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Abstract. The blending of facial images is an effective way to fuse
attributes such that the synthesis is robust to the finer details (e.g.,
periocular-region, nostrils, hairlines). Specifically, facial blending aims
to transfer the style of a source image to a target such that violations
in the natural appearance are minimized. Despite the many practical
applications, facial image blending remains mostly unexplored with the
reasons being two-fold: 1) the lack of quality paired data for supervi-
sion and 2) facial synthesizers (i.e., the models) are sensitive to small
variations in lighting, texture, resolution and age. We address the rea-
sons for the bottleneck by first building Facial Pairs to Blend (FPB)
dataset, which was generated through our facial attribute optimization
algorithm. Then, we propose an effective normalization scheme to cap-
ture local statistical information during blending: namely, Local Instance
Normalization (LAN). Lastly, a novel local-reshuffle-layer is designed to
map local patches in the feature space, which can be learned in an end-
to-end fashion with dedicated loss. This new layer is essential for the
proposed Localin Reshuffle Network (LRNet). Extensive experiments,
and both quantitative and qualitative results, demonstrate that our ap-
proach outperforms existing methods.

1 Introduction

Facial blending is an effective way to synthesize new faces, which has highly
practical value in many applications (e.g., face swapping [1, 2], rendering facial
makeup [3–6], and portrait style transfer [2, 7]). Unlike transfer methods tend
to transfer global-level statistics from a source to a target domain (e.g., style
transfer [8] and color transfer [9]), face blending is a more complex task, as it
aims to mix a source face onto a target in specific local areas (Fig. 1). However,
a lack of paired face data prohibits the use modern-day data-driven models (i.e.,
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Fig. 1: Illustration for different tasks.

supervised deep learning), which is one of the challenges posed in the face blend-
ing task. Another challenge is the sensitivity to even slight variations in intrinsic
image properties (e.g., textures and illuminations). Furthermore, boundary con-
ditions also contribute to the challenge. Specifically, the goal of face blending is
to blend a cropped region from source face xA onto the target xB. Inherently,
there are typically significant conflicts about the boundaries and in textures
differences (e.g., skin color, skin texture, and image resolution).

Formally put, a two-stage solutions are most commonly proposed for facial
blending: 1) apply a style or color transfer algorithm to xA, and 2) use Poisson
image blending [10] for the final result. More specifically, (1) is an attempt
to disentangle content and style (or color). When employed to arbitrary facial
images, there exists no style (or color) transfer algorithm that simultaneously
handles skin-tone, skin-texture, and lighting conditions robustly. As for (2), it is
known for its efficiency and natural results [10]. However, Poisson image blending
performs poorly on faces with variations in textures and lighting conditions since
texture consistency between background and foreground is ignored.

Recently, one-stage solutions have been proposed. FSGAN [11] combined
Poisson optimization with perceptual loss to blend two faces while preserving
target skin color, but they did not take some key factors like local texture into
consideration. Li et al. proposed a blending method that attempts to modify
expressions and gestures, which undesirably alters the identity [12].

To overcome shortcomings of our predecessors, we propose a single stage so-
lution called Localin Reshuffle Network (LRNet). Given a pair of face images
xA and xB, LRNet blends xA onto xB, while transferring the local information
(e.g., texture and illumination) from xB to the final output x̃. In support of this
work, we introduce the first paired facial image dataset for image blending named
Facial Pairs to Blend (FPB). Since the blending of facial images requires pairs
of faces of different identities to have similar orientation and shape. Hence, col-
lecting such a large number of real-world samples is a time-consuming challenge.
Based on Style-GAN2 [13], we design a facial attribute optimization algorithm,
to generate images per the requirements.

The contributions of this paper are as follows:

• We introduce the first image dataset for face blending with 12,000 pairs.

• We propose the Local Instance Normalization and Local Reshuffle Layer in
our LRNet: the former transfers local statistics and the latter reconstructs
texture from a reference to make invariant to intrinsic image properties.
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• We clearly demonstrate the improvement over existing methods on high-
quality face images using our LRNet to synthesize.

2 Related Works

2.1 Image blending

As a common image composition task, to blend images is to blend cropped re-
gions of a source image onto a target image at specific locations. For this, one
can simply replace the pixels of the target with those cropped from the source.
However, it would yield artifacts caused by differences in intensity between fore-
ground and background. Although alpha blending alleviates this issue by blurring
the boundary [14], it still suffers from inconsistent coloring and lighting.

