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Abstract. Word spotting helps people like archaeologists, historian and
internet censors to retrieve regions of interest from document images ac-
cording to the queries defined by them. However, words in handwrit-
ten historical document images are generally densely distributed and
have many overlapping strokes, which make it challenging to apply word
spotting in such scenarios. Recently, deep learning based methods have
achieved significant performance improvement, which usually adopt two-
stage object detectors to produce word segmentation results and then em-
bed cropped word regions into a word embedding space. Different from
these multi-stage methods, this paper presents an effective end-to-end
trainable method for segmentation-free query-by-string word spotting.
To the best of our knowledge, this is the first work that uses a single net-
work to simultaneously predict word bounding box and word embedding
in only one stage by adopting feature sharing and multi-task learning
strategy. Experiments on several benchmarks demonstrate that the pro-
posed method surpasses the previous state-of-the-art segmentation-free
methods. 1

Keywords: Word spotting; Query-by-String; Segmentation-free; Multi-
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1 Introduction

Word spotting [1] is an image retrieval task, which provides a fast way to find
regions of interest from document images for people like archaeologists, historian
and internet censors. Intuitively, given a set of document images and a query
(usually a word image or a word string), the purpose of this task is to find
word areas related to the query in document images, and then to return all the
retrieved word areas ranked by a certain criterion. For such a task, one possible
retrieval method that can be easily come up with is the full-page text detection
and recognition. However, word spotting is more efficient, which directly locates
keyword regions from document images without extra text recognition and post-
processing.

1 The code is available at https://github.com/zhaopeng0103/WordRetrievalNet.

https://github.com/zhaopeng0103/WordRetrievalNet
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When using machines to automatically process handwritten historical docu-
ments, we face more challenges than modern printed documents due to various
writing style, changeable visual appearance, and uneven background. Moreover,
there have special characteristics in handwritten historical documents, such as
dense words distribution and overlapping strokes, which make word segmenta-
tion difficult.

There are two ways for the word spotting task classification. Firstly, ac-
cording to whether the query is a cropped word area or a word string, the
word spotting task can be classified as Query-by-Example (QbE) [2,3,4,5,6] and
Query-by-String (QbS) [2,3,7,4,8,5,6,9]. Generally, QbS is closer to the require-
ments in real scenes because you do not have to find a real word area and crop it
from document images every time. Secondly, word spotting methods can be di-
vided into segmentation-based [2,3,7,4] and segmentation-free [8,5,6,9] methods
by whether it needs to segment word areas in advance of the matching process.
The method proposed in Sudholt et al. [2] is the first work to use a deep convolu-
tional neural network for segmentation-based word spotting. Wilkinson et al. [5]
proposed a segmentation-free word spotting method, which produces word seg-
mentation results based on Faster R-CNN [10] and then embeds cropped word
regions into a word embedding space in which word retrieval is performed. For
the reason that segmented word areas are not always available during training,
recent works focus more on segmentation-free QbS word spotting.

In this paper we propose a simple and effective end-to-end trainable method
for segmentation-free QbS word spotting, which is scale-insensitive and does not
need redundant post-processing. To start with, the method extracts and fuses
multi-scale features through a deep convolutional neural network [11] embedded
with a feature pyramid network (FPN) [12]. After that, based on feature sharing
mechanism, the fused features are passed on to three subtasks for multi-task
learning. In detail, the first task performs pixel classification by predicting the
probability of each pixel belonging to a positive word area. The second task re-
gresses word bounding box by predicting the offsets of a word pixel to its word
bounding box boundaries. The third task learns the mapping from the word
area to the word embedding. The queries defined by users are retrieved based
on the outputs of the three tasks. To the best of our knowledge, this is the first
work that utilizes a single network to simultaneously predict word bounding box
and word embedding in segmentation-free word spotting. The proposed method
achieves state-of-the-art performance on several benchmarks. And the experi-
mental results prove that it is effective to perform word segmentation by directly
regressing word bounding box in handwritten historical document images with
special characteristics such as dense words distribution and overlapping strokes.

