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Abstract. It is an important yet challenging task to detect objects on
hazy images in real-world applications. The major challenge comes from
low visual quality and large haze density variations. In this work, we
aim to jointly solve the image dehazing and the object detection tasks in
real hazy scenarios by using haze density as prior knowledge. Our pro-
posed Unified Dehazing and Detection (UDnD) framework consists of
three parts: a residual-aware haze density classifier, a density-aware de-
hazing network, and a density-aware object detector. First, the classifier
exploits the residuals of hazy images to accurately predict density levels,
which provide rich domain knowledge for the subsequent two tasks. Then,
we design respectively a High-Resolution Dehazing Network (HRDN)
and a Faster R-CNN-based multi-domain object detector to leverage the
extracted density information and tackle hazy object detection. Experi-
ments demonstrate that UDnD performs favorably against other meth-
ods for object detection in real-world hazy scenes. Also, HRDN achieves
better results than state-of-the-art dehazing methods in terms of PSNR
and SSIM. Hence, HRDN can conduct haze removal effectively, based on
which UDnD is able to provide high-quality detection results.

1 Introduction

Object detection in hazy scenes is important for outdoor vision systems, e.g .
video surveillance and autonomous driving; yet it is an extremely challenging
task. The challenges mainly come from two aspects. On the one hand, hazy
images are usually of poor visual quality that caused by low contrast, color
distortion and blur etc. [1], making it more difficult to discriminate interesting
objects from background clutters. On the other hand, haze density varies tremen-
dously in real-world applications, leading to variations w.r.t. visual quality; these
non-negligible intra-domain gaps make object detectors hard to converge.

A straightforward solution to hazy object detection is to first apply image
dehazing and then perform object detection on dehazed images. Most previous
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work follow this strategy, isolating dehazing and detection [2, 3]. Since dehazing
methods are not able to fully recover latent clear images, it is not guaranteed that
the dehazed images are optimal for object detection [2, 4]. From this perspective,
it is favorable to jointly solve the two tasks, so as to obtain detection-friendly
dehazed images and more accurate detection results. In [5], a unified pipeline is
first proposed for hazy object detection. However, in their method, each model is
designed to process one fixed density level, without handling density variations.

Another line of work uses domain adaptation techniques to tackle the task.
They take clear images as the source domain and hazy images as the target
domain; and then they try to lift the target domain performance to the source
domain level by closing the domain gap via feature alignment [6, 7]. However, in
practice the domain gap is too large to handle, and it becomes especially more
complex when there even exist significant intra-domain gaps in the hazy domain.

In this paper, we deal with the above mentioned two challenges in one co-
herent framework by taking advantage of both lines of work. We perform image
dehazing to reduce the clear-hazy domain gap and then use the simplest domain
adaptation method of fine-tuning to adapt a detector based on the clear domain
to the dehazed domain. In the whole procedure, we take into account the intra-
domain differences of hazy images by separating feature extraction for different
haze density levels. Specifically, we propose a Unified density-aware Dehazing
and Detection (UDnD) framework for solving image dehazing and object detec-
tion in a joint way. First, a modified VGG-Net [8] is introduced to predict haze
density using hazy residuals. Then, we design a density switch module to multi-
plex different haze levels. For dehazing, we make modifications to HRNetV2 [9]
by up-sampling with transposed convolution [10] and summing up features from
different scales. The object detector then takes the dehazed image as input and
switches to the branch dictated by the density level.

The contributions of this work are as follows:

– We propose a UDnD framework to jointly solve dehazing and detection. It
for the first time deals with the inter-domain and intra-domain gaps in both
image dehazing and hazy object detection, making them mutually benefit.

– We build a residual-aware classifier that predicts haze density levels to assist
image dehazing and object detection. To the best of our knowledge, we are
the first to explicitly predict haze density as prior knowledge for Convolu-
tional Neural Networks (CNNs).

