1024-
dimensional feature vectors of current frame t and past frame t−n at coordinate
p, wt−n is the normalized weight map of frame t − n. Finally, the aggregated
feature map F̄ can be computed as:

F̄ =
∑

n
wt−n ∗ F (t−n)→t . (3)

where ∗ represents elementwise multiplication. By accumulating multi-frame
features together, the features of objects are strengthened.

Object Detection, Prediction and Tracking. We simultaneously detect
objects and predict their motion offset in the next M frames in the object detec-
tion and prediction stage. As shown in Fig. 4, we apply pyramid structure and
dense-block [47] on the aggregated feature map for further feature extraction.
The output of the detection branch is the object classification confidence cobj ,
location offset (tx, ty), object size (l, w) and object orientation (sinθ, cosθ),
which are further defined as [22]:

tx =
xgt − xgrid

grid
, ty =

ygt − ygrid
grid

,

l = log(lgt), w = log(wgt), θgt = atan2(
sinθ

cosθ
) .

(4)

where (xgt, ygt, lgt, wgt, θgt) is the ground truth, (xgrid, ygrid) is the grid location
of each pixel in feature map, and grid is the size of each pixel in feature map.
In practice, grid is set to 0.8 meter.

We further introduce the Motion Feature Map, i.e., the feature block before
the final BEV Flow Map in Fig. 3, to produce the prediction of the objects’
location in the upcoming frames. FAF [4] uses several predefined anchors and
describes the prediction with location offset, size and heading on future frame.
In contrast, we don’t use any anchors and only predict the relative motion of
objects for the sake of efficiency. The motion offset is described as:

dt+m
tx = tt+m

x − tx, d
t+m
ty = tt+m

y − ty, d
t+m
θ = θt+m − θ . (5)

where 1 ≤ m ≤ M , (tx, ty, θ) and (tt+m
x , tt+m

y , θt+m) represent the corresponding
positions of the same object in the current frame t and the future frame t+m.
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Fig. 4. Detailed structure of object detection and prediction module.

With the current detection and the past predictions at hand, it is straight
forward to carry out the object tracking by simply checking the Intersection-
Over-Union (IoU) on them. We first track the current objects based on the
prediction of frame t − 1 with a certain IoU threshold. If no association could
be set up, we further check the corresponding predictions from frame t − 2 to
t−M in order to set up the association.

3.2 Loss Function

SDP-Net implements motion estimation, object detection, prediction and track-
ing jointly in BEV. Therefore, as shown in Eq.(6), the loss function L is mainly
composed of motion estimation loss Lmotion, object detection loss Ldet, and
object prediction loss Lpred. The weights among them are determined experi-
mentally with λ1 = 0.125, λ2 = 0.1, λ3 = 1.25.

L = λ1Lmotion + λ2Ldet + λ3Lpred . (6)

Motion Estimation Loss. The motion estimation loss Lmotion consists of BEV
flow estimation loss Lflow and ego-motion loss Lpose:

Lmotion = Lflow + Lpose . (7)

We apply L2 loss and increase the weights of pixels with objects for Lflow:

Lflow =
1

Nt

∑
p
λ4|f̂ low(p)− flow(p)|2 . (8)

where Nt is the total number of pixels in the BEV flow map, f̂ low(p) and
flow(p) seperately represent the estimation and ground truth on the coordinate
p. In practice, if coordinate p belongs to an object, λ4 = 3, if not, λ4 = 0.01.
Note that we get the ground truth of flow from supplemented annotations of
KITTI RAW dataset instead of GPS, which will be described in section 4.1.

We use smooth L1 loss for Lpose as:

L1(x) =

{
0.5x2, if |x| ≤ 1,

|x| − 0.5, otherwise.
(9)

Lpose = L1(|d̂x− dx|) + L1(|d̂y − dy|) + λ5L1(|d̂θ − dθ|) . (10)
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where (d̂x, d̂y, d̂θ) and (dx, dy, dθ) represent the estimation and ground truth
respectively, and we set λ5=100 in practice.
Object Detection Loss. Object detection loss consists of classification loss Lcls

and regression loss Lreg. We use focal loss as [48] for classification to alleviate
the impact from sample imbalance, and consider all of the pixels in feature map
to get Lcls. We use smooth L1 loss for regression. Total object detection loss:

Ldet = Lcls +
1

Np

∑
Lreg . (11)

where Np is the number of pixels corresponding to the positive samples and
Lreg is the smooth L1 loss of (tx, ty, l, w, sinθ, cosθ) for object regression.
Object Prediction Loss. We estimate object motion offset (dtx, dty, dθ) on the
same pixels as object detection in feature map. We apply smooth L1 loss and
consider all the positive samples in the future M frames:

Lpred =
1

Np

∑∑
m
[L1(|d̂t+m

tx −dt+m
tx |)+L1(|d̂t+m

ty −dt+m
ty |)+λ6L1(|d̂

t+m
θ −dt+m

θ |)] .

