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Abstract. Zero-shot detection (ZSD) is crucial to large-scale object de-
tection with the aim of simultaneously localizing and recognizing unseen
objects. There remain several challenges for ZSD, including reducing the
ambiguity between background and unseen objects as well as improv-
ing the alignment between visual and semantic concept. In this work,
we propose a novel framework named Background Learnable Cascade
(BLC) to improve ZSD performance. The major contributions for BLC
are as follows: (i) we propose a multi-stage cascade structure named
Cascade Semantic R-CNN to progressively refine the alignment between
visual and semantic of ZSD; (ii) we develop the semantic information flow
structure and directly add it between each stage in Cascade Semantic R-
CNN to further improve the semantic feature learning; (iii) we propose
the background learnable region proposal network (BLRPN) to learn an
appropriate word vector for background class and use this learned vector
in Cascade Semantic R-CNN, this design makes “Background Learn-
able” and reduces the confusion between background and unseen classes.
Our extensive experiments show BLC obtains significantly performance
improvements for MS-COCO over state-of-the-art methods. 3
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1 Introduction

Zero-shot learning (ZSL) is widely used to reason about objects belonging to
unseen classes that have never been observed during training. Traditional ZSL
researches focus on the classification problem of unseen objects and achieve high
classification accuracy [1]. However, there still exists a large gap between ZSL
settings and real-world scenarios. ZSL just focuses on recognizing unseen objects,
not detecting them. For example, most of datasets used as ZSL benchmark only
have one dominant object in each sample [2,3,4], while in real-world, various
objects may appear in a single image without being precisely localized.

3 Code has been made available at https://github.com/zhengye1995/BLC

https://github.com/zhengye1995/BLC
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To simultaneously localize and recognize unseen objects, some preliminary
attempts [5,6,7,8] for zero-shot object detection (ZSD) have been reported. ZSD
introduces a more practical setting to detect novel objects that are not observed
during training. On this foundation, Rahman et al. [9], Li et al. [10], Zhao et
al. [11] and Zhu et al. [12] make improvements to boost ZSD performance. These
achievements combine the visual-semantic mapping relationship in ZSL with the
deep learning based detection model in traditional object detection methods
to detect unseen objects. However, these works still have their limitations: (i)
can not gradually optimize the visual-semantic alignment to properly map vi-
sual features to semantic information; (ii) lack of a handy pipeline to learn a
discriminative background class semantic embedding representation, while this
representation is important for reducing the confusion between background and
unseen classes; (iii) rely on pre-trained weights that were learned from seen or
unseen datasets.

We therefore propose a novel framework named Background Learnable Cas-
cade (BLC) for ZSD, including three components: Cascade semantic R-CNN,
semantic information flow and BLRPN. BLC is motivated on the cognitive sci-
ence about how humans reason objects through semantic information. Humans
can use semantic information such as words to describe the characteristics of
objects, and conversely, humans can also reason the categories for objects from
the semantic description. Based on the past life experience, humans have es-
tablished an abstract visual-semantic mapping relationship for seen objects and
transfer it to recognize unseen objects. For example, humans can recognize the
zebra with the language description “a horse with black and white stripes” and
the visual memory of horse even if they had never seen a zebra before. In-
spirited by this, BLC develops a visual-semantic alignment substructure named
semantic branch to learn the visual-semantic relationship between seen objects’
images and word vectors. Then transfers this alignment from seen classes to un-
seen classes to detect unseen objects. In order to progressively refine the visual-
semantic alignment, BLC develops Cascade Semantic R-CNN by integrating the
semantic branch in a multi-stage architecture based on Cascade R-CNN [13].
This combination can take advantage of the cascade structure and multi-stage
refinement policy. In Cascade Semantic R-CNN, the semantic branches in later
stages only benefit from better localized bounding boxes without direct semantic
information connections. To remedy this problem, BLC further designs semantic
information flow structure to improve the semantic information flow by directly
connecting semantic branches in each cascade stage. The semantic feature in the
current stage will be modulated through fully connected layers and fed to the
next stage. This design promotes the circulation of semantic information between
each stage and is beneficial to learn a proper visual-semantic relationship. Due to
the coarse word vector for background class used in semantic branch is inability
to exactly represent the complex background, BLC develops a novel framework
denoted as background learnable region proposal network (BLRPN) to learn an
appropriate word vector for background class. Our study shows that replacing
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the coarse background word vector in semantic branch with the new one learned
from BLRPN can effectively increases the recall rate for unseen classes.