– A novel dehazing method HRDN is introduced, which sums multi-resolution
representations to recover finer details. Guided by haze levels, HRDN is able
to integrate density-specific knowledge into the network so as to divide and
conquer single image dehazing.

– Experiments are conducted on two real-world hazy datasets, where the pro-
posed UDnD outperforms the vanilla detector and the density-unaware coun-
terparts. We also evaluate our dehazing method on two synthetic datasets,
showing better performance than previous state-of-the-art methods. These
results demonstrate that our unified framework can handle the two types of
domain gaps and give more accurate detection results in real hazy conditions.
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2 Related Work

Since we address the problem of hazy object detection by unifying single image
dehazing and multi-domain learning, we will review related work in the above
three aspects, respectively.

2.1 Hazy Object Detection

The performance of object detection has been boosted by deep learning. Many
CNN-based detectors have been proposed during the past few years, including
Faster R-CNN (FRCNN) [11], FPN [12], YOLO [13] and SSD [14]. Albeit ob-
taining satisfactory performance under clear-weather conditions, none of these
models could work seamlessly in hazy scenes without some kind of adaptation.

An intuitive idea for solving hazy object detection is to adopt a two-stage
approach, i.e. performing dehazing and detection separately. Following this, Li
et al . [2] study the effect of dehazing on various detectors. They find that ap-
plying image dehazing as pre-processing is not very helpful and sometimes even
harms the performance. In [3] and [4], similar conclusions are drawn for semantic
segmentation and image classification. The main reason is that existing dehaz-
ing methods are not good enough to reconstruct high-quality clear images for
subsequent high-level vision tasks [4]. To address this issue, Li et al . [5] jointly
optimize dehazing and detection, achieving better results than traditional two-
stage approaches on synthetic images. Though our method is also trained on
synthetic images, we demonstrate end-to-end performance on real-world data,
and our haze-density-specific gating function improves on their results.

On the other side, some methods adapt a detector from the clear domain to
the hazy domain for hazy object detection. They typically find a way to measure
the distance between feature distributions of both domains and then train a
feature extractor to minimize that distance. Inspired by [15], recent work measure
the distance by learning a domain classifier in an adversarial manner [6, 7, 16–
19]. Chen et al . [6] present a Domain Adaptive Faster R-CNN (DA-FRCNN)
to tackle image-level and instance-level domain shifts. [7] proposes to align the
features from regions with objects. However, they do not consider intra-domain
gaps in the target hazy domain, which are induced by density variations.

Our unified density-aware framework integrates ideas from both sides. The
dehazing and the detection sub-networks are jointly optimized. Particularly, we
alleviate the intra-domain gaps by utilizing density levels. In accordance with
previous methods, we use FRCNN as the baseline detector for experiments. But
in principle, our method can be applied to any arbitrary CNN-based detector.

2.2 Single Image Dehazing

Early dehazing methods stick to the standard optical model [20] and rely on
hand-crafted priors [21–26]. Instead of manually designing features, CNN-based
methods learn mappings directly from synthetic data. They usually estimate the
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Fig. 1: An overview of the proposed unified density-aware image dehazing and
object detection framework. It takes a real-world hazy image as input and first
predicts its haze density level via a residual-aware classifier. The predicted den-
sity is then fed into a density switch module, which is used for multi-domain
learning in the subsequent tasks. The whole network is optimized end-to-end.

transmission map and the atmospheric light, separately or jointly, as intermedi-
ate results, and then apply the reverse of the optical model [5, 27–35]. However,
estimating transmission in hazy scenes is an ill-posed problem, and it gets even
worse when the colors of objects are similar to those of atmospheric lights [36].
Therefore, some methods [36–38] try to recover haze-free images directly via
end-to-end frameworks, without reliance on the optical model.

The intra-domain gaps, i.e. haze density variations, cannot be ignored [3].
Some efforts have been made to incorporate haze density analysis into dark chan-
nel prior [39, 40]. Dai et al . [41] train an AlexNet [42] to regress the attenuation
coefficient. Recently, [30] uses multiple network stages to progressively estimate
the transmission map and fuses the outputs from different stages, each of which
is supervised by synthetic transmission of a fixed density level.

