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Abstract. Incorporating the depth (D) information for RGB images has
proven the effectiveness and robustness in semantic segmentation. How-
ever, the fusion between them is still a challenge due to their meaning
discrepancy, in which RGB represents the color but D depth information.
In this paper, we propose a co-attention Network (CANet) to capture
the fine-grained interplay between RGB and D features. The key part
in our CANet is co-attention fusion part. It includes three modules. At
first, the position and channel co-attention fusion modules adaptively
fuse color and depth features in spatial and channel dimension. Finally,
a final fusion module integrates the outputs of the two co-attention fu-
sion modules for forming a more representative feature. Our extensive
experiments validate the effectiveness of CANet in fusing RGB and D
features, achieving the state-of-the-art performance on two challenging
RGB-D semantic segmentation datasets, i.e., NYUDv2, SUN-RGBD.

1 Introduction

Semantic segmentation aims to assign each pixel into different categories (e.g.
desk, sofa, wall, floor). It is fundamental in computer vision and benefits a large
number of applications, such as automatic driving, robotic sensing, visual SLAM
and so on. Despite the communitys great achievement in semantic segmentation
[1–8], most of the researches only used the RGB images. The RGB information
provides models with robust color and texture but not geometric information. It
makes hard to discriminate instances and context which shares the similar color
and texture. As shown in Figure 1, pillows on a bed with similar color of the
bed, cushion on a sofa with similar color of the sofa.

*Both Authors contributed equally to this work.
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Fig. 1. Some hard samples of semantic segmentation only by RGB image. Left: pillows
on a bed with similar color of the bed. Right: cushion on a sofa with similar color of
the sofa.

To solve the problems described above, some researches begin to leverage
depth information in assisting semantic segmentation [9–14]. The combination
of RGB and depth images is vital significate in many aspects. On one hand, depth
images provide necessary geometric information and can enrich the representa-
tion of RGB images. On the other hand, depth images are robust to environment
disturbances, such as illumination, fog, etc. However, it is not trivial to fuse the
color and depth images well duo to the data discrepancy between color and
depth information, where depth image embedding geometric information and
color image embedding texture information.

Remarkable efforts have been invested on this task RGB-D semantic segmen-
tation. For example, [9–12] use depth image as an extra channel for the input.
[13, 14] respectively extract features from RGB and depth images and then fuse
them. [15–20] jointly learn the correlation between depth features and color fea-
tures. Albeit efficient for these approaches, that mainly focus on the local feature
fusing and do not take the long-range dependencies into consideration.

Instead of designing heuristic fusion module of local features, we prefer to
design self-supervised fusion module for global information. Based on this idea,
There are two requirements need to consider: the fused features should have
strong representation ability and the fusion method can automatically learn the
long-range dependencies between different modalities. According to the analysis,
we propose a CANet that contains three parts, encoder, co-attention fusion part
and decoder. The encoder has three parallel branches to extract depth, color and
mixture features respectively. This parallel design avoids the influence between
the extracted depth and color feature while brings a CNN learned mixture fea-
ture. The co-attention fusion part, inspired by self-attention [21], is proposed to
sovle the data discrepany problem and effectively fuse RGB and depth features.
The decoder is an up-sampled ResNet that decodes the fused feature for the
final segmentation

The co-attention fusion part consists of three modules, position co-attention
fusion module (PCFM), channel co-attention fusion module (CCFM) and final
fusion module (FFM). PCFM and CCFM are proposed to fuse color and depth
features in spatial and channel dimension. The FFM, is designed to effectively
integrate the PCFM and CCFM and produces the final fused feature. For PCFM
and CCFM, co-attention is first used to model long-range dependendencies be-
tween RGB and depth. Then, the learned long-range dependencies are used to
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tranform the depth information into color feature space. Finally, the transformed
depth feature is added with the orginal color feature. The key idea of co-attention
fusion method can described as using a color feature query and a set of depth
feature key-value pairs to transform the depth feature into color feature space
and then fuse with corresponding local color feature.

The main contributions of our CANet can be summarized as below:

– We propose a novel Co-attention Network (CANet) for RGB-D semantic
segmentation.

– The key part, co-attention fusion part, consisting of PCFM, CCFM and
FFM. PCFM and CCFM are propposed to solve the data discrepany prob-
lem and effectively fusion color and depth features at position and channel
dimensions respectively. FFM is used to integrate PCFM and CCFM.