Our main contributions of Background Learnable Cascade (BLC) are: (i)
we develop Cascade Semantic R-CNN, which effectively integrates multi-stage
structure and cascade strategy into zero-shot object detection by first integrating
cascade with the semantic branch; (ii) we develop semantic information flow
structure among each cascade stage to improve the semantic feature learning;
(iii) we develop a background learnable region proposal network (BLRPN) to
learn a more appropriate background class semantic word vector reducing the
confusion between background and unseen classes; (iv) extensive experiments
on two different MS-COCO splits show significant performance improvement in
terms of mAP and recall.

2 Related Work

Zero-shot Recognition. In the past few years, several works have been pro-
posed [14,15,16,17,18,19,20,21,2,22,23,24,25,1,26] for zero-shot image recogni-
tion. Most approaches of ZSL [27,28,21,29,30,31,32,33,34,35,36] have employed
the relationship between seen and unseen classes to optimize recognition of un-
seen objects. The most classic way is to learn the alignment between the visual
and semantic information by using extra source data. This alignment can classify
unseen image categories by using labeled image data and semantic representa-
tions trained with unsupervised fashion from unannotated text data. In our
work, we follow this methodology to detect objects for unseen classes.

Object detection. Deep learning based object detection methods have made
great progress in the past several years, e.g., YOLO [37], SSD [38], RetinaNet [39],
Faster R-CNN [40], R-FCN [41], MASK R-CNN [42], DCN [43], CornerNet [44],
CenterNet [45] and FCOS [46]. The recent multi-stage structures have further
boosted performance for object detection, e.g., Cascade R-CNN [13] and Cas-
cade RPN [47]. The multi-stage cascade strategy progressively refine the results
and we also adopt this strategy to refine visual-semantic alignment in our BLC.

Recent achievements for ZSD. In recent years, some ZSD approaches have
been proposed. Rahman et al. [7] combine ConSE [22] and Faster R-CNN [40]
with a max-margin loss and a meta-class clustering loss to tackle the problem of
ZSD. Bansal et al. [5] employ a background-aware model to solve the confusion
for background class in ZSD, and they use additional data to densely sam-
ple training classes. They also propose a generalization version of ZSD called
generalized zero-shot object detection (GZSD) which aims to detect seen and
unseen objects together. Demirel et al. [6] adopt the hybrid region embedding
to improve performance. Zhu et al. [8] introduce ZS-YOLO, which is built on
a one-step YOLOv2 [48] detector. Rahman et al. [9] propose polarity loss to
cluster semantic and develop an end-to-end network based RetinaNet [39]. Li et
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al. [10] address ZSD with textual descriptions by jointly learning visual units,
visual-unit attention and word-level attention.

There are some key differences between our work and previous works: (i)
to the choice of evaluation datasets, Rahman et al. [7] and Zhu et al. [8] use
the ILSVRC-2017 detection dataset [3]. This dataset is restrictive for evaluate
ZSD, in comparison with our choice — MS-COCO [49]. Because each image in
ILSVRC-2017 detection dataset only has one dominant object, which exists a big
gap with the real scene. We follow the choices and splits for dataset introduced
by Bansal et al. [5] and Rahman et al. [9] in MS-COCO). These dataset splits
are more challenging and closer to the real scene settings. (ii) for the represen-
tation of background class, most of them just use a trivial representation for
background class, e.g., the semantic vectors for ‘background’ word [5] and the
mean vectors for all seen classes [7]. These representations are not the optimal
solution to address the confusion between background and unseen classes. Bansal
et al. [5] propose a background-aware approach based on an iterative EM-like
training procedure, but it is complex and inefficient for datasets with a small
number of categories like MS-COCO. In contrast, our BLRPN, as an end-to-end
framework, can learn a reasonable representation for background class through
only one training process without iterations while not be affected by the sparsity
of category; (iii) in the aspect of the optimization strategy, all of these previ-
ous works just refine the visual-semantic alignment once, which may not enough
to optimize this alignment. In BLC, we adopt multi-stage architecture to pro-
gressively refine this alignment to improve the performance of ZSD. (iv) for the
training process, most of them need fine tune their model based on additional
pre-trained weights, which are learned from seen or unseen-class data, while our
work, as stated above, just needs a simple and straightforward training process
without any additional pre-trained weights on seen or unseen data.