Instead, we handle the intra-domain gaps by explicitly predicting the haze
density level and using it as prior knowledge for our end-to-end dehazing network.

2.3 Multi-Domain Learning

Multi-domain learning refers to learning effective representations for data from
distinct domains [43]. It can be achieved by setting shared and domain-specific
parameters, which resembles domain adaptation [44, 45]. Previous work build
domain-specific Batch Normalization (BN) layers [46] on otherwise shared net-
works [47–49]. Inspired by Squeeze-and-Excitation (SE) networks [50], [51] in-
troduces a data-driven SE adapter to adjust network activations.

In this work, we consider different haze levels as distinct domains and propose
a density switch module to recalibrate features based on the haze density.
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3 Proposed Method

In this section, we will first provide an overview of our proposed method and
then explain each component in more detail.

3.1 Overview

We propose a coherent framework UDnD to jointly optimize image dehazing and
object detection. Our method consists of three parts: a haze density classifier
f , a dehazing module DH and a detection module DT . The classifier assigns
each hazy image xh a density level d̂ = f(xh). The dehazing module maps xh

to the latent clear image x̂c = DH (xh, d̂; θDH ), with d̂ as domain knowledge.

The detector takes x̂c and d̂ as input and outputs a structured prediction ŷ =
DT (x̂c, d̂; θDT ). Overall, our pipeline can be formulated as

ŷ = DT (DH (xh, f(xh); θDH ), f(xh); θDT ), (1)

where xh is the hazy image and ŷ is the detection result. We only presume
DH and DT to be differentiable and assume nothing about f beyond providing
discrete labels. The entire architecture is illustrated in Fig. 1.

Let xh be a hazy image from the training set, with clear ground truth xc and
object detection annotations y. The overall loss function for our UDnD is

L(xh, xc, y; θDH , θDT ) = λLdehazing(x
c,DH (xh, f(xh); θDH ))

+ µLdetection(y,DT (x̂c, f(xh); θDT )),
(2)

where x̂c = DH (xh, f(xh); θDH ) is the dehazed result of xh. We use two weights
λ and µ to balance the reconstruction term (Ldehazing) and the task-driven term
(Ldetection), which are described in Sect. 3.3 and Sect. 3.4 respectively. Note
that the term x̂c guarantees that the dehazing sub-network is supervised by the
detection loss as long as µ is non-zero, while the dehazing loss does not directly
affect the detection sub-network. The haze density classifier is used for extracting
prior knowledge in our settings, thereby not updated in Eq. 2; which means our
framework is compatible to prior-based density estimation methods [52] as well.

3.2 Residual-Aware Haze Density Classifier

The standard optical model [20] formulates the hazing process as

xh(i) = xc(i)t(i) + L(1− t(i)), (3)

where xh(i) is the observed hazy image at pixel location i, xc(i) is the clear scene
radiance, and L is the atmospheric light. The transmission map t(i) is obtained
using the distance ℓ(i) from the scene to the camera lens by t(i) = exp(−βℓ(i)).
Larger attenuation coefficient β indicates denser haze. For homogeneous haze,
the Meteorological Optical Range (MOR) [53], i.e. visibility in meters, depends
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on β through MOR = 2.996
β

. It follows that β ≥ 2.996× 10−3 m−1, where the
equality holds for the lightest haze by definition.

We formulate haze density estimation as a classification problem. The pre-
dicted density should satisfy d̂ ∈ {1, . . . , C}, where C is the total number of
predefined density levels. Following [41], we set three levels: light, moderate
and heavy; but our method can be extended to finer granularity given proper
datasets. The haze density serves as domain label, guiding the update of domain-
specific parameters in the subsequent dehazing and detection networks.