– We perform extensive experiments on the NYUDv2 [22] and the SUN-RGBD
[23] datasets. CANet significantly improves RGB-D semantic segmentation
results, achieving state-of-the-art on the two popular RGB-D benchmarks.

2 Related works

2.1 Attention Modules

The attention mechanism [24–28] is widely used to model the global dependen-
cies of features. There are many representations for attention mechanism. Among
them, self-attention [29, 30] could capture the long-range dependencies in a se-
quence. The work [21] is the first one that proves simply using self-attention in
machine translation models could achieve state-of-the-art results. Owing to the
modeling capability of long-range dependencies, self-attention module benefits
in many tasks [31–38].

Inspired by the great success in NLP, self-attention module also gets focuses
in computer vision field [39–45]. SENet [40] proposes channel attention modules
that adaptively recalibrate channel-wise feature responses. NLNet [39] proposes
non-local operations for capturing long-range dependencies. GCNet [41] creates a
simplified network of NLNet based on a query-independent formulation. SAGAN
[42] uses position attention modules that models the long-range dependency
in generative adversarial networks for image generation tasks. SCA-CNN [43],
DANet [44] and ABD-Net [45] incorporate spatial and channel-wise attention
on image captioning, sementic segmentation and person re-identification tasks
respoecitvely. Different from previous works, we extend the attention mechanism
to color-depth features fusion. We design two attention based fusion modules for
long-range dependencies between features from different modalities.

We name our attention mechanism as co-attention. The concept of co-attention
is widely used in Visual Question Answer (VQA) task. The work [46] presents a
novel co-attention mechanism to inference for the question and the image conse-
quently. The work [47] develops a co-attention mechanism to jointly learn both
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the image and question attentions. The work [48] proves that co-attention mech-
anism enables dense, bi-directional interactions between image and text modali-
ties. DANs [49] jointly leverages visual and textual attention mechanisms to cre-
ate a fine-grained interplay between vision and language. The above-mentioned
works learn the visual and textual attentions separately. Different from that,
we use co-attention to acquire the global dependencies between color and depth
modalities.

2.2 RGB-D Semantic Segmentation

Different from color image semantic segmentation, RGB-D semantic segmenta-
tion is provided with a piece of additional depth information by depth Image. In
the early stage, works [50, 51, 22] design handcrafted features tailored for RGB
with depth information. Recently, with the benefit of CNN in color image seman-
tic segmentation, deep-learning-based RGB-D semantic segmentation methods
[9–20] have been proposed. Some works [9–12] use depth information as an addi-
tional channel of RGB channels. However, simply using depth image as an extra
channel of RGB image cannot take full advantage of the depth information.

To better exploit the depth context, multimodal feature fusion-based meth-
ods [13–19] are proposed for RGB-D semantic segmentation. FuseNet [13] intro-
duces a fuse layer to fuse depth features into color features maps. RDFNet [15]
uses multi-modal feature fusion blocks and multi-level feature refinement blocks
to capture RGB-D features. LSD-GF [16] introduces a gated fusion layer to ad-
just the contributions of RGB and depth over each pixel. Depth-aware CNN [17]
presents depth-aware convolution and depth-aware pooling to incorporate geom-
etry information into color features. CFN [18] and SCN [19] use the available
depth to split the image into layers with the common visual characteristics.

Nevertheless, the aforementioned existing works mainly focus on local feature
fusion and do not take the long-range dependencies into consideratin. We propose
a new idea, to use an attention mechanism to model the long-range dependencies
between color and depth features. Then, the learned long-range dependencies
are used to transform the depth feature into color feature space. Finally, the
transformed depth feature is added with the original color feature.

3 Co-attention Network

In this section, we first present the overall architecture of CANet (Section 3.1),
including a standard encoder-decoder structure and our proposed co-attention
fusion part. Then we introduce the modules of co-attention fusion part in Section
3.2, 3.3 and 3.4 respectively. At last, we describe our multi-scale loss function in
Section 3.5.