3 Background Learnable Cascade

In this section, we elaborate Background Learnable Cascade (BLC). We first
introduce our semantic branch about learning the alignment between the visual
and semantic information. Then we introduce Cascade Semantic R-CNN which
integrates our semantic branch with a multi-stage cascade structure. Since Cas-
cade Semantic R-CNN does not use the semantic information between each stage,
we develop semantic information flow structure via incorporating a direct path to
reinforce the information flow among semantic branches. Moreover, in consider-
ation of further reducing the confusion between background and unseen classes,
we develop BLRPN to learn a discriminative word-embedding representation
for background objects. Finally, we describe the details of training process, loss
function and inference settings.

3.1 Model Architecture

Semantic Branch. We propose semantic branch to learn the alignment be-
tween the visual and semantic information. The details about our semantic
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(a) Cascade Semantic R-CNN (b) Semantic branch

Fig. 1. The architecture for Cascade Semantic R-CNN. (a) is the overview architecture
and (b) indicates the details for semantic branch. In figure (b), T , M are trainable FC
layers and D, Ws are fixed FC layers. For an input image I, a backbone network
(ResNet) is used to obtain the features. Then these features will be forwarded to the
Region Proposal Network (RPN) to generate a set of object proposals. After we use a
RoI pooling layer to map the proposals’ features to a set of fix size objective features, we
forward them through the semantic branches (purple S1,S2 and S3) and the regression
branch (green R1,R2 and R3) in 3 cascade stages to get category scores and bounding
boxes for objects.

branch denoted as S are illustrated in Fig. 1(b). The basic idea is derived from [9]
which uses the relationship between the visual features and the semantic embed-
ding as the bridge to detect unseen objects. There are four main components in
semantic branch. Ws ∈ R

d×(s+1) is a fixed FC layer, whose parameters are the
stacked semantic word vectors of background and seen classes. More specifically,
d is the dimension of word vector for each class, s denotes the number of seen
classes and 1 denotes the background class. As shown in Fig. 4, each class has
a corresponding word vector vc (1× d dimension) in Ws. For background class,
we use the mean word vector vb =

1
s

∑s

c=1 vc in our baseline and this vb will be
improved in our BLRPN. Since the word vector quantity for Ws is limited and
causes the serious sparsity of semantic representation, we add an external vocab-
ulary D ∈ R

d×v to enhance the richness of semantic information, where v is the
number of words in this external vocabulary. D is also implemented by a fixed
FC layer like Ws. To overcome the limitation of fixed semantic representation of
Ws and D, we make an updatable representation by introducing an adjustable
FC layer M to semantic branch which can be regarded as an attention mech-
anism in visual-semantic alignment. With this adaptive M whose dimension is
v× d, semantic branch can update the semantic word embedding space to learn
a more flexible and reliable alignment. T ∈ R

N×d is an FC layer which is used to
adjust the dimension of input objective feature xbox to fit the subsequent model.
In detail, it transforms xbox from N dimension to d dimension. With these above
components, our semantic branch projects the input visual feature tensors to the
semantic space and then gets the category score c. The calculation process is
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(a) (b)

Fig. 2. The architecture for semantic information flow. (a) indicates adding semantic
information flow into Cascade Semantic R-CNN and (b) shows the details of semantic
information flow.

summarized as follows:

S = δ(WsMDT ),

c = σ(S(xbox)),

= σ(δ(WsMDT )xbox).

(1)

Where, δ(·) denotes a tanh activation function, σ(·) is the softmax activation
function and c represents the category score.

Cascade Semantic R-CNN. In order to gradually refine the visual-semantic
alignment, we integrate above semantic branch into Cascade R-CNN to develop
Cascade Semantic R-CNN. We replace the classification branch of each stage for
Cascade R-CNN with our semantic branch, as shown in Fig. 1. In particular, the
semantic branches for each stage do not share parameter weights. This framework
progressively refines predictions through the semantic branches and bounding
box regression branches. The whole pipeline is summarized as follows:

xbox
t = P(x, rt−1), rt = Rt(x

box
t ),

ct = σ(St(x
box
t )) = σ(δ(WsMtDTt)x

box
t ).