The main contributions of this paper are summarized as follows:

• We propose a novel end-to-end trainable deep model for segmentation-free
QbS word spotting in handwritten historical document images, which si-
multaneously predicts word bounding box and word embedding by adopting
feature sharing and multi-task learning strategy in only one stage;
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• The proposed method achieves state-of-the-art results in terms of word re-
trieval performance on public datasets, which demonstrate the effectiveness
of segmenting words by directly regressing word bounding box in handwrit-
ten historical document images with dense words distribution and overlap-
ping strokes.

The rest of this paper is organized as follows. Section 2 describes some recent
approaches in word spotting. Section 3 presents the proposed end-to-end train-
able methodology for segmentation-free QbS word spotting. Section 4 demon-
strates the effectiveness of the proposed method on several public benchmarks
using standard evaluation measures. And conclusions are drawn in Section 5.

2 Related Work

2.1 Traditional Word Spotting Methods

In document analysis and recognition literature, most traditional methods for
handwritten word spotting are based on Hidden Markov Model (HMM) [13,14],
Dynamic Time Warping (DTW) [15,16], RNN [17], Bidirectional long short-term
memory (BLSTM) [18]. These methods mainly consist of three steps. The first
step is the preprocessing of document images, including image binarization, seg-
mentation and normalization. Afterwards features such as SIFT [19] and HoG
[20] extracted from segmented word or line images are embedded into a common
representation space. Lastly, word image retrieval lists are acquired by distance
measurement criteria such as cosine distance, Euclidean distance and edit dis-
tance. Rath et al. [15] presented an algorithm for matching handwritten word
images in historical document images, which extracts feature representations
from segmented word images and uses DTW for comparison. Rath et al. [16]
extended the above work and used DTW to compare variable-length feature se-
quences for word matching. Frinken et al. [17] proposed to locate words based
on the combination of BLSTM and CTC token passing algorithm.

However, these traditional methods generally use hand-crafted features, which
typically have poor robustness. The method proposed in this paper utilizes deep
learning and convolutional neural network to extract and concatenate low-level
texture features with high-level semantic features of images, which can improve
accuracy of locating word targets with variable sizes and help to achieve excellent
performance.

2.2 Deep Learning Based Word Spotting Methods

In recent years, deep learning based methods have achieved significant perfor-
mance improvement in handwritten word spotting, which are crucial for promot-
ing the research of word spotting. They are typically classified into segmentation-
based and segmentation-free methods.
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Segmentation-based word spotting approaches [2,3,7,4] have witnessed major
advancements with further research on word embedding and extensive applica-
tion of deep learning. The method proposed in Sudholt et al. [2] is the first work
to use a deep CNN architecture for word spotting, which can handle word images
with arbitrary size and predict Pyramidal Histogram of Characters (PHOC) [21]
representation. Wilkinson et al. [3] employed a triplet CNN to extract word im-
age representation and subsequently embedded it into a novel word embedding,
called Discrete Cosine Transform of Words (DCToW). Gomez et al. [7] learned
a string embedding space in which distances between projected points are cor-
related with the Levenshtein edit distance between the original strings based on
a siamese network. Finally, Serdouk et al. [4] learned similarities vs differences
between word images, then used Euclidean distance for word matching. How-
ever, these methods require lots of segmented word areas. Because segmented
word areas are not always available during training, this limits the application of
handwritten word spotting. Therefore, this paper proposes a segmentation-free
word spotting method, which can be applied in any unconstrained scenarios.