Gradient-based methods have been proven an ability to produce a smoother
transition, which reduces problems from differences in color and illumination [10,
15–17] - the most popular of these is Poisson image blending [10]. The motivation
of gradient-base methods is that humans are sensitive to an abrupt change in
intensity change and, thus, these methods attempt to ensure the smoothness of
blended images in the gradient domain.

Recently, Gaussian-Poisson Generative Adversarial Network (GP-GAN) [18]
explores the capability of a GAN in image blending task, while Zhang et al. pro-
posed a Poisson blending loss computed from a neural network [19]. However,
these methods do not account for local aspects like texture and illumination.
Hence, the proposed Localin Reshuffle Network (LRNet) ensures smoothness of
blended images via gradient-domain and transfers the local texture and illumi-
nation. In the end, our results are most photo-realistic.

2.2 Neural style transfer

In facial image blending, style transfer algorithms tend to reduce the visual
difference between the two images. Gatys et al. found that feature statistics
calculated from the Gram matrix successfully capture the image style [20]. The
authors were then inspired to transfer arbitrary styles by matching the feature
statistics [21–23]. However, the early methods are time-consuming, since they
are based on an iterative optimization framework.

Feed-forward networks to approximate an optimal result were proposed as a
means to reduce time costs [24–26]. However, the algorithms are still unable to
transfer unseen styles from an arbitrary image. Later developments alleviated
the limitation posed from when unseen styles are mishandled [3,8,27]. WCT [3]
encodes the style as the feature co-variance matrix to support rich style repre-
sentation. AdaIN [8] captures arbitrary image style by computing the mean and
variance on the feature maps. Adaptive instance normalization is an efficient
style transfer method, which is widely used since introduced [8]. MUNIT was
proposed with AdaIN adopted as a high-level style expression to do image-to-
image translation task [28]. Style-GAN applied AdaIN in generator to control
styles at multiple levels [29].
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Although better performance were achieved in neural style transfer, devel-
oping an algorithm that is all around efficient (i.e., handles textures, semantic-
correspondences, and in a realistic manner) is still a challenge to overcome.
Nonetheless, the proposed framework is all around efficient.

2.3 Generative Adversarial Networks (GAN)

Generative Adversarial Networks (GAN) have drawn great attention in research [30].
Originally, the GAN was used to generate low-resolution handwritten digit data.
Since its dbut, a lot of literature on improving vanilla GAN, e.g., Laplacian
pyramids of adversarial networks [31], deeper neural networks [32], constraints
on generator (G) (e.g., cycle consistency), and methods to stabilize training [33].

Other using cases for GAN involve controlling its output. Infogenerative ad-
versarial network (GAN) focuses on learning interpretable latent representa-
tions [34]. Conditional GAN (C-GAN) adds a conditional attribute to the latent
code and discriminator (D) [35]. Liu et al. improves on C-GAN by introducing
a flow-based G [36].

Most recently, Style-GAN2 strengthened style controls, along with improved
quality in output image [13]. Abda* et al. explored a method to embed images
into the latent code of the Style-GAN [37]. Specifically, a latent code is randomly
initialized for an input, from which an image is generated with a pre-trained
Style-GAN. The dissimilarity between the given image (e.g., real) and the image
generated (e.g., fake) is minimized by iterative optimization. In fact, Abda et al.
inspired our FPB dataset to have minimal dissimilarities in face orientation and
shape, and all the while maximizing other face attributes.

3 Facial Pairs to Blend (FPB) Dataset

FPB is proposed as the first image set to support facial blending. For this,
our LRNet generated ground-truth (i.e., supervision) for 12,000 pairs (i.e., xA

blended onto xB, and vice-versa). This allowed for face pairs of different appear-
ance to have the same orientation (i.e., pitch, yaw, and roll) and facial contour.
We next explain our data, and then in the proceeding section introduce LRNet.