(2)

Here, x represents the visual feature from backbone network which is based on
ResNet-50 [50] and the Feature Pyramid Networks (FPN) [51]. rt−1 is the RoIs
for (t− 1)-th stage and xbox

t represents the objective feature derived from x and
the input RoIs rt−1. P(·) is a pooling operator and we use RoI Align [42] here.
Rt and St indicate the bounding box regression branch and the semantic branch
at the t-th stage, respectively. ct represents category score predictions for t-th
stage. This process will be iterated in each stage.

Semantic Information Flow. In Cascade Semantic R-CNN, the visual-semantic
alignment in semantic branches of each stage is purely based on the visual ob-
jective features xbox

t . This design does not have direct information flow between
semantic branches for each stage, failing to make full use of the relevance of
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semantic information in different stages and progressively refine semantic repre-
senting. With the aim of making up this issue, we develop a semantic information
flow structure between semantic branches among each cascade stage by forward-
ing the modulated semantic information from previous stages to current stage,
as illustrated in Fig. 2. We show the calculation process for semantic information
flow as follows:

f1 = DM1

f2 = F2(f1, DM2)

...

ft = Ft(ft−1, DMt)).

(3)

Where, ft represents the semantic information for t-th stage derived from Ft

which combines the semantic information of current stage and the preceding
one. DMt indicates the local semantic information for t-th stage. F is a function
which fuses the semantic information for last stage and current stage with two
steps. First, modulating the input semantic information for preceding stage ft−1

with two FC layers Ht. Then, adding this modulated feature with the semantic
information of current stage DMt in an element-wise manner. The calculation
details for F in t-th stage are:

Ft(ft−1, DMt)) = Ht(ft−1) +DMt (4)

After adding the semantic information flow into Cascade Semantic R-CNN, the
calculation process for ct in Equation 2 will be changed with replacing original
DMt with new ft:

ct = σ(St(x
box
t )) = σ(δ(WsftTt)x

box
t ). (5)

The semantic features will benefit from this approach and can help to learn a
robust visual-semantic alignment and improve zero shot detection performance.

Background Learnable RPN (BLRPN). In Cascade Semantic R-CNN, the
Ws in semantic branch adopts a coarse mean word vector vb for background class,
which may not reasonably represent the background class and further reduce the
confusion between background and unseen classes. We need a new background
semantic vector to replace the old one because this “replace” strategy can avoid
modifying Cascade Semantic R-CNN structure and introducing extra computa-
tion. Since the background visual concept is very complex, the better idea is to
learn background semantic vector from various background visual data. In order
to ensure that the learned background class word vector can directly replace
the original one, the learning process needs to be consistent with the process
it Cascade Semantic R-CNN. Based on above analysis, we develop Background
Learnable RPN to learn this new background semantic vector and use it to
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(a) BLRPN (b) foreground-background semantic
branch

Fig. 3. The architecture for BLRPN. (a) is the overview architecture and (b) indicates
the details about foreground-background semantic branch Sfb . In Sfb ,D is fixed while T ,
M and Wfb are trainable FC layers. c is the foreground background binary classification
score.

replace the coarse one in Ws. In Fig. 3, we develop a foreground-background se-
mantic branch Sfb and integrate it into the original RPN. Sfb is modified from
our semantic branch for consistency, and the details are illustrated in Fig. 3(b).
The only difference between Sfb and semantic branch S is that the Ws in S

is replaced by the Wfb in Sfb. We implement Wfb with an FC layer without
bias and make it trainable. The parameters of Wfb ∈ R

d×2 contain two word
vectors, one is vb for background class and the other is vf for foreground class,
so vb as the new background word vector will be updated during training. vf
is initialized with a uniform random distribution and the vb is initialized with
the mean word vectors for all seen classes, which is the same as Ws. During
training, we feed the visual features derived from the backbone network to the
foreground-background branch and get the foreground-background classification
score. The details are:

Sfb = δ(WfbMDT ),

c = σ(Sfb(x
box)),

= σ(δ(WfbMDT )xbox).

