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Abstract. Different modalities have their own advantages and disadvantages.

In a tracking-by-detection framework, fusing data frommultiplemodalitieswould

ideally improve tracking performance than using a single modality, but this has

been a challenge. �is study builds upon previous research in this area. We

propose a deep-learning based tracking-by-detection pipeline that uses multi-

ple detectors and multiple sensors. For the input, we associate object proposals

from 2D and 3D detectors. �rough a cross-modal a�ention module, we opti-

mize interaction between the 2D RGB and 3D point clouds features of each pro-

posal. �is helps to generate 2D features with suppressed irrelevant information

for boosting performance. �rough experiments on a published benchmark, we

prove the value and ability of our design in introducing a multi-modal tracking

solution to the current research on Multi-Object Tracking (MOT).

1 Introduction

Multi-object tracking (MOT) is a crucial task in many fields including robotics

and autonomous driving. As different sensors (e.g., RGB camera, LiDAR, radar) get

increasingly used together, the multi-modal MOT starts to a�ract research a�ention.

�e introduction of multi-modal solutions helps to be�er accomplish MOT tasks in a

lot of ways. One benefit is that multiple sensors increase the diversity of object repre-

sentations, which provides higher association reliability across objects from different

timestamps.

In this study, we focus on the combined use of LiDAR and RGB camera sensors

in MOT. Prior works on multi-modal MOT have explored be�er strategies of multi-

modal feature fusion for boosting tracking performance. �ey, however, overlook the

interaction between features of different modality, which could have provided rich in-

formation. For example, the 2D representation of a partially occluded vehicle would

inevitably contain a certain amount of irrelevant information of other objects in the

scene; however, the 3D representation is able to easily distinguish the vehicle from

other objects. In this situation, we may introduce 3D features to interact with 2D fea-

tures to suppress irrelevant signals. Following this thread, we propose a new feature

fusion strategy. In our proposed method, features of different modalities are extracted

separately before they fully interact with each other through a cross-modal a�ention
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Fig. 1: Possible failure cases of single-detector methods for tracking. Scenario 1 shows

three consecutive frames from the KITTI dataset. Even on the same object, a detector

would make inconsistent detection decisions across frames. Hence, tracking failure

may occur if only one detector is used. Scenario 2 demonstrates some typical limita-

tions of 2D/3D detectors: the 2D detector failed to detect the partially visible object

(a); the 3D detector failed to detect the small object (b).

module which is described in Sec. 3.3. �e interaction-aware features are then used

for inter-frame proposals association.

Tracking o�en relies on detection. Multi-modal trackers in previous research usu-

ally require a detector to offer object proposals. �e detector can be either 2D, 3D, or

multi-modal. Different types of detectors have their own advantages and disadvan-

tages: 2D detector has a higher precision but is sensitive to lighting conditions and

occlusion; whereas 3D detector excels at handling occlusions but has high false alarm

rates. Fig.1 shows two scenarios where the tracker may fail if we only use one type

of detector. Intuitively, a multi-modal detectors should enable 2D and 3D features to

complement each other’s weaknesses. However, recent multi-modal detectors like [1,

2] surprisingly do not outperform current SOTA 3D detector such as PointPillar [3] or

PV-RCNN [4]. It appears that the community is still exploring an appropriate way to

adopt the multi-modal se�ing in detection tasks. Hence, we propose the present study,

which may be the first to associate multiple single-modal detectors in one tracking

task. �e cardinal challenge of our pipeline is how to reorganize proposals from mul-

tiple detectors in order to simultaneously retain merits and suppress demerits of each



Cross-Modal Multi-detector, Multi-modal Tracking Framework 3

modality. To tackle this challenge, we design a classification module to re-classify raw

proposals. We provide detailed explanations in Sec. 3.2.

Our work contributes to the current literature on MOT in three aspects.

1. Propose a novel cross-modal a�ention module to explicitly embed interaction be-

tween different modalities in feature fusion process;
2. Yield more robust tracking performance by associating object proposals from mul-

tiple single-modal detectors;
3. Conduct experiments to compare with published benchmarks, proving the value

and potential of our proposed framework.