Most of the previous segmentation-free word spotting methods [8,5,6,9] are
based on sliding windows or connected components or combination of both, de-
pending on how to generate the word image retrieval regions. In the method
proposed by Rothacker et al. [8], regions are generated based on sliding win-
dows and queries are modeled by BoF-HMM, where the size of the region for
a given query string has to be estimated. Wilkinson et al. [5] predicted word
candidate regions based on Faster R-CNN [10], and then embedded clipped can-
didate regions into a word embedding space in which word retrieval is performed
according to the cosine distance from the query. Three different word detectors
are adopted to generate word hypotheses in the method proposed by Rothacker
et al. [6]. Then the authors used convolution neural network to predict word
embedding and performed word spotting through nearest neighbor search. Vats
et al. [9] presented a training-free and segmentation-free word spotting method
based on document query word expansion and relaxed feature matching algo-
rithm. These methods generate a large number of candidate regions during word
segmentation process, resulting in slow processing speed and too many false pos-
itives. Our method directly predicts word bounding boxes based on pixel-level
segmentation without redundant post-processing processes.

2.3 Scene Text Detection and Recognition Methods

In the last few years, scene text detection methods [22,23] have attracted exten-
sive attention. EAST [22] adopts fully convolutional network (FCN) [24] to di-
rectly produce text regions without unnecessary intermediate steps. PSENet [23]
proposes to merge text instances through progressive scale expansion algorithm,
which can precisely detect texts with arbitrary shapes. Scene text recognition
methods [25] predict character sequences from extracted features. CRNN [25] is
the first approach to treat text recognition as a sequence-to-sequence task by
combining CNN and RNN in an end-to-end network.
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Uniformly, one possible method that can be easily come up with is the full-
page text retrieval method, which combines the above text detection and recog-
nition methods into a pipeline and then performs word searching. This method
can also achieve word spotting task in historical document images. However, it
needs to compare the query with recognition results one-by-one according to
whether the content is exactly the same. Different from the above framework,
word spotting only needs to label coordinates of query words without recognizing
word contents, and then outputs word area retrieval lists ranked by similarity,
which is more efficient and more like a tool specifically designed for keyword
search tasks. Inspired by scene text detection methods [22,23], the method pro-
posed in this paper combines deep convolutional neural network [11] with fea-
ture pyramid network (FPN) [12] to extract image features, and then directly
regresses word bounding box and predicts word embedding without complicated
post-processing.

3 Method

The proposed method is illustrated in Fig. 1. The input image is first fed into
the backbone network to extract multi-scale features and fuse them. Then the
fusion features are passed on to three subtasks that predict pixel categories,
word bounding boxes and word embeddings, respectively. We present the details
of each part in the following subsections.

Fig. 1. The pipeline of the proposed method.
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3.1 Feature Extraction and Fusion

Words in handwritten historical document images are usually densely distributed
and have many overlapping strokes, so it is important to extract appropriate
and powerful features. In the proposed method, the ResNet50 [11] pre-trained
on ImageNet [26] is adopted as the backbone for feature extraction. Inspired
by FPN [12], merging feature maps of different layers may help improve the
performance of detecting word areas with various sizes. Therefore, four fea-
ture maps are extracted from the ResNet50: the last layer of block1, block2,
block3 and block4, whose sizes are 1

4 ,
1
8 ,

1
16 and 1

32 of the input image, re-
spectively. Afterwards we concatenate low-level texture features with high-level
semantic features to get four feature maps (f2, f3, f4, f5), whose dimensions are
(

N, 256, H
4 ,

W
4

)

,
(

N, 256, H
8 ,

W
8

)

,
(

N, 256, H
16 ,

W
16

)

and
(

N, 256, H
32 ,

W
32

)

, respec-
tively. N is the batch size. H and W are the height and width of the input
image. In order to encode information with various receptive fields, based on the
feature fusion part in [23], these four feature maps are further fused to obtain
fusion feature map f with dimension

(

N, 1024, H
4 ,

W
4

)

. The above fusion process
is defined by function F (·) as follows:

f = F (f2, f3, f4, f5) = f2‖Up×2 (f3) ‖Up×4 (f4) ‖Up×8 (f5) , (1)

where “‖” represents the fusion operation and Up×2 (·), Up×4 (·), Up×8 (·) rep-
resent 2, 4, 8 times upsampling, respectively.