Inspired by [54], we observe that the residual of a hazy image, i.e. difference
from its clear counterpart, is informative because the hazy image is a weighted
sum of the clear image and the atmospheric light according to Eq. 3. There-
fore, we propose a residual-aware haze density classifier that exploits the hazy
residual. The details are depicted in Fig. 1. We stack 3 residual blocks [55] to
estimate the residual, which is concatenated with the original hazy image to
yield the 6-channel input for a modified VGG-16 [8].
Loss Function. The density classifier is optimized through a joint loss function:

Lclassification = αLres + Lcls , (4)

where Lres is the L1 loss for residual regression and Lcls is the cross-entropy loss
for density classification. Additionally, α is used to balance the two tasks and is
set to 0.2 in our experiments.

3.3 Density-Aware High-Resolution Dehazing Network

As is illustrated in Fig. 1, we propose a density-awareHigh-ResolutionDehazing
Network (HRDN). The backbone is based on HRNetV2 [9], which maintains
high-resolution representations and conducts repeated fusion to encourage in-
teraction between multi-scale features. Different from HRNetV2, we only use 4
basic residual blocks in each network stage to prevent overfitting. The down-
sampling operations in the stem are removed because dehazing is a pixel-level
dense regression task. Moreover, we replace all the bilinear up-sampling units
with transposed convolutions [10] to recover more details. To enforce a coarse-to-
fine reconstruction process, we fuse the up-sampled features by summing them
up instead of performing channel-wise concatenation like HRNetV2, which also
reduces the computation cost as a side effect.
Density Switch. With the predicted haze density level from Sect. 3.2 as prior
knowledge, we expect to handle density variations via multi-domain learning.
Inspired by [51], we design a density switch module with multiple SE adapters,
each corresponding to one type of density. From Fig. 1 we can see, the estimated
haze level controls density switches by specifying which branch to take and
what parameters to update, thus separating the feature extraction for different
densities. We add density switches before the 2nd, 3rd and 4th stages of HRDN,
enabling the network to divide and conquer the intra-domain gaps.
Loss Function. Existing dehazing methods utilize various loss functions, such
as L1 loss [37], MSE loss [5], smooth L1 loss [31], perceptual loss [35], and
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Fig. 2: Shift of mean values over convolutional activations of a vanilla FRCNN
on various haze density levels. The vertical axis shows the difference between
hazy (dehazed) and clear images. The horizontal axis gives the layer index. “*”
indicates the dehazed images produced by our HRDN. The detector is trained
on clear images. After dehazing, the activations become more similar to those of
clear images, but certain intra-domain gaps remain.

adversarial loss [38]. Their weighted combinations are widely adopted. Despite
improvements in performance, complicated loss functions increase the burden of
hyper-parameter tuning and make the model hard to converge. Inspired by [56],
we empirically find that a single SSIM loss works well:

Ldehazing(x
c, x̂c) = 1− SSIM (xc, x̂c), (5)

where xc denotes the ground truth clear image and x̂c denotes the dehazed
image. The constant 1 here is added to ensure the loss value is non-negative.

3.4 Density-Aware Multi-Domain Object Detector

Although the hazy images have been processed by our dehazing network to re-
duce the inter-domain gaps, there still exist non-negligible intra-domain gaps
among the dehazed images, which are caused by haze density variations. We
provide some evidence via observing the convolutional activations of a vanilla
FRCNN detector on the validation set of Foggy Cityscapes-DBF [41]. We col-
lect the mean activations [51] for images of different densities, compute their
differences from those of clear images before and after dehazing, and take these
differences as domain gap measurements. A comparison is shown in Fig. 2. We
have the following observations: (1) Prior to dehazing, the inter-domain gaps
increase monotonically with haze density. (2) The inter-domain gaps are signif-
icantly reduced by dehazing, and thus dehazing serves as an effective pre-pro-
cessing step. (3) Even after dehazing, the intra-domain gaps remain for images
of different density levels. These gaps need to be handled by the object detector.
(4) The differences vary across layers. The first layers, which learn basic feature
detection filters such as edges and corners, exhibit considerable amount of shifts.
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In other words, the domain gaps are not properly handled at the very beginning
and they propagate forward, resulting in the final poor detection results.