2 Related work

2.1 Multi-object Tracking

Aswe stated above, tracking o�en relies on detection.�is type of trackingmethod

is known as the tracking-by-detection paradigm [5]. It takes object proposals from out-

of-shell detectors as the input, and then associates the proposals to produce trajectories

of each object of interest. �e performance of this type of tracker, hence, is highly

associated with the quality of detection results. In this section, we review seminal

works on the tracking-by-detection paradigm.

A tracking-by-detection paradigm breaks down into two steps, feature extraction

and data association. Feature extraction usually refers to the procedure of extract-

ing features from each object proposal. Data association is correlating the features of

proposals from different timestamps in order to discover proposals that belong to the

same object. Based on proposals of the same object, the trajectory of each object is

then generated.

Image based trackers (e.g. [6–8]) extract features from cropped image patches,

which are defined by the 2D bounding boxes that the detectors produce. For LiDAR

based methods [9, 10], the LiDAR points inside every proposed 3D bounding box also

take part in the feature extraction procedure. More recently, a few works [11, 12] have

raised the concept of 2D and 3D based multi-modal trackers. Trackers of this kind fuse

the features from two modalities using different strategies. For instance, [12] directly

concatenates the 2D and 3D features for later use to maintain the information from

each modality. In comparison, [11] sums up features from two modalities and inputs

them to a self-a�ention fusion module to generate the final feature. Similar to [11], we

adopt an a�ention mechanism for feature fusion. However, instead of self-a�ention,

we introduce a cross-modal a�ention module that allows 3D features to help generate

a�ention masks for corresponding 2D features. In this way, our module makes use of

the interaction-aware features from multiple modalities.

In addition to the data extraction step, the data association step has also been

widely explored. Many strategies are almost equally popular as of today, including

Hungarian assignments [13], particle filtering [14], and min-cost flow [15, 16]. More

recently, [17] explained a simpler method that exploits the regression head of a de-

tector to perform temporal realignment of object bounding boxes, and their method

achieved SOTA performance. In this paper, we follow [16] to apply adjacency matrix

learning within the min-cost flow framework.
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2.2 Cross-modal Attention Mechanism

In this work, we propose a cross-modal a�ention mechanism that involves 2D im-

age and 3D LiDAR information. As the usage of multi-modal information becomes

increasingly popular, the a�ention mechanism starts to be used for matching and/or

fusing features from different modalities, e.g, 2D image and text, videos and audios.

We survey the existing cross-modal a�ention module designs in this subsection.

Several recent works [18, 19] have introduced a�ention-based methods to fuse

cross-modal information such as depth and color image, and they show promising

results in the object detection task. Research to date has tested the adaptivity of these

a�ention mechanisms in fusing 2D and 2.5D domains. Nevertheless, to the best of our

knowledge, few works have explored cross-modal a�ention mechanisms that handle

2D and real 3D (e.g. point cloud) domains.

Besides the worksmentioned above, we also notice that the concept of cross-modal

a�ention has become well-liked in the community of image-text matching. For exam-

ple, [20–22] propose several solutions to bridge the gap between different modalities.

Among these three papers, [20, 21] divide the image into different regions and then

relate each region to the work in a text. �rough this method, two-dimensional data

is reduced to one-dimensional data which aligns with text modality. By comparison,

[22] directly embeds bothmodalities into one-dimensional features, and then it applies

a�ention mechanism at the feature level.

Apart from image-text matching, research also covers other tasks and different

combinations ofmodalities. [23] comes upwith amulti-level self-a�ention basedmethod

capturing the long-range dependencies between linguistic and visual contexts for im-

age segmentation; [24] designs a hierarchical a�ention-based architecture to align au-

dio and video information.

Among all works discussed so far, we are especially inspired by [20–22] from the

image-text matching community. �us, we adopt the idea of dimension reduction. We

project 3D to 2D, generating a sparse depth map that not only maintains the 3D infor-

mation but also naturally correlates to the image by spatial correspondence.

3 Approach

In this paper, we design a deep-learning based Multi-detector, multi-modal track-

ing framework.�ewhole pipeline is shown in Fig.2.�e framework follows a tracking-

by-detection paradigm. It solves data association as a min-cost flow problem. �e goal

of this framework is to collaborate the information frommultiple sensors and multiple

different types of detectors in such a paradigm.