3.2 Multi-task Learning

After feature extraction, the proposed method conducts three subtasks simul-
taneously for joint supervised learning. The first task classifies word pixels by
computing the probability of each pixel belonging to a positive word area. The
second task regresses word bounding boxes by predicting the offsets of a word
pixel to its word bounding box boundaries. The third task predicts the embed-
dings of word areas.

Word Pixel Classification For the first task, we feed f into a series of stacked
convolutional layers and a Sigmoid layer to produce a single-channel word pixel
classification score map with dimension

(

N, 1, H
4 ,

W
4

)

, which predicts the proba-
bility of each pixel belonging to a positive word area on the resized input image.
When building the classification ground truth, we shrink the initial word regions
by 0.2 times along the short side of the word boundaries. During training, only
the shrinking word regions are treated as positive areas. The areas between the
shrinking regions and the bounding boxes are neglected and do not contribute
to the classification loss.

There is a strong imbalance between the number of pixels in the foreground
and background, because word instances generally occupy only a small region in
word areas. In order to prevent predictions of the network biasing to background
pixels, we adopt dice coefficient loss [27,23]. The dice coefficient D (ŷcls, ycls)
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between word classification predictions ŷcls and ground truth ycls is formulated
as:

D (ŷcls, ycls) =
2
∑

i,j ŷ
i,j
cls × y

i,j
cls

∑

i,j

(

ŷ
i,j
cls

)2

+
∑

i,j

(

y
i,j
cls

)2 , (2)

where ŷ
i,j
cls and y

i,j
cls refer to the values of pixel (i, j) in ŷcls and ycls. Thus the

word pixel classification loss is defined as:

Lcls = 1−D (ŷcls, ycls) . (3)

Word Bounding Box Regression The second task is to obtain the word
coordinate map with dimension

(

N, 4, H
4 ,

W
4

)

by feeding f into stacked convo-
lutional layers and a Sigmoid layer. The four channels predict the offsets of a
word pixel to the top, bottom, left and right sides of the corresponding word
bounding box.

GIoU loss [28] can accurately represent the coincidence degree of two bound-
ing boxes. However, when the target box completely covers the predicted box,
it can not distinguish their relative positional relationship. To solve the above
shortcomings, DIoU loss [29] tries to predict more accurate word bounding box
by adding center point normalized distance. Considering the situation of dense
words distribution and overlapping strokes in handwritten historical document
images, we adopt the DIoU loss as word regression loss, which can be written
as:

Lbbox =
1

|C|

∑

i∈C

DIoU (ŷbbox, ybbox) , (4)

where C denotes the set of positive elements in the word pixel classification score
map, DIoU (ŷbbox, ybbox) refers to the DIoU loss between the predicted bounding
box ŷbbox and the ground truth ybbox.

Word Embedding Prediction The third task aims to learn the mapping
from the word area to the word embedding. We train and evaluate our model
using Discrete Cosine Transform of Words (DCToW) introduced in [3], which is
a distributed representation of a word and has achieved state-of-the-art results
in segmentation-based and segmentation-free word spotting methods [2,5]. The
calculation process from a word string to the corresponding word embedding is
shown in Fig. 2. Given a word of length l and an alphabet of length k 2, each
character in the word is first transformed to a one-hot encoding vector. These
vectors are concatenated into a matrix M ∈ Rk×l for the whole word. Secondly,
a matrix N ∈ Rk×l is obtained by applying a Discrete Cosine Transform along

2 We use the digits 0 − 9 and the lowercase letters a − z in our experiments, that is
k = 36.
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the dimension l. Thirdly, the matrix N is cropped and keeps only r first low-
frequency components, which denotes as P ∈ Rk×r. Finally, the matrix P is
flattened into a vector R with dimension k × r. Specifically, r is set to 3 in our
experiments, so the dimension of the word embedding is 108. For words with
less than r characters, we pad zeros to get vectors of the same dimension.