(6)

After calculating the loss, we back propagate all gradients to update trainable
parameters includes Wfb. Wfb will be updated means that we can learn the
target background class semantic vector vb in the course of training BLRPN. As
shown in Fig. 4, we use this new vb to replace the old one for background class in
Ws. Finally, we retrain our Cascade Semantic R-CNN model with this new Ws

and effectively improve the performance for unseen objects. Overall, BLRPN
learns the new vb by establishing the alignment between visual concepts and
semantic representation of background classes.
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Fig. 4. Ws is the word vectors for background and other seen classes, it includes 1
background class and s seen classes, each class has a 1 × d dimensional word vector.
Wfb is the word vectors for background and foreground classes, it includes 1 background
class and 1 foreground class, each class has a 1 × d word vector. Here, we replace the
vb in Ws with that in Wfb learned from BLRPN.

3.2 Learning

Training Process. Compared with previous achievements [5,6,7,8] needing
multi-step training and pre-trained weights on seen or unseen data, the training
process of our model is very simple and convenient with a two step manner.
First we train BLRPN to get vb and use it to obtain a new Ws. Then we train
our Cascade Semantic R-CNN equipped with semantic information flow with
this new Ws. It needs to be emphasized that we only adopt the ImageNet pre-
trained weights in the above training processes without any pre-trained weights
of seen-class data.

Loss Function. First, we introduce the loss function of Cascade Semantic R-
CNN. In each stage t for Cascade Semantic R-CNN, the box regression branch
predicts the RoIs rt and the semantic branch predicts category score ct. The loss
function Lcs is:

Lcs =

3∑

t=1

αt(L
reg
t + Lsem

t ),

L
reg
t (rt, r̂t) = ℓ1(rt, r̂t),

Lsem
t (ct, ĉt) = CE(ct, ĉt).

(7)

Here, Lsem
t represents classification loss for semantic branch which adopts cross-

entropy (CE) loss function. Lreg
t is the loss of the boxes predictions at stage t,

which uses smooth ℓ1 loss. The coefficient αt is the loss weight for each stage, we
follow the settings in Cascade R-CNN [13] and set αt to [1,0.5,0.25] for 3 stages.
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The loss function of BLRPN denoted as Lblrpn is consists of the classification
loss Lfbsem in foreground-background semantic branch and the box regression
loss Lreg in regression branch:

Lblrpn = Lreg + Lfbsem,

Lreg(r, r̂) = ℓ1(r, r̂),

Lfbsem(c, ĉ) = CE(c, ĉ).

(8)

Inference. We forward the input images through Cascade Semantic R-CNN
to get the boxes and categories for all objects, then we apply Non-Maximum
Suppression (NMS) to get the final results. In addition to the original inference
process for the seen class in Equation 5, we add an extra calculation process to
inference unseen objects. The extra process is as follows:

cunseen = WuW
T

s σ(δ(WsfT )x
box). (9)

Where, Wu ∈ R
d×(u+1) denotes the stacking word vectors for background and

unseen classes, u indicates the number of unseen classes. The other components
are same as Equation 5. For an input object feature xbox, we first map this visual
feature to the category probability of seen classes. Then we use the transpose
of Ws to transform this probability back to semantic space, finally we get un-
seen category score from the semantic space through Wu. For GZSD task, we
simultaneously execute the above two reasoning process, so as to achieve the
simultaneous reasoning of seen and unseen objects.

4 Experiments

4.1 Datasets

We perform experiments on MS-COCO dataset [49]. MS-COCO (2014) includes
82783 training images and 40504 validation images with 80 classes. We follow
the datasets settings in [5] and [9] for MS-COCO. We divide the dataset with
two different splits: (i) 48 seen classes an 17 unseen classes; (ii) 65 seen classes
and 15 unseen classes. The seen classes are training set and unseen classes are
test set. Both splits remove all images from the training set which contain any
object from seen classes. Specially, the images for unseen classes in test set still
have objects for seen classes in order to maintain the number of samples in
the test set. Following [9], we use extra vocabulary from NUS-WIDE [52] and
remove MS-COCO classes names and all tags with no word-vectors. We use a
300 dimensional word2vec [53] with a ℓ2 normalization for MS-COCO classes
and extra vocabulary.