In this work, we address the intra-domain gaps in the dehazed domain via
multi-domain learning. Following [5] and [6], we make modifications on FRCNN.
As is shown in Fig. 1, we introduce a density-aware multi-domain object detector
by appending a density switch module to the ResNet-50 [55] and FPN [12]. By
using the density switch, the detector will route images of different densities to
desired branches, where different channel weights are computed to adjust the
features. The weighted features are then fed into the Region Proposal Network
(RPN) with density-specific information encoded.
Loss Function. We employ ROI-Alignment [57] to obtain the corresponding
feature vector for each proposal from RPN. Finally, the category label is pre-
dicted via an ROI-wise classifier. The loss function for our multi-domain detector
is inherited from the vanilla FRCNN [11] for simplicity:

Ldetection = Lrpn + Lroi . (6)

Both the RPN loss (Lrpn) and the ROI loss (Lroi) consist of classification and
localization terms, which are cross-entropy loss and smooth L1 loss, respectively.

4 Experiments

In this section, we first briefly introduce the datasets and the evaluation metrics
used for our experiments, followed by the implementation details. After that,
we will provide a comparison against other methods on hazy object detection
to demonstrate the effectiveness of our UDnD framework. We will also show the
performance of the proposed HRDN compared with state-of-the-art dehazing
methods. Finally, we will do some ablation study in terms of domain adaptation
techniques, loss functions, and unified training strategies.

4.1 Datasets

The object detectors are trained on synthetic hazy images generated using Eq. 3,
but are evaluated on real hazy images. Whereas the dehazing methods are eval-
uated on synthetic data, only for which the ground truth are available.

Synthetic Datasets
OTS and SOTS-outdoor. RESIDE [2] contains both indoor and outdoor hazy
scenes. We adopt the Outdoor Training Set (OTS) and the outdoor subset of
Synthetic Objective Testing Set (SOTS-outdoor), and ensure the ground truth
clear images in OTS do not overlap with those in SOTS-outdoor through data
cleaning [31]. The cleaned OTS has 296,695 hazy images with the atmospheric
light L ∈ [0.8, 1.0] and the attenuation coefficient β ∈ [0.04, 0.2], generated out
of 8,477 clear images. SOTS-outdoor has 500 hazy images.
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(a) Density distribution (b) Class distribution

Fig. 3: Haze density distributions and class distributions of Foggy Driving (FD)
and Foggy Zurich-test* (FZ*). Both datasets are composed of real-world hazy
images. The density levels in (a) are predicted by our residual-aware haze density
classifier. In (b), the relatively low number of instances in classes except car and
person is not a surprise because hazy weather discourages road traffic.

Foggy Cityscapes-DBF. Foggy Cityscapes-DBF (FC-DBF) [41] derives from
Cityscapes [58] and consists of a large and diverse set of urban street hazy scenes.
There are a total of 8,925 images for training and 1,500 images for validation,
both equally divided into three density levels (β ∈ {0.005, 0.01, 0.02}). We fol-
low the screening criteria in [3] and use the selected 1,650 (550× 3) high-quality
synthetic hazy images to fine-tune the object detectors. This dataset is denoted
as FC-DBF-refine. The bounding box annotations of these hazy images are au-
tomatically inherited from their clear-weather counterparts.

Real-World Datasets
Foggy Driving. Foggy Driving (FD) [3] is a collection of 101 hazy images of
driving scenes, among which 51 images are captured at various areas of Zurich
by a cell phone camera and others are selected from the Web.
Foggy Zurich. Foggy Zurich [41] is comprised of 3,808 images that are video
frames depicting hazy road scenes in Zurich and its suburbs. Different from FD,
these images are collected with a GoPro Hero 5 camera. We manually select
400 images of diverse scenes and haze densities, and annotate them carefully to
create a new test set, namely Foggy Zurich-test* (FZ*). The statistics of FD
and FZ* are shown in Fig. 3. We can see they both include various haze density
levels. In particular, FZ* has significantly more annotated objects than FD, and
thus can be served as a more convincing test set.