3.1 Pipeline Overview

Following the tracking-by-detection paradigm, our pipeline takes the detector-

produced object proposals as the input. �en we extract the 2D image patch and the

3D point cloud split from their respective sensor data based on the localization infor-

mation in the proposals. A�erwards, we use PointNet [25] to extract the proposals’ 3D



Cross-Modal Multi-detector, Multi-modal Tracking Framework 5

Fig. 2: Pipeline overview

features from their corresponding point cloud splits and ResNet to extract 2D features

from each image patch. �e differences between our work and the previous works are

(1) we collect object proposals from different types of object detectors; and (2) during

2D feature extraction, the 3D information gets involved to generate an a�ention mask

as the guidance. We explain the details about how we operate these two novel ideas

in Sec. 3.2 and Sec. 3.3. A�er feature extraction, we concatenate 3D features with the

a�ended 2D features to yield the final feature for each proposal. Once all proposals

obtain their final features, the classification module re-evaluates each proposal’s score

of being an object of interest. �is module is especially important because when pro-

posals are collected frommultiple detectors, the false positive rate would inflate as the

number of the total proposals increases. �e classification module helps validate the

input proposals for a be�er tracking performance. Besides the classification module,

the data association module infers the affinity matrix, the start and end scores in the

min-cost flow graph. �is partition of the pipeline is similar to the previous work [11,

26, 27]. We skip the module details here and introduce its functionality in Sec. 3.4.

�e whole framework is trained in an end-to-end manner using a multi-task loss.

We use cross entropy loss for the classification module and the L2 loss for the data

association module. �e overall loss function is as follows:

L = αLcls +βLds, (1)

where α and β are hyper-parameters to balance two losses. α is set to 2 and β is 1 in

our experiments.

3.2 Multi-detector Proposal Collection

In this subsection, we define a proposal pool to collect results from multiple detec-

tors, and we provide details about how we fetch corresponding raw data of proposals

from multi-modal signals.

Proposal Pool. A proposal pool P is defined as the collection of all object propos-

als of t consecutive frames. We run every detector on the sequence of frames one at

a time, and we collect the object proposals of each frame in the proposal pool P. In
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practice, we let t = 2. �e proposal pool is denoted as P = {p1, p2, ..., pN}, where N is

the size of P and pi is the ith proposal in P. We parameterize pi as pi = (xi,yi,wi,hi),
where xi and yi represent the coordinates of the 2D bounding box’s center while wi

and hi represent its width and height. Meanwhile, proposals from different detectors

may occasionally overlap. To tackle this challenge, we conduct a non-maximum sup-

pression procedure to re-organize P to avoid redundant proposals in P during its later

use. In our experiment, we define two proposals as identical when their intersection

over union (IoU) is larger than 0.5.

Preparation for Feature extraction. Object proposals in the present study, in

the form of 2D bounding boxes in P, enable us to extract 2D modality data from RGB

cameras and 3D modality data from LiDAR sensors. For the RGB camera data, we

crop their corresponding image patches from each image frame which will be used for

the later 2D feature extraction. We use ResNet101 [28] as the backbone in 2D feature

extraction.

As for the LiDAR data, since we use mixed types of detectors, the detector output

does not necessarily contain the 3D bounding box information of a proposal. With-

out 3D bounding boxes, we would be unable to extract the precise point cloud split

of each proposal. In response to this challenge, [29] makes a valuable a�empt where

they predict 3D bounding boxes according to 2D bounding boxes. However, we decide

not to incorporate their system into our existing pipeline in consideration of optimal

efficiency. In lieu of 3D bounding boxes, we use frustums projected from 2D bounding

boxes, as inspired by [11]. [11] shows that the point cloud split in frustums can have

comparable performance to that cropped from 3D bounding boxes in tracking tasks.

In our framework, we project frustums from 2D bounding boxes with the help of cali-

bration information. We use frustums to fetch the corresponding 3D point cloud split

from LiDAR data of each proposal for later 3D feature extraction. A�er we fetch the

point cloud split, we use PointNet [25] for 3D point cloud feature extraction.

3.3 Cross-modal Attention Module

In this work, we propose a cross-modal a�ention module where 3D features inter-

act with 2D features to guide the refinement of the la�er.