3.1 Dataset generation algorithm

As face blending task requires two faces with similar orientation and shape
but different appearance, the collection of such data in the real world could
be rather expensive. Inspired by the work of Style-GAN encoder [37], we use
Style-GAN2 [13] to generate facial images, and define the loss function as con-
straints on face attributes (i.e., orientation, facial contour, and appearance).
Through minimizing the loss function, paired-wise facial images that meet the
requirements can be accessed.

Our paired-wise data generation algorithm is presented in Fig. 2. To illustrate
the problem clearly, our method is divided into three steps in the figure.
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Fig. 2: Our paired-wise facial images generation algorithm. A random latent code
Z generates xA. Then, we add noise to Z to synthesize a completely new image
x̃B . The loss function aims to minimize the difference in the orientation and
contour of faces and maximize the identity loss. The bottom row shows the
transforming process from xA to xB.

(1) We randomly generate a latent code Z in Style-GAN2 [13] latent space, Z
has a shape of 512×1. Image A is simply achieved by feeding Z to Style-GAN2.
A pre-trained facial attribute network [38] gives an estimated result of image A,
we denote the facial orientation as xo

A (with a size of 3×1), facial contour as xc
A

(16×2), facial identity vector as xid
A (4,000×1).

(2) We add noise n to Z, and treat Z + n in the same way as Z, obtaining
xo
B, x

c
B, and xid

B .
(3) We define a loss to measure the similarity between face images xA and xB.

The idea is to ensure two images have similar facial orientation and contour, while
they look different in appearance as much as possible. The loss is formulated
as Eq. (1). λo, λc and λid are the weights to balance different components. To
minimize lossAB , we take the derivative of lossAB with respect to n, and update
the noise, in a similar way of Eq. (2).

lossAB = λo

∥

∥xo
A − xo

B

∥

∥

2
+ λc

∥

∥xc
A − xc

B

∥

∥

2
− λid

∥

∥xid
A − xid

B

∥

∥

2
(1)

n = n−
∂lossAB

∂n
(2)

We noticed that the loss in Eq. (1) usually converged to a minimum after 80
iterations of Step 2 - 3 - continued training did not improve results. Then, we
adopted the final result as xB. We also set an early stop strategy to accelerate
the generation process.

Even though Style-GAN2 is state-of-the-art (SOTA) in generating photo-
realistic images, there still exists a domain gap between the distribution of the
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Fig. 3: FPB dataset. Columns show face pairs, with the last two being real im-
ages. The similarity in orientation and shape but difference in appearances.

real and fake data. For this, we collect images from the web and manually
select 2,000 pairs that have similar orientations and face-shapes. We then use
TPS [39] to warp one image per pair so that edges line-up. In total, Facial Pairs
to Blend (FPB) consists of 12,000 face pairs (Fig. 3).

3.2 Dataset implementation details

Although StyleGAN2 performs well most of the time, artifacts still can be ob-
served in some extreme illumination and pose conditions. After 15,467 pairs of
images are generated, we manually select 10,000 pairs of good-quality.

The facial orientation (xo
A, xo

B) is a 3×1 vector (i.e., pitch, yaw, and roll
angles, respectively). The facial contour(xc

A, xc
B) is a 16×2 vector made-up of

the sixteen facial landmarks along the outside of the face. We normalize these
landmarks to [0, 1]. The size of facial identity vector(xid

A , xid
B ) is 4,000×1. To

generate the vector, we add a fully connected network(3 layers) after the feature
extraction layers of [38], and train the fully connected module for face recognition
tasks on CelebA [40]. We apply the output of the third layer in fully connected
network as facial identity vector. λo, λc, λid, are 0.1, 100, and 0.001 in our
experiments.

The generation process would stop if reaching the maximum number of iter-
ations, which is 80 in our paper, or meeting the following three stop criteria:

∥

∥xo
A − xo

B

∥

∥

2
< 10 &

∥

∥xc
A − xc

B

∥

∥

2
< 0.01 &

∥

∥xid
A − xid

B

∥

∥

2
> 1000

Empirically, if above three conditions are satisfied, the orientation and face shape
of image B should be similar to A, while looks like two totally different persons.

4 Localin Reshuffle Network (LRNet)

LRNet, consisting of the our local instance normalization (LocalIN) and local

reshuffle layer. Specifically, LocalIN is a layer that transfers local statistics and
the local reshuffle layer reconstructs the new feature maps for xA with patches
from xB. Both of the novel layers are essential for a precise transfer of local
texture and lighting while blending faces. We discuss all of the parts, the network
as a whole, and then the loss functions in the remainder of this section.
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Fig. 4: Example of implementing LocalIN in RGB space about the nose region.