4.2 Evaluation Metrics

For hazy object detection, we adopt Average Precision (AP) and mean Average
Precision (mAP) that is the average of APs over all classes. Additionally, the
mean of AP scores over the most frequent classes (car and person) is reported
as mAP* for evaluating the detectors from a more practical perspective.

For dehazing, Peak Signal-to-Noise Ratio (PSNR) and Structural Similar-
ity Index (SSIM) [59] are used as standard quality measures. In particular, we
investigate the effect of dehazing on detection with mAP.



10 Z. Zhang et al.

Table 1: Comparison of different hazy object detection methods on Foggy Driving
(FD) and Foggy Zurich-test* (FZ*) w.r.t. mAP (%). For training, “Clear” is
clear-weather Cityscapes, “Syn. Hazy” is FC-DBF-refine , and “Real Hazy” is a
subset of unlabelled Foggy Zurich. DA, UT and DL denote domain adaptation,
unified training and density levels, respectively. Bold indicates the best results.

Methods
Components Training Sets Test Sets
DA UT DL Clear Syn. Hazy Real Hazy FD FZ*

Vanilla FRCNN [11] X 18.26 17.31

DA-FRCNN [6] X

X X 19.13 17.80
X X 19.58 18.52
X X X 22.68 19.27

JAOD-FRCNN [5] X X X X 22.17 19.14

Our UDnD X X X X X 24.90 22.89

4.3 Implementation Details

We take the FRCNN model pre-trained on Cityscapes by MMDetection [60, 61]
as baseline and initialization. The dehazing sub-network is pre-trained on OTS.
First, we implement an improved version of two-stage approaches by freezing
the dehazing part of our UDnD framework. We name this pipeline Dehazing
and Detection (DnD) and fine-tune it on FC-DBF-refine for 9 epochs. SGD
algorithm [62] is employed with a mini-batch size of 1 and an initial learning rate
of 0.001, which decays polynomially. For UDnD, the input images are randomly
cropped and resized to 512× 512. The dehazing and the detection sub-networks
are jointly optimized based on the DnD model with the same strategy. We set
λ = 1 and µ = 1 in Eq. 2 via cross-validation.

For dehazing, the models are trained from scratch with 256 × 256 image
patches. Adam [63] is used for optimization with a mini-batch size of 4. The
initial learning rate is 0.0001. We train the models up to 100 epochs on FC-DBF
and adopt the cosine annealing schedule [64]. In consistent with [31], we train
the networks on OTS with a patch size of 240× 240 for 10 epochs and decay the
learning rate by half after every 2 epochs. Our code and trained models are
available at https://github.com/xiqi98/UDnD.

4.4 Comparison on Object Detection in Real-World Hazy Scenes

We choose three methods for comparison: vanilla FRCNN [11], a baseline trained
on clear images only; DA-FRCNN [6], a state-of-the-art method using domain
adaptation; and JAOD-FRCNN [5], the only previous method jointly solving
image dehazing and object detection.

We conduct evaluations on FD and FZ*, and report the results in Table 1,
from which we have the following observations: (1) The vanilla FRCNN obtains
the lowest mAP on both test sets, as it is trained on clear images only, without
access to hazy images at all. It indicates that involving hazy images for train-
ing helps. (2) It boosts the performance by adapting the detector from clear to
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(a) Vanilla FRCNN [11] (b) DA-FRCNN [6] (c) JAOD-FRCNN [5] (d) Our UDnD

Fig. 4: Examples of object detection results in real-world hazy scenes. Green
boxes are true positives and red ones are missing recalls. In addition to detection,
JAOD-FRCNN and the proposed UDnD provide dehazed images as well. JAOD-
FRCNN tends to over-dehaze and produce artifacts that affect detection, while
the vanilla FRCNN and DA-FRCNN miss some difficult objects. Our UDnD
achieves a higher recall for hazy object detection.