4.2 Evaluation Protocol

We report the evaluation results on ZSD and GZSD task like previous work [5,9]
over two splits for MS-COCO. We use recall and mAP as metrics, these metrics
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Table 1. Comparison of the proposed BLC with the previous state-of-the-art zsd work
on two splits of COCO. Seen/Unseen refers to the split of datasets. The proposed
BLC can achieve 10.6 mAP and 48.87 Recall@100 for 48/17 split, 14.7 mAP and 54.68
Recall@100 for 65/15 split, significantly surpasses all other work. “ms” indicates multi-
scale training and test.

Method Seen/Unseen
Recall@100 mAP

0.4 0.5 0.6 0.5

SB [5] 48/17 34.46 22.14 11.31 0.32
DSES [5] 48/17 40.23 27.19 13.63 0.54
TD [10] 48/17 45.50 34.30 18.10 -
PL [9] 48/17 - 43.59 - 10.10

BLC 48/17 49.63 46.39 41.86 9.90
BLC (ms) 48/17 51.33 48.87 45.03 10.60

PL [9] 65/15 - 37.72 - 12.40

BLC 65/15 54.18 51.65 47.86 13.10
BLC (ms) 65/15 57.23 54.68 51.22 14.70

for boxes are all evaluated across IoU thresholds in 0.4, 0.5 and 0.6. In particular,
the evaluation for recall is based on Recall@K [5], which means the recall when
only the top K detections are selected from an image, we set K to 100 by following
the settings in [5].

4.3 Implementation Details

In all experiments, we adopt ResNet-50 [50] as the backbone network with
FPN [51]. We train all models with 4 GPUs (two images per GPU) for 12 epochs
with a SGD optimizer which momentum is 0.9 and weight-decay is 0.0001. The
initial learning rate for the optimizer is set to 0.01, and decreased by 0.1 after 8
and 11 epochs. The long edge and short edge of images are resized to 1333 and
800 without changing the aspect ratio. We use horizontal flip during training
and the multi-scale for training is set to [400, 1400]. We implement our model
in PyTorch [54] and the pre-trained model is from PyTorch official model zoo.

4.4 Quantitative Results

Results in Benchmarks. We compare Background Learnable Cascade with
the state-of-the-art zero-shot detection approaches on two splits of MS-COCO
in Table 1. We can observe that: (i) for 48/17 split, we compare our approaches
with SB [5], DSES [5], TD [10] and PL [9]. Our BLC surpasses all of them in
Recall@100 and mAP, brings up to 33.72% (4×) and 10.28% (33×) gain in terms
of Recall@100 and mAP; (ii) for 65/15 split, compared with PL [9], our BLC
brings 16.96% gain for Recall@100 and 2.3% improvement for mAP. Moreover,
in other previous works, Recall@100 drops severely as IoU threshold increasing
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Table 2. Effects of each component in our work. Results are reported on 48/17 split
and 65/15 split of MS-COCO, respectively.

Cascade Semantic Semantic Info BLRPN
Recall@100 mAP

0.4 0.5 0.6 0.5
4
8
/
1
7

X 40.96 38.75 35.25 9.3
X X 43.84 41.73 38.11 9.5
X X 48.52 45.41 41.04 9.6
X X X 49.63 46.39 41.86 9.9

6
5
/
1
5

X 49.75 47.28 43.87 12.4
X X 51.49 49.05 45.07 12.7
X X 53.38 51.03 47.39 12.9
X X X 54.18 51.65 47.86 13.1

while our BLC can still maintain a high Recall@100 indicating our approach is
more robust for stringent IoU threshold.

Component-wise Analysis. We investigate the contributions of the main
components for BLC. “Cascade Semantic” means the baseline Cascade Semantic
R-CNN, “Semantic Flow” denotes the semantic information flow, “BLRPN”
represents the new background class word vector learned from our background
learnable region proposal network. The results for 48/17 and 65/15 splits are
shown in Table 2, respectively.