3.1 Network Architecture Overview

Inspired by Unet [53], our CANet adopts an encoder-decoder structure for RGB-
D semantic segmentation. The encoder is used to extract latent features, and
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Fig. 2. Architecture of CANet. CANet mainly consists of three parts: 1) encoder (color
encoder, depth encoder, mixture encoder). This paper adopts ResNet [52] as the back-
bone. 2) decoder, a upsample ResNet with standard residual building block. 3) co-
attention fusion part, consists of PCFM, CCFM and FFM, are used to effectively fuse
color features, depth features and mixture features.

then the decoder decodes them for final segmentation. For this structure, the ro-
bustness and effectiveness of latent features should directly influence the segmen-
tation quality. As such, we proposed a co-attention fusion method to enhance our
latent feature by fusing color and depth features. At first, we elaborately design
the encoder to extract robust features from both color and depth information,
which serves as the input for our co-attention method. Then, these features are
adaptively fused by co-attention in different feature dimension.

As shown in Figure 2, the encoder has three CNN branches. The first two,
namely the RGB and D branch, are used to extract features of the color and
depth image. Another CNN branch combines intermediate features from both
RGB and D branches. For the decoder, it is an up-sampled ResNet with a series
of the standard residual blocks. For fair comparison for other methods [14, 15],
we extract the multiple up-sampled features to generate semantic maps for multi-
scale supervision.

Apart from our multi-branch structure in encoder-decoder, we also propose a
co-attention fusion method to fuse these encoded features. It has three modules,
including position co-attention fusion module (PCFM), channel co-attention fu-
sion module (CCFM) and final fusion module (FFM). The first two use co-
attention to fuse color and depth features in spatial and channel dimension.
And the last one wraps the features with high consistency.

The PCFM captures the spatial dependencies between any two positions
from color and depth feature maps respectively. For the color feature at a cer-
tain position, it is aggregated by depth features at all spatial locations with a
learnable weighted summation. It is similar to CCFM except for fusing features
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(a) Position co-attention fusion module

(b) Channel co-attention fusion module

Fig. 3. The detailed structure of position co-attention fusion module and channel co-
attention fusion module

among channels. Finally, FFM is designed to effectively integrate the outputs of
these two co-attention modules.

3.2 Position Co-attention Fusion Module

Enriching the local features with context by attention has been widely used in
RGB semantic segmentation. However, RGB and Depth features have different
semantic information, meaning, making it hard to adopt a similar strategy for
RGB-D images. Inspired by the independent embed features adopted in NLP
[21], we introduce color, depth and mixture features by three branches. Each
branch represents a unique embed feature. We fuse them step by step for better
feature consistency.

We firstly introduce a position co-attention fusion module to adaptively fuse
depth and color features. By this way, PCFM uses a spatial query of color feature
and a set of spatial key-value pairs of depth feature to transform the global
depth feature into color feature space and then fuse with corresponding local
color feature.

The detail of PCFM is illustrated in Figure 3(a). The input color feature maps
A ∈ R

C×H×W are fed into one convolution layer with batch normalization and
ReLU activation to a feature map C ∈ R

C×H×W . C,H,W are channel, height
and width of features respectively. A similar process is conducted in the input
depth feature map B ∈ R

C×H×W by two times, producing the two new feature
maps D,E ∈ R

C×H×W . Then we flatten the C,D,E feature maps in C × N
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format, where N = H × W . All of C,D,E share the same feature embedding
with the original feature but with different characteristics. As such, we could use
them for forming our position co-attention affinity matrix.

For detail, the position co-attention affinity matrix S ∈ R
N×N between C

and D is calculated by the matrix multiplication and softmax layer:

sji =
exp

(

CT
i ×Dj

)

∑N

j=1 exp
(

CT
i ·Dj

)
, i, j ∈ {1, · · · , N} (1)

Where sji represents the impact of ith position of color feature maps on jth

position of depth feature maps. In other words, sji is the correlation for pixel-
level features at ith and jth positions from different feature maps. Secondly, we
obtain the co-attention feature maps F1 by matrix production between E and
S. The F1 adaptively aggregated depth feature of each position. At last, we
perform the element-wise sum operation between the co-attention feature maps
F1 and original color feature maps A:

F2j = α

N
∑

i=1

(Eisji) +Aj , j ∈ {1, · · · , N} (2)

We are noting that a learnable scale parameter α in this sum operation, dynam-
ically balancing the contribution of these two features.

Equation (2) shows that each position of the fused feature maps F2 is ob-
tained by adding the local color feature with weighted sum of global depth
features in spatial dimension. Hence, the fused feature maps have a global view
of depth feature maps, and it selectively fuses spatial depth contexts according
to the position co-attention affinity matrix.