4.1 LocalIN

As mentioned, adaptive instance normalization (AdaIN) has been proved to
be an efficient style transfer operation [8]. However, since AdaIN uses global
statistics of an image it is insensitive to the local style, which is imperative for
objects with finer details (i.e., faces). To achieve style transfer at a semantic level
(e.g., nose-to-nose or mouth-to-mouth), we propose LocalIN as a normalization
method. It operates in RGB color space (Fig. 4).

More specifically, given two images xA and xB, xA will be normalized by xB.
The first step is to divide the image into different semantic regions, normalization
will only be implemented in the same region of two images. Take nose as an
example, we calculate the mean and standard deviation inside xnose

A on each
channels, respectively. Let µ(xnose

A , c) and σ(xnose
A , c) be the mean and standard

deviation calculated in xnose
A on channel c. µ(xnose

B , c) and σ(xnose
B , c) are defined

in a similar way. Finally, for every pixel inside xnose
A on each channel, its value

F (xnose
A , i, c) will be calculated as

Fn(x
nose
A , i, c) =

F (xnose
A , i, c)− µ(xnose

A , c)

σ(xnose
A , c)

∗ σ(xnose
B , c) + µ(xnose

B , c). (3)

The framework of LocalIN is given in Algorithm 1. The operation is differen-
tiable, and can be executed efficiently. This allows us to easily add the module to
a neural network and optimizing with our objective functions. LocalIN transfers
high-level style information from xB→xA, which includes knowledge of lighting,
skin color, and image tone. However, for photo-realistic results we need to handle
texture, which is done via the local reshuffle layer described next.

4.2 Local reshuffle

We propose a novel local reshuffle for inconsistencies in texture. Specifically, we
reconstruct the feature maps of xA using patches from the feature maps of xB.
The resulting maps then share the same local texture as xA, while retaining the
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structure of xB. We first demonstrate the proposed local reshuffle in RGB space.
Then, a more general formula is provided(Algorithm 2).

Given images xA and xB, our goal is to reconstruct a new image xreshuffled
A

made-up of patches from xB. A patch is defined as a square block with the num-
ber of channels equivalent to the feature maps. The patch size is set as 3×3×3
(height*weight*channel) in RGB space for the reported results. As shown in
Fig. 5, patch(xnose

A , i) represents the i -th patch of xnose
A , while patch(xnose

B , j)
represents the j -th patch in xnose

B . Then, each patch(xnose
A , i) is matched up with

the most similar patch(xnose
B , j) in xnose

B , which is denoted as φxA→xB
(i) = j.

We compute φxA→xB
(i) by maximizing Eq. (4). After each patch(xnose

A , i) has
been matched with a patch(xnose

B , j), the new feature maps Fre(x
nose
A ) are recon-

structed. By concatenating and feeding all patches in xnose
B into a convolution

kernel, the patch-matches of xnose
A and xnose

B can be replaced by a single for-
ward convolution computation. Since an additional same-region restriction is
included, this was dubbed local reshuffle.

φA→B(i) = argmax
j

∥

∥patch(xnose
A , i) ∗ patch(xnose

B , j)
∥

∥

2 (4)

Algorithm 2 describes the proposed local reshuffle. The input feature maps
xA and xB with corresponding channels C are denoted as F (xk

A) and F (xk
B).

Reshuffling produces the new feature maps Fn(x
k
A). Since patches are 3×3× C,

only the center 1×1× C value is used to reconstruct Fn(x
k
A) via patches in xk

B.