Fig. 2.Word embedding with DCToW. The word string is first represented as matrix M
by one-hot encoding. Secondly M is transformed into matrix N through DCT. Thirdly,
N is cropped to matrix P. Finally, P is flattened into a 108 dimensional vector R.

The embedding map with dimension
(

N,E, H
4 ,

W
4

)

is obtained by feeding f

into stacked convolutional layers and a Sigmoid layer, where E corresponds to
the dimension of the word embedding, namely 108. For the generation of the
word embedding ground truth, all pixels in the positive word area defined by
the first task are assigned to the corresponding word embedding values.

To minimize the error between the predicted word embedding ŷembed and
the ground truth yembed, we use the cosine loss introduced in [30], which can be
formulated as follows:

Lembed = 1− cos (ŷembed, yembed) . (5)

Overall, the whole loss function can be written as:

Lall = Lbbox + λclsLcls + λembedLembed , (6)

where Lbbox, Lcls and Lembed represent the losses for word bounding box regres-
sion loss, word pixel classification loss and word embedding loss respectively. λcls

and λembed balance the importance among these losses, and we set λcls = 1.0,
λembed = 1.0 in our experiments.

Inference Stage At the stage of inference, the dense predictions are filtered
by Non-Maximum Suppression (NMS) to yield final word bounding boxes, as
shown in Fig. 1. Then, for each predicted word bounding box, we locate the
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corresponding area on the multi-dimensional word embedding map and calculate
the mean of this area to get the word embedding. Furthermore, the given query
string is embedded into the same word embedding space to calculate the cosine
distance with predicted word embeddings. The smaller the cosine distance, the
greater the similarity. The top N query results with the largest similarity are
considered as retrieval results.

3.3 Offline Data Augmentation

Facing the fact that training data is insufficient, we adopt the two offline data
augmentation strategies introduced in [5], i.e. the in-place and the full-page
augmentation. They help the model to improve the ability of learning word em-
bedding and the accuracy of predicting word bounding box. A comparison of
the two strategies is shown in Fig. 3. Given the bounding box for each word in
document images, the word area is augmented as follows: random affine trans-
formation, and random morphological dilation or erosion to fatten or thin the
ink. The in-place augmentation directly iterates through each word bounding
box and augments each word region in-place using the above augmentation, as
shown in the left of Fig. 3. The full-page augmentation firstly crops all word ar-
eas in document images for the same basic word-level augmentation, then places
them row-by-row on a background image without words, as shown in the right
of Fig. 3.

Fig. 3. A visual comparison of the in-place (left) and the full-page (right) augmenta-
tion.
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4 Experiments

In this section, the datasets used in our experiments and the experimental details
are first described. Next, we evaluate the proposed method on the three public
benchmarks, and compare it with state-of-the-art methods. Finally, the ablation
studies are presented for the proposed method.

4.1 Datasets and Experimental Setup

The proposed method is evaluated on three public benchmarks:

• George Washington Dataset (GW): The George Washington dataset [31] is
written by George Washington and his secretaries in the middle of the 18th
century. It comprises of 20 pages and 4860 annotated words. Due to the lack
of an official partitioning into training and test pages, the 20 pages are split
into a training set of 15 pages and a test set of 5 pages according to the
common evaluation procedure used in [8], and take the average of four cross
validations as the final results.

• Konzilsprotokolle Dataset: The Konzilsprotokolle dataset contains approxi-
mately 18000 pages in good preservation state, which includes equal copies of
handwritten minutes from formal meeting held by the central administration
of Greifswald University between 1794-1797. This dataset is a part of the
ICFHR 2016 Handwritten Keyword Spotting Competition (H-KWS2016)
[32], which contains 85 document images for training and 25 document im-
ages for testing.

• Barcelona Historical Handwritten Marriages Dataset (BH2M): The BH2M
dataset [33] consists of 550,000 marriage records stored in 244 books, with
marriages held between the 15th and 19th century. A subset of the dataset
is used as the IEHHR2017 [34] competition dataset, where 100 images are
annotated for training and 25 images for testing.