Motivation.�e a�ention mechanism [30] helps machine learning procedures to

focus on certain aspects of data specific to a given task context. In a tracking task,

a�ention should aim at the most discriminative sub-regions. If the a�ention mech-

anism can successfully tell the system ”where to look at”, the system can overcome

the distraction from irrelevant information that is especially cumbersome to handle in

2D tracking application. Without extra information, however, it is not straightforward

for 2D features to figure out a solution by themselves to distinguish objects of interest

from noises, despite some a�empts of a self-a�ention design such as [31]. Hence, we

consider using 3D features to help guide the generation of a�ended 2D features.

Challenge and Solution. �ere is a dimensional gap between 3D and 2D infor-

mation. In previous works that have explored the cross-modal a�entionmodule design

[20, 22], when the feature dimensions are different for different modalities, researchers

usually choose to reduce the dimension of the higher-dimensional modality to make

the cross-modal interaction more natural. Inspired by [20, 22], we consider to reduce
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the dimension of LiDAR information to sparse depth maps by projecting 3D point

cloud to 2D. Given a point cloud point v, the transformation matrix between LiDAR

device and the camera Tcam, the rotation matrix R and the translation T of the cam-

era as well as the corresponding 2D image coordinates with the depth value o can be

calculated as:

o = T RTcamvT (2)

In this way, we are able to transform a point cloud split to a 2D sparse depth map.

To suppress the negative impact from this sparsity, we perform the following two

steps. First, we assign the neighbors of every projected point o the same depth value as

o. �e neighboring area is defined as a σ kernel centering around o. We choose σ = 10

pixel width in this work. Second, we concatenate the projected sparse depth map with

its corresponding RGB image patch. In practice, we extract the proposal’s point cloud

split using generated frustum for all proposals regardless of their sources being 2D or

3D detectors. Fig.3 shows several example pairs of image patch and its corresponding

masked version, where the yellow mask signals that depth values is available in that

area. �e figure also shows that the areas with depth values are highly correlated with

the exact location of the object of interests in the image patch.

Fig. 3: Samples of image patch with its corresponding projected point cloud.
One yellow small patch in the second row represents a projected 3D point and its neighbors.

Implementation.We denote the input image patch of proposal i as Ii and the cor-

responding RGB with sparse depth patch as Di. We adopt ResNet [28] as the backbone

for our feature extractors and add cross-model a�ention heads a�er every pooling op-

eration. In our experiment, we use different feature extractors for Ii and Di to avoid

the extracted features ge�ing too similar so that it will not hurt the performance of the

a�ention heads. We denote the extracted feature at scale l as f l
I and f l

D respectively.

�e a�ention operation is expressed as:

Att l( f l
I ) = so f tmax(Q( f l

D)K( f l
D)

T )V ( f l
I ), (3)

where Q, K, and V are implemented as linear projection. �e visual demonstration is

Fig.4. We concatenate the a�ended feature Att l( f l
I ) at all scales and use the concate-

nated features in the classification and data associationmodule. However, we posit that
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the a�ention of the input features should be different for different tasks. To confirm

our hunch, we conduct ablation studies to see if by generating task-aware a�ended

features, we can improve the module’s final performance. Please see details in Sec. 4.4.

Fig. 4: Cross-modal a�ention head visual demonstration

3.4 Linear programming formulation

Based on the detection results from two consecutive frames t and t +1, we obtain

a set of object proposals P = {p1, p2, ..., pN}. We follow the model formulation that

[16] proposes to introduce four types of binary variables: for each p j , xtrue
j indicates if

proposal p j is a true positive; xstart
j and xend

j encode if p j is the start node or the end

node of the link; xlink
j,k represents if there is a link between p j and pk.

In our pipeline, xtrue
j is relatively more important among these four binary vari-

ables, as well as more important in our study than in previous works where xtrue
j only

functions as a validation for the detection results. �is is because previous works are

based on a single detector; hence, xtrue
j in previous works acts similarly to each pro-

posal’s classification score that is already decided by the detector. Without drawing

upon additional information, there is limited room for single-detector based tracking

frameworks to correct the decisions made by the detector. In our pipeline, in com-

parison, the proposals are from different detectors of different data modalities. �is

se�ing adds a large amount of extra information to the classification module. A multi-

detector andmulti-modality approach is especially promising if we consider this: cases

that a single-modality detector finds confusing may not be as confusing for another

single-modality detector. When information from different detectors and modalities

are jointly used for classification, we are able to optimize task performance.