(12)
where Np is the number of pixels corresponding to the positive samples, 1 ≤
m ≤ M , and we set λ6=100 in practice.

4 Experiments

4.1 Dataset and Implementation Details

KITTI RAW Dataset. We use KITTI RAW dataset for network training and
evaluation. The KITTI RAW dataset contains 37 labeled sequences collected in
different scenes with a total of 12,486 frames. The annotations of each frame
include RTK-GPS data, RGB images, 64-line LIDAR point clouds and object
labels with tracking information. The KITTI RAW dataset contains 34278 la-
beled vehicles, which makes up the vast majority of labeled object type. The
other objects like bicycles and pedestrians are unevenly distributed in the se-
quence and have only 1550 and 2574 labels respectively, which are not enough
for network training and objective evaluation. Therefore, like FAF and PIXOR,
we only consider vehicles in the experiments.
Ground Truth Supplementing. The KITTI RAW dataset does not anno-
tate objects that look highly occluded in the RGB images, although many of
them can still be observed in BEV space. Since one motivation of our network
is to improve the detection of those hard objects by multi-frame fusion, failing
to label these occluded objects will confuse the network and degrade the cred-
ibility of evaluation. Therefore, we develop a method to complete these missed
ground truth. We use GPS of ego-vehicle to project the ground truth bounding
boxes from the next frame back to the current frame. If the projected bound-
ing box contains more than 3 points in the current frame while has less than
0.1 of IoU with any of the bounding boxes in the current frame, it means the
same object in the current frame are missed due to the partial occlusion and
can be supplemented. Then, we manually check the increased annotations and
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Fig. 5. Two examples of ground truth supplementing. The original annotations are
marked with yellow, while the supplemented are marked with red in BEV. The RGB
images below show the corresponding scenerios, respectively.

adjust the incorrect bounding boxes to eliminate the annotation error. Finally,
we successfully expand the total number of vehicles from 34278 to 37906, with
an increase of 10.58%. As shown in Fig. 5, for the original KITTI annotations, a
certain number of objects that can be clearly observed in BEV space are missed.
After ground truth supplementing, most of these highly occluded objects are
found back and added. It makes our supplemented raw dataset a more difficult
benchmark than the original KITTI.
Training Setup. Besides current frame, we consider the 4 recent frames of point
clouds within the range of forward length Y ∈ [0, 51.2m], width X ∈ [-28.8m,
28.8m] and height Z ∈ [-2m, 1m]. Thus our input is a 512×576×15×5 binary
tensor which consists of X, Y, Z and time. And we predict objects’ motion in 5
future frames. Then, we randomly split the KITTI RAW dataset for training and
evaluation. The training set contains 24 sequences with a total of 7410 frames and
the test set contains 13 sequences with a total of 5076 frames. We use NVIDIA
GTX1080Ti GPU and Intel i7 CPU for both network training and evaluation.
We set the initial learning rate to 0.001, the batch size to 4, the decay step to
150k, and the decay rate to 0.5. We follow [22] to apply data augmentation in
training. We train the motion estimation module for 30 epochs first, then fix the
module parameters, and train other modules for 60 epochs.

4.2 Evaluation Results

In the following, we evaluate the task performance of BEV flow estimation, ego-
motion estimation, object detection and object tracking, respectively.
BEV Scene Flow Estimation. Some qualitative results of the estimated BEV
flow maps as well as the corresponding detected objects are shown in Fig. 6,
where we can see that the BEV flow of each object is well learned. The accuracy
of the scene flow will dertermin the alignment of the multi-frame feature, which
will further affect the performance of object detection. We compare our BEV
flow estimation with the ICP or GPS based point clouds registration, as well



SDP-Net 11

Fig. 6. Illustration of four groups of results each of which consists of a composite BEV
flow image (left) and the object detection results for the current frame (right). In the
BEV flow image the ground truth and the estimated flow map in X and Y direction
relative to the time from t-1 to t-4 are further illustrated separately side by side. The
object detection results are shown here just for reference, where the ground truth is
labeled in red and the output of our network are marked with green.