The proposed method is implemented in PyTorch framework [35], and run
on a server with 2.40GHz CPU, Tesla P100 GPU, Ubuntu 64-bit OS. For the
three datasets used in our experiments, we adopt the two data augmentation
techniques introduced in section 3.3 to create 1000 augmented document images
respectively, resulting in a total of 2000 document images. Our models are ini-
tialized with ResNet50 [11] pre-trained on ImageNet [26]. The whole network
is trained end-to-end by using ADAM [36] optimizer and the learning rate is
initially set to 1e-3. We train each model for 50 epochs with batch size 4, and
evaluate the performance on validation dataset every 10 epochs. The model with
the highest validation MAP is used for testing.

The online data augmentation for training data is listed as follows: 1) The
long sides of the input images are scaled to 2048 pixels, and the short sides
are scaled proportionally. 2) 512 × 512 random samples are cropped from the
transformed images.

For the three datasets used in the experiments, the models are evaluated by
adopting the standard metric used for segmentation-free word spotting, Mean
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Average Precision (MAP) [5]. For the GW and BH2M datasets, the QbS evalu-
ations use all unique transcriptions from the test set as queries. For Konzilspro-
tokolle we use the list of queries for QbS which are defined by the competition
[32]. And we use a word classification score threshold of 0.9, a word bounding
box nms overlap threshold of 0.4 and a query nms overlap threshold of 0.9.

4.2 Comparisons with State-of-the-Art Methods

As in previous work, we compare the performance of our proposed method with
the state-of-the-art methods with the 25% and 50% overlap thresholds, respec-
tively. Table 1 shows the evaluation results on the three datasets, which use the
same evaluation protocol of MAP. Different from the previous two-stage method
[5], the proposed method combines multi-task learning strategy with end-to-end
optimization mechanism, which is the first work to utilize a single network to do
segmentation-free QbS word spotting in only one stage. On GW dataset, when
the overlap threshold is 50%, our method achieves a MAP of 94.06%, surpassing
the state-of-the-art result (91.00%) by more than 3%. Notably, on Konzilspro-
tokolle dataset, the MAP (73.67%) achieved by our method is lower than [6] with
a 50% overlap thresholds. The reason may be that the method in [6] adopts sta-
tistical prior knowledge to quantify the heights of word hypotheses while we do
not apply this dataset-dependency strategy. The special characteristics of the
dataset, such as excessive stroke overlap, also lead to performance degradation.
However, when using a 25% overlap thresholds, our method achieves 98.77%,
outperforming [6] over 2.77%, which clearly demonstrates that our method can
detect more word regions. Fig. 4 shows the visualization results of several queries
for the proposed method on the GW dataset, which proves that the proposed
method can obtain precise word segmentation results.

Table 1. MAP comparison in % with state-of-the-art segmentation-free QbS methods
on the GW, Konzilsprotokolle and BH2M datasets. “GW 15-5” means using the 15-5
page train/test split on GW. “25%” and “50%” are the word bounding box overlap
thresholds.

Method
GW 15-5 Konzilsprotokolle BH2M

25% 50% 25% 50% 25% 50%

BoF HMMs [8] 80.10 76.50 - - - -
Ctrl-F-Net DCToW [5] 95.20 91.00 - - - -
Rothacker et al. [6] 90.60 84.60 96.00 89.90 - -

Vats et al. [9] - - - 50.91 - 85.72

Resnet50 + FPN (ours) 96.46 94.06 98.77 73.67 95.30 95.09
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Fig. 4. The visualization results of several queries for the proposed method on GW.
The figure shows the top 7 results starting from the left. The correct search results
are highlighted in green. “CD” means the cosine distance between the predicted word
embedding of the word area and the ground truth. The smaller the cosine distance, the
greater the similarity.