Algorithm 1 Framework of Local Instance Normalization

Input:

The feature maps of xA and xB in region k (i.e., F (xk

A) and F (xk

B), respectively)
Output:

Normalized result: Fn(x
k

A)
for each channel c do

µ(xk

A, c) =
i∈x

k

A
∑

i

F (xk

A
,i,c)

N

σ(xk

A, c) =

√

i∈x
k

A
∑

i

[F (xk

A
,i,c)−µ(xk

A
,c)]2

N

µ(xk

B, c) =
j∈x

k

B
∑

j

F (xk

B
,j,c)

M

σ(xk

B, c) =

√

√

√

√

j∈x
k

B
∑

j

[F (xk

B
,j,c)−µ(xk

B
,c)]2

M

for each i ∈ xk

A do

Fn(x
k

A, i, c) =
F (xk

A
,i,c)−µ(xk

A
,c)

σ(xk

A
,c)

∗ σ(xk

B, c) + µ(xk

B, c)

end for

end for

return Fn(x
k

A);
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Fig. 5: Example of implementing local reshuffle on RGB space inside nose region.

4.3 Semantic correspondence constraint

When blending xA into xB, we expect blended image x̃ shows similar style(eg:
skin color, texture and illumination) inside same semantic region(eg: left eye)
with xB. In this work, we also proposed a novel way to ensure semantic corre-
spondence in local reshuffle.

Firstly, we get the the 3D facial vertices of xA and xB via PRNet [38], denoted
as PA and PB . Then both PA and PB are mapped to a sphere whose radius is
1. This process can be seen as fitting the 3D facial mesh onto a sphere. After
mapping, the product between two vertices can be used to measure the relative
distance. The greater the product, the smaller the distance. The proof process
is in the supplementary material. After the conversion, we have an elegant and
simple way to measure distance.

The product between 3D vertices can be used as in convolution operations.
This allows for the merging of semantic correspondence constraint in the local

reshuffle. In our experiments, we concatenate 3D vertices with feature maps,
which extend the channel C of the feature maps to C + 3. Patches within the
same semantic region tend to have a greater product that leads to more energy
(Eq. (4)). By mapping 3D vertices into feature maps, we achieve the semantic
correspondence of local reshuffle.

4.4 Network architecture

LocalIN and local reshuffle are critical component in the network of this work,
with the former for high-level style transfer and the latter for local texture trans-
fer. We named the overall architecture LRNet (Fig. 6). As shown, the goal is to
blend face xA onto xB. The result yields similar texture and lighting distribution
as xB, while retaining the identity of xA.

Firstly, LRNet extracts features of xA and xB with the same encoder– the
same encoder used as the feature maps are assumed to share data distribution,
which will be used for the dot-product, comparison, and reshuffle. Feature maps
F (xA) and F (xB) are divided into K semantic regions, and each pair F (xk

A)
and F (xk

B) will be sent to two branches: Localin and local reshuffle. For each
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Encoder

Encoder

Decoder

BlendLocal in

BlendReshuff le

Fig. 6: Overview of Localin-Reshuffle-Net. Concatenation is represented by ⊕.

branch, after obtaining Fnew(x
k
A), we will blend them into F (xB) through alpha

blending [14] to avoid the mutation around the boundary. Next, two blended
feature maps are concatenated, and fed to a decoder. Finally, the decoder gen-
erates the blended result. Thanks to Localin and local reshuffle, LRNet not only
blends xA onto xB, but also transfers the texture and lighting at the same time.

4.5 Loss functions

Reconstruction loss The reconstruction loss of our model is motivated by
the following: reconstruction in the background should be the same as xB; the
foreground should resemble xA as much as possible. To that end, we develop a
reconstruction loss to penalize induced errors in training. Let x̃ be the output
RGB image. Let x̃(fg) and x̃(bg) refer to the foreground and background of
x̃, respectively. V GG1,2(x̃(fg)) refers to feeding x̃(fg) through a pre-trained
VGG19 model [41], and get the feature maps after the relu1 1 and relu2 1 layers.
This operation is also known as perceptual loss [26]. Our reconstruction loss can
be formulated as Eq. (5). The parameter α is a weighting factor that balances the
two, it’s 0.2 in this experiment. N and M are the total pixels in the background
and foreground, respectively. We chose to use the perceptual loss as penalty from
the pixels of the foreground is not as strict as those in the background. This is
because difference in detail (e.g., facial texture, illumination), is not only allowed
but encouraged.