3.3 Channel Co-attention Fusion Module

Each channel plays different role in RGB recognition tasks, which has been
comprehensively explored in SENet [40]. Inspired by this, we propose a channel
co-attention fusion module to fuse the channel features step by step. In this
module, we adopt a similar method with our PCFM, except we operate and fuse
features in channel dimension.

As illustrated in Figure 3(b), our channel co-attention fusion module is sim-
ilar to our position fusion module in section 3.2. We flatten the input color
and depth feature maps A,B into the new feature maps with C × N , where
N = H ×W . They could be calculated to get the co-attention affinity matrix.

At first, the channel co-attention affinity matrix X ∈ R
C×C between A and

B is calculated by matrix multiplication and softmax layer:

xji =
exp

(

Bi ×AT
j

)

∑N

j=1 exp
(

Bi ·AT
j

)
, i, j ∈ {1, · · · , C} (3)

Where, xji represents the impact of the jth channel of color feature maps on
the ith channel of depth feature maps. In other words, xji is the correlation for
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the channel-level features at ith and jth channels from different feature maps.
Secondly, we obtain the co-attention feature maps F1 by matrix production
between X and B. The F1 brings adaptively aggregated depth feature of each
channel. Finally, we perform an element-wise sum operation between the co-
attention feature maps F1 and original color feature maps A:

F2j = β

N
∑

i=1

(xjiBi) +Aj , j ∈ {1, · · · , C} (4)

Noting that a learnable scale parameter β is added in this sum operation to
modify the contribution of these two features.

Equation (4) indicates that each channel of the fusion feature maps F2 is
obtained by adding the local color feature with weighted sum of global depth
features in channel dimension. Hence, the fused feature maps have a global view
of all the channel feature maps of depth, and it selectively aggregates channel
feature map according to the channel co-attention affinity matrix.

3.4 Final Fusion Module

Fig. 4. Final Fusion Module (FFM)

FFM is used to integrate the output of PCFM, CCFM, and the mixture
branch. The proposed FFM is implemented by four convolution layers followed
by batch normalization and element-wise sum operation. The detailed structure
of the FFM is shown in Figure 4. The features of PCFM and CCFM are first
convolved followed by batch normalization (a conv unit). The output channel of
these convolutions is 2048, expanding the channel dimension of original features.
Then we fuse the expanded attentions features with element-wise addition. After
that, we smooth the added features by an extra conv unit. By addition again
between smoothed and mixture features and then convolution, we obtain the
final features.

3.5 Loss Function

The Figure 2 illustrates our multi-scale loss function. At the training period,
pyramid supervision introduces four intermediate side outputs from the features
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of the four unsampled residual unit except of the final output. The side outputs
have 1/2, 1/4, 1/8, and 1/16 the height and width of the final outputs, respec-
tively. A cross-entropy loss function is used on the four side and final outputs as
follows:

J (F1, . . . F5) =

K
∑

k=1

Jk (Fk) (5)

where
Jk (Fk) =

∑

(h,w)∈Ωk

L (y∗k(h,w), yk(h,w)) (6)

Jk is the objective function for the side output or final output. The Ωk denotes
the set of pixels of side output or final output. The function L is cross entropy
loss function. The whole network is trained by optimizing Equation (5) with
back propagation.

4 Experiments

4.1 Comparison with the State-of-the-art

4.2 Datasets and Metrics

In this section, we evaluate our network through comprehensive experiments.
We use two public datasets:

– NYUDv2 [22]: The NYUDv2 dataset contains 1449 RGB-D images. We fol-
low the 40-class settings [51] and the standard split [22] by involves 795
images for training and 654 images for testing.

– SUN RGB-D [23]: The SUN RGB-D dataset consists of 10335 RGB-D image
pairs with 37 categories. We use the standard training/testing split [23] with
5285 as training and 5050 as testing.

Three common metrics [1] are used for evaluation, including pixel accuracy (Pix-
Acc.), mean accuracy (mAcc.) and mean intersection over union (mIoU).