4.3 Ablation Study

Influence of Feature Fusion The effect of the feature fusion is studied by
extracting a single feature map at different layers and exploiting features of f2,
f3, f4 and f5. The models are evaluated on GW and Konzilsprotokolle datasets.
Table 2. shows that the MAP on the test datasets drops when only a single fea-
ture map is extracted. When only the low-level texture feature f2 is extracted,
the network can not learn deep information due to the lack of high-level seman-
tic features, resulting in poor retrieval performance. When only extracting the
high-level semantic feature f5, the training can not converge very well because
of the lack of low-level texture features. Considering various sizes of words in
historical document images, fusing feature maps of different layers helps the net-
work to handle word targets with different scales, which further improves the
performance of word segmentation and retrieval.

Influence of the Backbone To further analyze the performance of our method,
we investigate the effect of the backbone on the experimental results. Specifically,
the following two network architectures are compared with the backbone used
in the proposed method, Vgg16 [37] + FPN [12] and Resnet50 [11] + FCN [24].
The models are evaluated on GW and Konzilsprotokolle datasets. Table 3 shows
the experimental results, from which we can find that the model with Resnet50
+ FPN achieves the best performance than other backbones. This demonstrates
the importance of a better backbone network for feature extraction and repre-
sentation.
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Table 2. MAP (%) performance evaluation of feature fusion on GW and Konzilspro-
tokolle. “GW 15-5” means using the 15-5 page train/test split on GW. “25%” and
“50%” are the word bounding box overlap thresholds.

Method Feature map
GW 15-5 Konzilsprotokolle

25% 50% 25% 50%

Resnet50 + FPN f5 92.47 75.59 97.54 54.43
Resnet50 + FPN f4 92.77 89.82 97.88 65.83
Resnet50 + FPN f3 91.35 87.96 97.92 66.48
Resnet50 + FPN f2 92.21 89.18 97.10 67.85

Resnet50 + FPN fusion 96.46 94.06 98.77 73.67

Table 3. MAP (%) performance evaluation of different backbones on GW and Konzil-
sprotokolle. “GW 15-5” means using the 15-5 page train/test split on GW. “25%” and
“50%” are the word bounding box overlap thresholds.

Backbone
GW 15-5 Konzilsprotokolle

25% 50% 25% 50%

Vgg16 + FPN 93.02 86.65 97.77 68.25
Resnet50 + FCN 93.00 90.19 98.38 70.78

Resnet50 + FPN (ours) 96.46 94.06 98.77 73.67
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4.4 Robustness Analyze

Previous methods evaluate the experimental results only with the queries entirely
from unique words in the original test set. In order to explore the robustness of
the proposed method, we conduct experiments with another two query test sets,
in which only the queries that appear in the training set or not in the training set
are preserved. Because the queries used on the Konzilsprotokolle dataset almost
totally appear in the corresponding training set, the robustness of the model is
analyzed only on GW and BH2M datasets. As shown in Table 4, it can be seen
from the results in the last row that the model still achieves high MAP when
query words never appear in the training set, which proves the generalization
and robustness of our method.

Table 4. Robustness analyze of the proposed method on GW and BH2M. “all” means
using the queries totally from unique words in the test set. “only in train” means using
the queries only appear in the training set. “not in train” means using the queries not
appear in the training set.

Query set
GW 15-5 BH2M

25% 50% 25% 50%

all 96.46 94.06 95.30 95.09
only in train 97.70 94.98 96.56 96.40
not in train 93.57 91.71 92.73 92.43

5 Conclusion and Future Work

In this paper, we present an efficient end-to-end trainable model for segmentation-
free query-by-string word spotting. Based on feature sharing and multi-task
learning strategy, for the first time, our method simultaneously predicts word
bounding box and word embedding through a single network. Experiments on
word spotting benchmarks demonstrate the superior performance of the pro-
posed method, and prove the effectiveness of segmenting words by directly re-
gressing word bounding box in handwritten historical document images with
dense words distribution and overlapping strokes.

Since labeling of training data is time-consuming, in the future, we will con-
sider using weak supervised learning to perform word spotting task on handwrit-
ten historical document images, and applying this method to other scenarios such
as natural scene images.
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