Table 1. The mean alignment error of voxels in object.

Method Dir-Agg ICP GPS Ours

Mean alignment error (pixels) 2.04 0.84 0.76 0.67

as direct aggregation without any registration (Dir-Agg). The metric of mean
alignment error of objects on the feature map is used, and the results are shown
in Table 1. As expected, direct feature aggregation on original multi-frame point
clouds produces large alignment error. Methods based on point clouds registra-
tion (ICP) can reduce the error by aligning the static foregrounds. Our method
performs the best thanks to its capability of aligning the features in both static
and moving objects at the same time. It even results in smaller error than the
method based on GPS which shows poor performance in aligning moving objects.

Ego-motion Estimation. We further output the self-motion offset results from
the motion estimation branch. We calculate the mean error of all 13 sequences
on KITTI RAW test set. The resulting translational and rotational errors of ICP
are 0.26 meter and 0.003 rad., comparing with ours 0.13 meter and 0.003 rad.,
respectively. It indicates that our module can effectively estimate ego-motion
from multiple frames.

Object Detection. We first compare our approach with other methods and
then conduct the ablation study. We are not able to directly compare our ap-
proach with the multi-frame approaches such as YOLO4D [2] and FAF [4], be-
cause they are neither open-source nor ranked on the public benchmark. The
most relevant approach, FAF, is only evaluated on the TOR4D [4] dataset. How-
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Table 2. Performance comparison of different methods on KITTI BEV benchmark.

Method Times(ms)
mAP(%)

easy moderate hard

PIXOR [18] 35 83.97 80.01 74.31
C-YOLO [32] 60 77.24 68.96 64.95
SDP-Net-s 12 86.57 81.93 75.83

Table 3. Performance comparison of different methods on KITTI RAW test set.

Method Input Modality Times(ms)
mAP(%)

easy moderate hard

F-Net [12] Single-frame Lidar&Img 170 89.60 82.49 70.90
MODet [22] Single-frame Lidar 50 90.20 87.49 84.27

SDP-Net-s Single-frame Lidar 12 86.05 81.91 79.00

ICP-based Multi-frame Lidar ICP+59 90.01 84.73 82.60
SDP-Net Multi-frame Lidar 82 91.51 88.29 84.74

ever, according to the same authors’ work [19], the detection accuracy of FAF is
lower than PIXOR, which is a single-frame detector and ranked on KITTI bench-
mark. Complexer-YOLO [32] applies multi-object tracking based on a single-
frame object detector, and also ranks on KITTI benchmark. Therefore, we build
and train a single frame version of our model, termed SDP-Net-s for preliminary
comparing purpose on KITTI benchmark. To build this baseline, we take the
single-frame point clouds as input, removing all of the rest modules except the
main backbone with a simplified feature pyramid structure and detection head.
Then, we train SDP-Net-s on the KITTI benchmark dataset and compare it
with these methods. As shown in Table 2, it can be found that our single-frame
baseline has competitive performance compared with these two methods.

With this idea in mind, we further compare our approach with other multi-
frame and single-frame approaches on our supplemented KITTI RAW test set.
We follow the evaluation criteria of KITTI benckmark to set the IoU threshold to
0.7 and obtain the mean average precision (mAP) on three difficulty levels (easy,
moderate and hard). In the hard level, all of the labeled objects are considered.

For the multi-frame approach, we build an ICP-based network for compar-
ison. We remove the flow estimation module in our network and pre-register
different frames of point clouds with ICP before input. Then, we apply the
same feature extractor and adaptive weights to perform object detection. For
the single-frame approaches, we train and evaluate F-PointNet [12] and MODet
[22] which have more complex backbones than our approach. Considering that
F-PointNet does not have an open-source 2D object detector, we use ground
truth of 2D bounding boxes to get the frustum point clouds during training
and evaluation. MODet is a single-stage high-precision object detector which
has the state-of-the-art performance with higher detection accuracy compared
to Point-RCNN [14] and PointPillars [20] on KITTI BEV benckmark.
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Table 4. Performance comparison on different objects on KITTI RAW test set.