4.3 Implementation Details

We implement our network using the PyTorch deep learning framework [58]. All
the models are trained with Nvidia Tesla V100 GPU. We use the pre-trained
ResNet-50/ResNet-101 [52] as our three backbone branches in the encoder. Ex-
cept for the backbones, the weights of other layers in our network are initialized
by a normal distribution with zero mean and 0.01 variance, while the biases
are padded with zero. The SGD is used as our optimizer, with momentum 0.9
and weight decay 0.0005. The learning rate is 0.001 (NYUDv2) or 0.0005 (SUN
RGB-D) for the backbone and 0.01 for the other parts at the early stage, and it
decays by a factor of 0.8 in every 100 (NYUDv2) or 20 (SUN RGB-D) epochs.

In the training period, we resize the inputs including RGB images, depth im-
ages and ground truth labels to size 480× 640. We are noting that, the ground
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Table 1. Comparison with state-of-the-arts on the NYUDv2 dataset. Results are re-
ported in terms of percentage (%) of pixel accuracy, mean accuracy, and mean IoU.

Method Backbone PixAcc. mAcc. mIoU

Gupta et al. [51] - 60.3 35.1 28.6
Deng et al. [54] - 63.8 - 31.5

FCN [1] VGG-16 65.4 46.1 34.0
Eigen [55] - 65.6 45.1 34.1

STD2P [56] - 70.1 53.8 40.1
3DGNN [57] ResNet-101 - 55.7 43.1
LSD-GF [16] VGG-16 71.9 60.7 45.9

CFN [18] ResNet-152 - - 47.7
D-CNN [17] ResNet-152 - 61.1 48.4

SCN [19] ResNet-152 - - 49.6
RDFNet [15] ResNet-152 76.0 62.8 50.1

CANet ResNet-50 75.7 62.6 49.6
CANet ResNet-101 76.6 63.8 51.2

truth labels are further resized into four down-sampled maps from 240× 320 to
30 × 40 for pyramid supervision of the side output. For fair comparison with
other methods, we adopt the multi-scale and crop as our data augmentation
strategy. Each image is also processed with random hue, brightness, and satura-
tion adjustment. The mean and standard deviation of RGB and Depth images
are calculated to normalize our input data.

Table 2. Comparison with state-of-the-arts on the NYUDv2 dataset. Results are re-
ported in terms of percentage (%) IoU. The best performance for per class is marked
in bold.
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As shown in Tables 1, 2 and 3, we compare CANet with other state-of-the-art
methods on the two RGB-D datasets. The performance is reported with different
backbones ResNet-50 and ResNet-101.

NYUDv2 dataset. We evaluate the three aforementioned metrics on our
network for 40 classes on the NYUDv2 dataset. As illustrated in Table 1, we
achieve the new state-of-the-art results on all three metrics. We owe the better
performance to the RGB-D co-attention fusion module. The two fusion modules
could effectively fuse the two modality features by capturing the long-range
dependencies between RGB and D information. On the most important metric
mean IoU, we achieve 51.2% with a slightly 2.2% improvement over the recent
state-of-the-art method RDFNet [15].

On the NYUDv2 dataset, the distribution of semantic labels is long tail,
with the number of some labels are very few. To evaluate the performance of our
model on the imbalanced distributed dataset, we also show the category-wise
results on each category, as in table 2. Our method performs better than other
methods over 18 classes (40 classes in total), especially in some hard categories
(e.g., shelves, box, ot. furn.), which demonstrate the robustness of our method
among different categories with imbalanced training data.

Table 3. Comparison with state-of-the-arts on the SUN RGB-D dataset. Results are
reported in terms of percentage (%) of pixel accuracy, mean accuracy, and mean IoU

Method Backbone PixAcc. mAcc. mIoU

FCN [1] VGG-16 - - 35.1
FuseNet [13] VGG-16 76.3 48.3 37.3

Jiang et al.[59] - 76.6 50.6 39.3
D-CNN [17] ResNet-152 - 53.5 42.0
3DGNN [57] ResNet-101 - 57.0 45.9
LSD-GF [16] VGG-16 - 58.0 -
RDFNet [15] ResNet-152 81.5 60.1 47.7

CFN [18] ResNet-152 - - 48.1

CANet ResNet-50 81.6 59.0 48.1
CANet ResNet-101 82.5 60.5 49.3

SUN RGB-D dataset. Following the same test pattern on the NYUDv2
dataset. We also compare our method with state-of-the-art methods on the large-
scale SUN RGB-D dataset. The test results are shown in Table 3. Our methods
outperform existing RGB-D semantic segmentation methods and is the state-
of-the-art with all three evaluation metrics. The comparison on this large-scale
dataset again validates the effectiveness of our proposed method.