We obtain xtrue
j through the classification module. Other threes variables are esti-

mated by data association module. For notation convenience, the four variables for-

mulate a vector x = (xtrue
,xstart

,xend
,xlink). �en, as [16] suggests, we formulate the
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tracking problem as a linear program:

maximize
x

ΘW (P)x

subject to Ax ≤ 0, x ∈ {0,1}|x|
(4)

In the above equation, ΘW (P) is the cost of assigning each random variables and

Ax = 0 is the constraints of the assignment. �e constraints here can be described in

natural languages as: (1) a proposal cannot be linked to a detection belonging to the

same frame; and (2) if a proposal is a true positive, it has to be either linked to another

detection in the previous frame or the start of a new trajectory.

4 Experiment

4.1 Dataset

We conducted experiments on the KITTI tracking benchmark [32] which consists

of 21 training sequences and 29 test sequences. In our experiments, we further split the

21 training sequences into 10 and 11 sequences, respectively for the purposes of train-

ing and validation following the se�ing of [11]. �e training set has 3,975 total frames

and the validation set 3,945 frames. KITTI contains data collected by both 2D and 3D

sensors and sensor calibration information. Hence, we were able to crop correspond-

ing multi-modal data for each proposal given its bounding box location. Following the

KITTI benchmark se�ing, we computed the Intersection over Union (IoU) between ev-

ery output proposal and the entire ground truth bounding boxes. In occasions where

a proposal identifies a ground truth bounding box as having yielded the largest IoU

among all and where the IoU is greater than 0.5, we assigned the GT box ID to this

proposal. We used the same IoU threshold of 0.5 during non-maximum suppression

when we re-organized the proposal pool.

4.2 Metrics

Besides the precision and recall that evaluate the detection results, we evaluated

our tracking performance using trackingmetrics CLEARMOT,MTPTML, identity swit-

ches, and fragmentations following the KITTI benchmark [33, 34]. �e metrics are ex-

plained as below.

MOTA:�eMultiple Object TrackingAccuracyMOTA= 1−
Σt mt− fpt +mmt

Σt gt
, where

mt , fpt , and mmt are respectively the number of misses, of false positives, and of

mismatches for time t .

MOTP: MOTP is the total position error for matched object hypothesis pairs

over all frames, averaged by the total number of matches made. It shows the abil-

ity of the tracker to estimate precise object positions, independent of its skills at

recognizing object configurations, keeping consistent trajectories, etc.

MT:Mostly tracked. Percentage of GT trajectories which are covered by tracker

output for more than 80% in length.
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ML:Mostly lost. Percentage of GT trajectories which are covered by tracker out-

put for less than 20% in length. �e smaller the value the be�er.

Fragments: �e total number of times that a ground truth trajectory is inter-

rupted in the tracking result. �e smaller the value the be�er.

ID switches: �e total number of times that a tracked trajectory changes its

matched GT identity. �e smaller the value the be�er.

4.3 Implementation detail

We used two detectors in our experiments: the 3D detector PointPillar [3] and the

2D detector RRC [35]. Please see Table 1 for the performance of the two detectors.

We trained the whole pipeline in an end-to-end manner. As stated in Sec. 3.2, we used

PointNet [25] as the backbone of our 3D feature extractor and ResNet101 [28] with

batch normalization as the backbone of the 2D feature extractor.�e input image patch

was resized to 112×112. �e classification module was implemented as a three-layer

MLP (i.e. Multi-layer Perceptron). We adapted the architecture of the data association

module from [11]. We used Adam optimizer with the learning rate of 3e-4.