hazy images. For DA-FRCNN, the result on FD improves by more than 4 points
over the baseline, when both synthetic and real-world data are used for training.
Please note that for domain adaptation methods, real hazy images are needed
to reach high performance. (3) JAOD-FRCNN achieves comparable performance
to DA-FRCNN, showing that dehazing also serves as an effective way to reduce
the inter-domain gaps. (4) Our method UDnD, which incorporates haze density
information, obtains the best results. Specifically, it outperforms the vanilla FR-
CNN by ∼6 and ∼5 points on FD and FZ*, respectively; and it also improves on
the results of DA-FRCNN, showing the benefits of a unified pipeline. Compared
to JAOD-FRCNN, the obtained ∼3 points gain on FZ* demonstrates that the
density switch module is helpful for dealing with the intra-domain differences,
and thus leads to better detection performance.

These results suggest that the proposed UDnD framework, handling both the
inter-domain and the intra-domain gaps, is effective for object detection in real-
world hazy scenes. Note that unlike DA-FRCNN, our method does not rely on
real hazy images for training, which are hard to collect and annotate in practice.
And while other models are haze-density-agnostic, our method is able to take
advantage of density knowledge.

The qualitative comparison is illustrated in Fig. 4. We can see UDnD is better
at handling small objects, occluded objects and dense haze, which demonstrates
its effectiveness in real-world hazy object detection.
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Table 2: Comparison with state-of-the-art dehazing methods. To evaluate the
effect of dehazing on object detection, we use a vanilla FRCNN based on
Cityscapes to process the dehazed images produced by each model on OTS,
and report mAP (%). Bold indicates the best results.

Methods
Dehazing Detection

SOTS-outdoor FC-DBF FD FZ*
PSNR SSIM PSNR SSIM mAP mAP

-/- 15.92 0.8029 16.07 0.8792 18.26 17.31

DCP [23] 16.32 0.8007 17.91 0.8749 17.07 17.50

NLD [21] 18.07 0.8016 16.53 0.8595 14.24 12.56

AOD-Net [5] 23.49 0.9063 20.79 0.9028 18.32 16.44

DCPDN [35] 26.74 0.9393 27.05 0.9630 19.79 17.71

EPDN [38] 29.61 0.9582 32.00 0.9812 19.25 18.62

GDN [31] 30.87 0.9832 33.07 0.9880 20.03 18.69

FFA-Net [37] 32.15 0.9806 30.99 0.9803 18.79 17.08

Our HRDN 33.27 0.9877 35.08 0.9899 20.56 19.03

Table 3: Effect of different domain adaptation techniques w.r.t. mAP and mAP*
(%) that is the mean of APs over car and person. These experiments are con-
ducted using our DnD pipeline. Bold indicates the best results.

Domain Adaptation Techniques FD FZ*

Dehazing Fine-Tuning Density Switch mAP mAP* mAP mAP*

– – – 18.26 28.40 17.31 30.94

X – – 19.84 29.29 18.26 32.45

X X – 22.70 29.68 19.57 34.85

X X X 23.15 30.42 20.49 35.33

4.5 Comparison with State-of-the-Art Dehazing Methods

Our residual-aware haze density classifier achieves 97.60% accuracy on the vali-
dation set of FC-DBF, improving upon [41] by 3.33 points.

The proposed HRDN is evaluated against state-of-the-art dehazing meth-
ods [5, 21, 23, 31, 35, 37, 38] in terms of dehazing and detection performance. The
results are shown in Table 2. We can observe that HRDN achieves the best per-
formance on the two dehazing datasets, with margins of +1.12 dB and +2.01 dB
in PSNR compared to the second best methods on SOTS-outdoor and the vali-
dation set of FC-DBF, respectively.