Class-wise Performance. We report the Recall@100 on two splits of MS-
COCO for each unseen classes in Table 3. Our BLC makes significant improve-
ment on both splits: (i) for the split of 48/17, BLC substantially boosts baseline
in the most of classes. For the classes which are hard to detect, BLC achieves
2.1×, 1.6×, 3.7×, 1.4×, 2.1×, 1.5× and 2.5× improvement on Recall@100 for
“skateboard”, “cup”, “knife”, “cake”, “keyboard”, “sink” and “scissors” classes,
respectively; (ii) for the split of 65/15, BLC also obtains further improvement
compared with baseline. We also note that BLC is unable to detect any true
positive for the class “umbrella” and “tie”, the Recall@100 rate for the class
“hair drier” is also unsatisfying. The main reason is that there are fewer classes
are semantically similar with these poor classes in training dataset, which makes
them difficult to detect.

Generalized Zero-Shot Detection (GZSD) Results. The generalized zero-
shot detection task is more realistic that both seen and unseen classes are pre-
sented during evaluation. We report the performance for GZSD in Table 4 under
on both splits over MS-COCO. The score threshold is 0.2 for seen classes and
0.05 for unseen classes, respectively. The IoU threshold for mAP is 0.5. Our BLC
exceeds other stat-of-the-art methods in terms of mAP and recall@100.
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Table 3. Class-wise Recall@100 for 48/17 and 65/15 splits of MS-COCO with the IoU
threshold is 0.5. Our BLC achieves significant improvement in most of unseen classes
compared with Cascade Semantic R-CNN baseline.

48/17 split of MS-COCO

Method O
v
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a
ll
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u
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d
o
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ep
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e
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cu
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sc
is
so
rs

a
ir
p
la
n
e

ca
t

sn
ow

b
o
a
rd

baseline 38.73 72.9 94.6 67.3 68.1 0.0 0.0 19.9 24.0 12.4 24.0 63.7 11.6 9.2 8.3 48.3 70.7 63.4

BLC 46.39 77.4 88.4 71.9 77.2 0.0 0.0 41.7 38.0 45.6 34.3 65.2 23.8 14.1 20.8 48.3 79.9 61.8

65/15 split of MS-COCO

Method O
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sa
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d
w
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h

h
o
t
d
o
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to
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m
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se

to
a
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er

h
a
ir

d
ri
er

baseline 47.28 53.9 70.6 5.9 90.2 85.1 40.7 25.9 59.9 33.7 76.9 64.4 33.2 3.3 64.1 1.4

BLC 51.28 58.7 72.0 10.2 96.1 91.6 46.9 44.1 65.4 37.9 82.5 73.6 43.8 7.9 35.9 2.7

Table 4. This table shows Recall@100 and mAP (IoU threshold=0.5) for our BLC and
other stat of the art over GZSD task. HM denotes the harmonic average for seen and
unseen classes.

Method Seen/Unseen
seen unseen HM

mAP Recall mAP Recall mAP Recall

DSES [5] 48/17 - 15.02 - 15.32 - 15.17
PL [9] 48/17 35.92 38.24 4.12 26.32 7.39 31.18

BLC 48/17 42.10 57.56 4.50 46.39 8.20 51.37

PL [9] 65/15 34.07 36.38 12.40 37.16 18.18 36.76

BLC 65/15 36.00 56.39 13.10 51.65 19.20 53.92

4.5 Qualitative Results

For intuitively evaluating the qualitative results, we give some detection results in
Fig. 5 for BLC on two splits of MS-COCO. We find that BLC can precisely detect
unseen classes under different situations. For example, BLC detects objects under
densely packed scenes, e.g., “airplanes”, “elephants” and “hot dogs”, as well as
successfully captures small objects like the tiny “airplane”. It is noteworthy that
multiple objects are also detected by BLC from messy background like “cat”
and “couch”. The main issue in BLC is the misclassification for unseen objects
which belong to the same meta class due to lacking of enough information to
distinguish them, and we can see it as cases of ”elephant” and ”cat”.
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Fig. 5. Examples for detection results of BLC on 48/17 and 65/15 splits of MS-COCO.
All these objects are belong unseen classes.

5 Conclusions

In this paper, we propose a novel framework for ZSD named Background Learn-
able Cascade (BLC), which includes Cascade Semantic R-CNN, semantic in-
formation flow and BLRPN. Cascade Semantic R-CNN progressively refines the
visual-semantic alignment, semantic information flow improves the semantic fea-
ture learning and BLRPN learns a appropriate word vector for background class
to reduce the confusion between background and unseen classes. Experiments
in two splits of MS-COCO show that BLC outperforms several state of the art
under both ZSD and GZSD tasks.
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