Table 1: Statistics of detection results on KITTI validation subset. �is table demon-

strates the statics of detector performance for both the 2D [35] and 3D [3] detectors on

our KITTI validation dataset. �e third row lists statistics about the overlapped output

proposals between the two detectors. �e fourth row shows the statics of combined

detection results from both detectors a�er the non-maximum suppression step.
Detector Type Proposal number True Positive False Positive

2D 12090 11528 562

3D 12642 10788 1854

Overlapped 10533 10308 225

Combination 14199 12008 2191

Ground Truth 12363 - -

4.4 Ablation Study

Cross-modal Attention Module. �e first of the two ablation studies was on

our cross-modal a�ention module. We stacked the sparse depth map with RGB image

patch for a�ention mask generation. �is treatment, as introduced in Sec. 3.3, was to

overcome the inefficient feature extraction resulting from the depth sparsity. To es-

tablish the value of the stacked RGB-D input in the a�ention module, we designed

an experiment to compare the tracking performance of three a�ention modules: one

using the stacked RGB-D input, the second using pure RGB images, and the third

using pure sparse depth maps. In addition, we had all three a�ention modules to com-

pare performance with another architecture without any a�ention module. Table 4

demonstrated the evaluation results in comparisons. It indicated that our cross-modal
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Table 2: Ablation study on a�ention type.
MOTA MOTP Recall Precision FP Rate

W/o a�ention 83.03% 85.75% 94.76% 92.11% 26.04%

W/ Depth a�ention 82.70% 84.56% 94.75% 91.88% 31.25%

W/ RGB a�ention 83.76% 84.53% 94.68% 92.91% 26.98%

Cross-modal a�ention 84.20% 85.43% 93.53% 93.74% 19.87%

a�ention module (the last line on Table 4) had the best performance among all four

se�ings.

Task-specific Attention Module. As Sec. 3.3 mentioned, different tasks may

have different requirements on the a�ended features. �erefore, we designed a sec-

ond ablation study to compare three solutions: (1) a solution without any a�ention

modules, (2) a solution with the association a�ention module only, and (3) a solution

with both the association a�ention module and the classification a�ention module. A

comparison between (1) and (2) revealed a performance boosting due to an a�ention

module. A comparison between (2) and (3) further proved the value of using classifi-

cation a�ention module in conjunction with an association a�ention module. Please

see table 3 for specific statistics of performance evaluation.

Fig. 5 and Fig. 6 visualized the a�ention masks generated respectively for data

association and classification.

Table 3: �e ablation study 2 on using or not using task specific a�ention module for

classification and association.
Association A� Cls A� MOTA MOTP Recall Precision FP Rate

× × 83.03% 85.75% 94.76% 92.11% 26.04%

X × 84.09% 85.33% 94.39% 93.04% 22.61%

X X 84.20% 85.43% 93.53% 93.74% 19.87%

Fig. 5: A�entionmask generated for data associationmodule.�e le� four and the right

four pictures respectively represent two different objects in different timestamps.
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Fig. 6: A�ention mask generated for the classification module.

4.5 Analysis on Multiple Detectors Performance

As Sec. 3.4 discussed, the classification module would be more important and more

challenging in our multi-detector system than in prior single-detector tracking sys-

tems since we have more false positive proposals in our proposal pool. To prove our

hypothesis and the strength of our framework in overcoming this challenge, we de-

signed another set of experiments.

First of all, we compared the performance of several detectors on the dataset de-

scribed in Sec. 4.1. We argue that the recall of a detector is the most important metric

to consider when we evaluate a detector used in a tracking task. A higher recall indi-

cates more true positive proposals. Since a tracking-by-detection framework cannot

produce additional positive proposals by itself - in addition to those provided by the

detector, the number of true positive proposals that the detector provides may be re-

garded as the upper bound of what a tracking-by-detection system can achieve. �e

first three rows of Table 4 show that regarding the KITTI dataset, the 2D detector we

used in the experiment performed be�er than the 3D detector judging their recalls, but

the combined use of 2D and 3D detectors outperformed the 2D detector alone, yielding

a recall about 4% higher than that of the 2D detector. We thus proved the superiority of

a multiple-detector solution over single-detector solutions in incurring input of be�er

quality for a tracking-by-detection system.

Secondly, the second three rows of Table 4 showed the results of the multi-modal

tracking method [11], which is reproduced by using its official code and data. For

comparison convenience, we replaced the original VGG-16 encoder by ResNet101 and

adjusted the image patch to 112× 112. �e results demonstrated that when using a

single detector, [11] was able to control the false positive rate while for a multiple

detector se�ing, the false positive rate became much larger than the raw detection re-

sults. Namely, the classification module had problems in distinguishing true positives

and false positives with too many distractions in a multiple detector se�ing.