Method Input
mAP(%)

Static&<30m Static&>30m Moving&<30m Moving&>30m

F-Net [12] Single-frame 83.93 48.94 70.67 45.17
MODet [22] Single-frame 90.67 66.57 88.23 57.79

SDP-Net-s Single-frame 87.34 56.60 84.20 53.58

ICP-based Multi-frame 90.71 62.71 82.04 52.76
SDP-Net Multi-frame 91.54 66.38 89.28 60.75

Table 5. Ablation study of SDP-Net on KITTI RAW test set.

Input BEV flow map Adaptive weights
mAP(%)

easy moderate hard

Single-frame \ \ 86.05 81.91 79.00
Multi-frame \ Applied 83.00 81.19 79.23
Multi-frame Applied \ 88.36 84.53 82.79
Multi-frame Applied Applied 91.51 88.29 84.74

As shown in Table 3, comparing with our single-frame baseline SDP-Net-
s, F-PointNet performs worse in hard level, where lots of occluded or distant
objects exist. The ICP-based network pre-registers the point clouds and has a
certain improvement over our single-frame baseline. Our full approach SDP-Net
outperforms the ICP-based approach by a large margin. It can adaptively ag-
gregate the multi-frame features with unregistered point clouds input. Although
residual networks with deeper network backbone are used in MODet [22], our
approach still get better performance than it with a simpler backbone.

We further list mAPs of these methods according to the state and distance of
objects, as shown in Table 4. For static objects, ICP-based method can perform
accurate feature alignment, which is better than the single-frame method. But
for moving objects, it has poor performance because of feature misalignment.
Our approach uses BEV flow map to guide feature aggregation and achieves the
best detection performance for most of the moving and static objects.

Ablation Study. We conduct the ablation study for SDP-Net by with or with-
out BEV scene flow estimation or adaptive weights aggregation module. As
shown in Table 5, without the guidance of BEV flow maps, the multi-frame
performance is even lower than the single frame due to the feature misalign-
ment. The adaptive weights can also help with the detection task by further
reducing the residual misalignment error.

Prediction and Tracking. While detecting objects of the current frame, we
also predict their motion in the next 5 frames. We compute the average distance
error between the center of the predicted objects and the ground truth. The
resulting mean errors in the next 5 frames are 0.18 m, 0.22 m, 0.27 m, 0.34 m
and 0.39 m, respectively, which validate the accuracy of object prediction task.

We further track the objects based on the detection and prediction results, as
described in section 3.1. Some qualitative results are illustrated in Fig. 7, where
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Fig. 7. Two scenes of object tracking, where the successive tracking results are listed
in a row with time t-9, t-4 and t, respectively. The same object in each scene is marked
with the same color.

Table 6. Results of object tracking on KITTI RAW test set.

Method MOTA MOTP MT ML

AB3DMOT [46] 78.89 84.69 74.22 6.52
SDP-Net 82.29 84.96 81.05 4.66

we can see the tracking task is fulfilled robustly. We further quantitatively eval-
uate the tracking performance with the metric of Multiple Object Tracking Ac-
curacy (MOTA), Multiple Object Tracking Precision (MOTP), Mostly-Tracked
(MT) and Mostly-Lost (ML) following KITTI protocol, and set IoU to 0.5 for
association and 0.8 score for thresholding. As shown in Table 6, our approach
can perform object tracking with better performance than AB3DMOT [46].

5 Conclusions

In this paper, we propose a novel scene flow based multi-frame multi-task net-
work for 3D object detection and tracking. To the best our knowledge, ours is the
first work which can adaptively integrating the multi-frame temporal laser data
to enhance the object detection and prediction in real-time. We estimate the
scene dynamics through BEV flow and then adaptively aggregate the features
from multiple frames. Multiple related tasks such as ego-motion estimation, ob-
ject detection, prediction and tracking are jointly performed in real time within
our network. We achieve the superior performance than the state-of-the-art on
the improved and more difficult KITTI RAW test set. In the future, we plan to
test our approach on more datasets with more object categories, and incorporate
more complex networks like PointNet for better feature extraction.
Funding: The work is supported by NSFC-Zhejiang Joint Fund for the Integra-
tion of Industrialization and Informatization under grant No. U1709214.
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