Algorithm 2 Framework of Local Reshuffle

Input:

The feature maps of xA and xB in region k (i.e., F (xk

A) and F (xk

B), respectively)
Output:

Reshuffled result: Fre(x
k

A)
for each i ∈ xk

A do

φxA→xB
(i) = argminj ‖patch(x

nose

A , i) ∗ patch(xnose

B , j)‖2
end for

for each i ∈ xk

A do

patch((xnose

A )re, i) = patch(xnose

B , φxA→xB
(i))

end for

return Fre(x
k

A);
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(a) (b) (c) (d)

Fig. 7: A pair of segmentation results in our experiments. There are 10 regions
in total. Shown here is xA (a), xsegmented

A (b), xB (c), and xsegmented
B (d).

Lrec =
1

N
‖xB(bg)− x̃(bg)‖2 +

α

M
‖V GG1,2(xA(fg))− V GG1,2(x̃(fg))‖2 (5)

Cycle Consistency Loss If we blend x̃ onto xA, the most accurate output
should look like xA itself. LRNet(xA → xB) means blending xA onto xB. Our
cycle consistency loss is defined as

Lcycle =
1

N +M
‖xA − LRNet(LRNet(xA → xB) → xA)‖1 . (6)

Gradient Consistency Loss We have discussed in Section 2.1 that gradient-
based methods plays a key role in producing a seamless blending boundary. We
extend this idea to our gradient consistency loss. Let ∇A(fg) be the gradient of
xA in background area. The gradient consistency loss can be defined as

Lgrad =
1

N +M
‖∇A(fg) +∇B(bg)−∇out‖1 . (7)

Local style loss In order to ensure the output share a similar texture and
lighting with xB in local areas, we define a new texture loss based on previous
style transfer works [8]. Same as the perceptual loss in Section Reconstruction
Loss, we leverage a pre-trained VGG19 model to extract the feature maps for
xB and x̃. Denote µ(xk

B, c) as the mean value of xB’s feature maps on the c
channel, our local style loss is formalized in Eq. (8). Note that feature maps are
calculated at the relu1 1 layer, making the loss more sensitive to the low-level
style information. The weighting factor β is 2.0 in this work.

Lstyle =
1

KC

K
∑

k

C
∑

c

∥

∥µ(xk
B, c)− µ(x̃k, c)

∥

∥

2
+ β

∥

∥σ(xk
B, c)− σ(x̃k, c)

∥

∥

2
(8)

Total loss Integrating aforementioned losses, the total loss function is

Ltotal = λ1Lrec + λ2Lcycle + λ3Lgrad + λ3Lstyle, (9)

where weighting factors λ1, λ2, λ3, and λ4 are 3.0, 20, 100, and 0.35, respectively,
which are obtained via cross validation experiments.
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5 Experiments

5.1 Implementation details

Network architecture The encoder in LRNet accepts a H×W×3 (H > 32,
W > 32) RGB image as input, and outputs feature maps with a size of H

2 ×
W
2 ×128. We adopt layers from conv1 − 1 to relu2 − 1 of VGG19 [41] as the
backbone of the encoder, because a too deep network can leads to low efficiency
and image details’ loss. The decoder in LRNet accepts a (H/2) × (W/2)×256
feature maps, and generates a H×W×3 RGB image as output. In our experi-
ments, the H and W are set as 256. The decoder uses deconvolution layers to
enlarge feature maps and generate RGB images.

Training details Facial images are segmented into 10 regions (Fig. 7). Each
connected domain is an independent region in the figure. LRNet is trained end-
to-end with Adam [42] optimizing with a learning rate of 0.0001 and batch size of
1. 70% pairs in the dataset are used for training, and the rests are for validation.
We use stratified sampling to select from both generated and real images.

5.2 Ablation Study

We conduct an ablation study to seeing how each branch in LRNet affects the
performance. Let Flocalin be the feature maps generated by Localin branch,
while Freshuffle is the feature maps of the Reshuffle branch. We designed two
network structures: (a) remove the reshuffle branch, make a copy of Flocalin, and
concatenate Flocalin with its copy as the input to the following decoder and (b)
remove the Localin branch, and process Freshuffle similar to (a).

The convergence processes of 4 losses are shown in Fig.8. For reconstruc-
tion loss, structure(a) converge fastest. But in a face blending task, reducing
reconstruction loss to 0 is not our real goal. It’s just a constraint to the gen-
eral structure of the generated image. For style loss, the result shows that both
(a) and (b) have the ability to transfer style. By putting them together, LRNet
improves even more. Based on our observations, (a) tends to transfer image
statistics, like color and illumination, while (b) is more sensitive to local texture.
We also found that the consistency of local texture is critical for face blending,
making the reshuffle branch indispensable. For grad loss and cycle loss, (b) per-
forms worse than the others. The reason is that the Localin branch retains many
of the details, dropping it makes it harder to recover the original face. Except
for convergence processes, we also provide visual results in our supplementary
materials.