A comparison between the second three rows and the last three rows of Table

4 demonstrated contribution of our framework. Our pipeline not only improved the

performance of a multi-detector based tracking system but also single-detector based
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tracking systems with 2D or 3D detectors alone. �is finding was supported by the

higher MOTA statistics and lower false positive rates of our framework compared

to [11]. Specially, in the multi-detector se�ing, our framework had a false positive

rate that was 24% lower than that from [11]. �is proved the ability of our proposed

framework in successfully suppressing the false positive rate in tracking-by-detection

systems even when the inputs come from multiple detectors.

Table 4: Results of experiments using different types of detectors.

Detector type Model Type MOTA MOTP Recall Precision FP Rate FP Number

2D - - - 93.24% 95.35% 4.64% 562

3D - - - 87.26% 85.33% 14.66% 1854

Multi-Detector - - - 97.12% 84.56% 15.43% 2191

2D [11] 89.49% 85.85% 92.84% 98.09% 6.94% 222

3D [11] 75.90% 85.29% 85.06% 93.12% 19.67% 791

Multi-Detector [11] 83.03% 85.75% 94.76% 92.11% 26.04% 1007

2D Ours 89.66% 85.83% 93.05% 98.07% 5.59% 211

3D Ours 76.31% 85.20% 85.31% 93.63% 18.25% 734

Multi-Detector Ours 84.20% 85.43% 93.53% 93.74% 19.87% 799

4.6 Benchmark Evaluation

Lastly, we evaluated our framework on the KITTI tracking benchmark test split

[36]. �e authors of KITTI did not reveal their ground truth. We submi�ed to the

benchmark our results on test split that were generated by the last model in our ab-

lation study (see the last three columns of Table 3 for the model). �e model used

pure 2D detection results. We then compared our results to the other methods on

the leader board. Without any fine-tuning, our model demonstrated promising results

among the state-of-the-art methods in the benchmark. Table 5 listed our evaluation

results in comparison with other methods on the KITTI tracking benchmark.

5 Conclusion

In this paper, we propose a tracking-by-detection pipeline that uses multiple de-

tectors and multiple sensors. Our pipeline successfully associates the proposals from

different detectors and therea�er offers the tracking task a be�er starting point with

more true positive proposals. To the best of our knowledge, our work is the first one

that a�empts to explore the potentials of a multi-detector se�ing in a tracking-by-

detection system.

In themeantime, we propose a novel cross-modal a�entionmodule. It leverages the

interaction between 3D features and 2D features to help extract 2D features with fewer

distractions. �e a�ended features, consequentially, help the classification module to

suppress the high false positive rate brought by the multi-detector se�ing. With fewer



14 Y.Zhong,et al.

Table 5: KITTI Benchmark Evaluation
Method MOTA↑ MOTP↑ MT↑ ML↓ IDS↓ FRAG↓ FP ↓

SASN-MCF nano [37] 70.86 % 82.65 % 58.00 % 7.85 % 443 975 2344

CIWT [38] 75.39 % 79.25 % 49.85 % 10.31 % 165 660 954

SCEA [39] 75.58 % 79.39 % 53.08 % 11.54 % 104 448 1306

Complexer-YOLO [40] 75.70 % 78.46 % 58.00 % 5.08 % 1186 2092 1631

DSM[26] 76.15% 83.42% 60.00% 8.31% 296 868 578

FAMNet [41] 77.08 % 78.79 % 51.38 % 8.92 % 123 713 760

LP-SSVM [42] 77.63 % 77.80 % 56.31 % 8.46 % 62 539 1239

FANTrack [9] 77.72 % 82.33 % 62.62 % 8.77 % 150 812 1277

aUToTrack[43] 82.25% 80.52% 72.62 % 3.54 % 1025 1402 1040

Ours 79.93 % 84.77 % 66.00 % 10.00 % 278 716 671

distractions, the a�ended features are also more discriminative to be�er serve the data

association module and to boost the performance of the framework.

�e evaluation of our framework on the public benchmark proves the value and

potential of our ideas as presented in the current study. Admi�edly, though, there is

still room for improvement regarding multi-detector se�ings (see Table 4 in the earlier

passage). In future research, we will explore the possibilities of completing the sparse

depth map generated by the LiDAR sensor to make the interaction between 2D and

3D features more natural.
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