Meanwhile, we use mAP as an additional task-driven metric. Hazy images
from FD and FZ* are pre-processed by each dehazing model trained on OTS
before fed into the vanilla FRCNN. From the last two columns of Table 2, we
can see our HRDN obtains the best results w.r.t. mAP on both test sets. Some
methods, e.g . FFA-Net, tend to overfit the synthetic training data, and thus
obtain relatively low mAP on the two real-world datasets; other methods like
DCPDN fall short on image dehazing.
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Table 4: Comparison of loss functions on the validation set of FC-DBF. The
density switch modules in HRDN are disabled. Bold indicates the best results.

Loss Functions PSNR SSIM

L1 32.94 0.9831

Smooth L1 31.58 0.9772

SSIM 31.11 0.9868

L1 + SSIM 33.11 0.9872

Fig. 5: Effect of different dehazing loss functions and λ : µ ratios on the detection
performance of UDnD. We report mAP (%) on Foggy Zurich-test*.

To summarize, our dehazing method HRDN not only outperforms previous
methods in terms of PSNR and SSIM, but is also more helpful for high-level
vision tasks, such as object detection.

4.6 Ablation Study

Domain Adaptation. We study three techniques for tackling domain gaps,
namely dehazing, fine-tuning and density switch, based on our DnD pipeline.
Table 3 shows the effect of the three sequentially. Dehazing and fine-tuning are
used to deal with the clear-hazy gaps, and the density switch module is used to
handle haze density variations. They all bring performance gains of 1–2 points
each, justifying that our framework can handle both inter-domain and intra-
domain gaps.
Loss Function. In Fig. 5, we study the effect of different dehazing loss functions
on the final detection performance, and find that a single SSIM loss works well.
However, when we investigate on the dehazing task with the density switches
in HRDN disabled, we observe that a combination of L1 loss and SSIM loss
achieves the best results, as is shown in Table 4. It indicates that there is a mis-
match between image dehazing and object detection w.r.t. optimization goal,
which explains why traditional two-stage methods fail in hazy object detection.
We argue that haze mainly affects color, resulting in the wide application of L1

loss and MSE loss in dehazing methods; but when it comes to detection, struc-
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Table 5: Effect of updating different sub-networks of UDnD. We report mAP and
APs (%) over all classes of Foggy Zurich-test*. Bold indicates the best results.

Sub-Networks
pers. rider car truck bus train moto. bicy. mAP

Dehazing Detection

– X 25.34 21.63 45.32 3.26 14.46 30.07 13.37 10.48 20.49

X – 25.98 18.13 45.26 3.22 16.93 32.73 14.94 11.23 21.05

X X 26.03 24.41 48.66 5.74 6.02 37.00 21.46 13.78 22.89

ture matters more than color. Hence, SSIM loss stands out as a good objective
function for both tasks because of its emphasis on the structural information.
Unified Training. We evaluate our unified training strategy by freezing the
weights of different pre-trained sub-networks while keeping the same loss. The
results in Table 5 show that disabling joint optimization of the dehazing and the
detection sub-networks leads to a performance drop of ∼2 points w.r.t. mAP,
manifesting the importance of a unified framework.

5 Conclusion

We have presented a Unified density-aware Dehazing and Detection (UDnD)
framework for image reconstruction and object detection in hazy conditions,
motivated by the ideas to jointly optimize the two tasks and to exploit haze
density as prior knowledge. We build a residual-aware classifier to accurately pre-
dict haze density levels using estimated residual maps. Our density-aware High-
Resolution Dehazing Network (HRDN) is based upon parallel sub-networks and
the proposed density switch module, which can divide and conquer various hazy
scenarios. Moreover, we introduce a density-aware multi-domain object detector
to tackle the reduced inter-domain gaps and the remained intra-domain gaps
with separated feature extraction for different density levels. These collectively
constitute a unified density-aware pipeline for image dehazing and hazy object
detection. Experiments demonstrate the effectiveness of each module and the
entire framework in real-world hazy scenes.
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