5.3 Comparison with baselines

Here, we adopted several methods that are widely adopted in industry and re-
search: alpha blending, apply color transfer [9] on xA according to xB, and
blend xA onto xB using alpha blending [14]; Possion blending, blend xA onto
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Fig. 8: The ablation study. We graph the convergence processes of loss functions
as a function of iteration step k. Note, each loss was scaled by its weight factor.

xB using Poisson blending [10]; style blending, apply style transfer [8] on xA

according to xB, and blend xA onto xB using alpha blending [14]; deep blend-

ing, a gradient-based blending method using numerical optimization [19] (< 50
seconds to completion).

Qualitative Comparison We show qualitative comparison results alongside
the baselines in Fig.9. Before blending, we warp [39] the target image to ensure
the target face aligns with the face edges of the source. Results show that Alpha
blending as the simplest way to blend faces, which has the worst performance. It
shows significant mutations around the blending boundary. What’s worse, it has
nothing to do with the inconsistency of texture and illumination at all. Possion
blending, although successfully produce a smooth transition and reduce the color
illumination differences, the problem of texture inconsistency still exists. Style
blending tends to generate highly stylized images, which doesn’t look like a real
face. Deep blending takes much longer computation time, and sometimes produce
artifacts leading to unrealistic faces.

The aforementioned methods inaccurately transfer texture and lighting from
the source to the blended results. In face blending, this is critical, and leads
to obvious, unwanted artifacts. From this, the improvement of our LRNet is
clear. For instance, examine row 5 in Fig. 9: our method is the only to generate
results that preserve the highlights and shadows of the source image. At the
local-level, LRNet was the only to preserve the facial texture and skin tone of
the source. Note that the first two rows are results for real-world images, our
method performs as well on real data as it does on generated data.

Quantitative Comparison First, we performed a user study on 75 volunteers.
For this, 200 image pairs were randomly sampled from the validation set. Then,
each volunteer was shown the source and target faces, along with the results for
the respective pair. Note that the order of results was set randomly each time.
Volunteers were asked to score the resulting faces, with a score scale of 0.5-to-4

Table 1: Quantitative results of different face blending methods.

Alpha Possion Style Deep LRNet

User rating 2.43±0.68 2.94±0.47 1.28±0.67 2.19±0.65 3.54±0.39

Avg. time(s) 0.12 0.23 0.19 54.31 0.37
FID score 39.73 31.59 73.41 26.18 15.47
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StylePossionAlphaSource FaceTarget Image Deep Blend Ours

Fig. 9: Qualitative comparisons between LRNet and existing methods. The task
is to blend the source faces onto the target.

(increments of 0.5). We ask users to rate according to whether the results look
natural, realistic. As illustrated in Table 1, x ± y represents the mean ± the
variance of all user ratings. In the end, our proposed method was perceived as
superior to the others.

We apply “Fréchet Inception Distance” (FID) [43] as another quantitative
evaluation criterion. The FID score are also listed in Table 1. Our method out-
performs all the baselines under the objective evaluation criterion. Note that the
FID score is measured across the validation set, and image size is 256×256.

Table 1 also shows the average computational time of five methods with
same configuration - a PC with an Intel i7 4.20GHz CPU and an NVIDIA GTX
1080Ti GPU. It can be seen that our method is comparable with the fastest face
blending method (i.e., Style Blending) in terms of speed.

6 Conclusions

In this paper, we proposed an effective method for facial image blending. Firstly,
we introduced a labeled facial image dataset for this task, which contains 12,000
face pairs with the same orientation and facial contour, but different appearance.
Secondly, we proposed a normalization method, i.e., LocalIN, to transfer local
statistical information. Thirdly, we also introduced a new network, i.e., LRNet,
with instances of a new layer-type designed to reshuffle local patches on the
forward pass. The extensive experiments demonstrate our approach are very
effective compared to existing methods.
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