4.4 Ablation Study

To verify the performances of co-attention fusion modules, we conduct an abla-
tion study on the NYUDv2 dataset. Each experiment is ablated with the same
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Table 4. Ablation study of CANet on the NYUDv2 dataset. Results are reported in
terms of percentage (%) of pixel accuracy, mean accuracy, and mean IoU.

Method Backbone PixAcc. mAcc. mIoU

Basel. ResNet-50 74.1 60.1 46.6
Basel. + PCFM ResNet-50 75.4 61.6 48.9
Basel. + CCFM ResNet-50 74.9 62.0 48.4

CANet ResNet-50 75.7 62.6 49.6

Basel. ResNet-101 75.2 62.2 48.5
Basel. + PCFM ResNet-101 76.0 62.9 49.6
Basel. + CCFM ResNet-101 75.5 63.0 50.2

CANet ResNet-101 76.6 63.8 51.2

hypermeter setting at both training and testing period. For fair comparison, we
regard the simple element-wise sum fusion as our baseline. The performance of
each component is shown in Table 4. When using ResNet-50 as the backbone,
the PCFM achieves 48.9 in mIoU with 5.0% improvement over the baseline
method, and the CCFM improves 3.9% over the baseline method. When inte-
grating the two modules, we gain further improvements 6.4% over the baseline,
which demonstrating their complementary power over utilizing either alone. Fur-
thermore, the usage of a deeper backbone network (ResNet-101) can still bring
large improvements, which demonstrates our proposed modules are not limited
to stronger backbones.

4.5 Visualizations

Semantic Segmentation Qualitative Visual Results: Figure 5 is the vi-
sualization for our sampled examples in RGB-D indoor semantic segmentation
with Baseline, Baseline + PCFM, Baseline + CCFM, and Baseline + PCFM +
CCFM (CANet) on the NYUDv2 dataset, which involves cluttered objects from
various indoor scenes. Compared to Baseline we can see that both the PCFM
and CCFM promotes the semantic segmentation results on details and misclas-
sification problems. Moreover, the integration of PCFM and CCFM gets better
segmentation results than the use of PCFM or CCFM individually.

Co-attention Affinity Matrix Visualization: The position co-attention
affinity matrix has the shape of HW ×HW . For each point in the color features,
a sub-co-attention affinity matrix (1 × HW ) is used to multiply with depth
features maps. The aggregated depth feature then is added to the color feature
of that point. In Figure 6, we choose two points (p1, p2) and visualize their sub-
co-attention matrices. We could clearly see that sub-co-attention affinity matrix
puts more attention on the areas with the same labels even when some of them
are far away from that point. For example, in the first row, the co-attention
affinity matrix of p1 focuses on most regions which is labeled as window, and p2
focuses the attention on the regions labeled as table. The visualization results
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(a) RGB (b) Depth (c) Basel. (d) PCFM (e) CCFM (f) CANet (g) GT

Fig. 5. Semantic Segmentation Qualitative Visual Results on the NYUDv2 dataset.
(a), (b) and (g) are the input color images, depth images and ground truth labels,
respectively. (c) are the results of Baseline. (d) are the result of Baseline + PCFM. (e)
are the results of Baseline + CCFM. (f) are the results of proposed CANet.

show the co-attention affinity matrix could capture long-range depth features
with the same semantic label.

The channel co-attention affinity matrix is with the shape of C ×C. For the
feature map of each channel, a sub-co-attention affinity matrix (1×C) is a weight
matrix of depth feature maps and is used to aggregate the depth features. The
aggregated depth feature is added to the color feature of that channel. In Figure
7, we randomly select two channels (c1, c2) and visualize their aggregated depth
feature maps. As Figure 7 shown, the attention of the fused channel features
focuses more on areas with the same label. For example, in the first row, the
attention of c1 are focused on the regions of wall, and c2 focus attentions on
bed areas. The visualization results demonstrate that the channel co-attention
affinity matrix could capture the class-aware long-range cross channel depth
features.

5 Conclusion

In this paper, we propose a novel CANet method that learns more represen-
tative, robust and discriminative feature embeddings for RGB-D semantic seg-
mentation. In CANet, co-attention is used to adaptively aggregate depth fea-
tures with color features. Specifically, we introduce position co-attention fusion
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(a) (b) (c) (d)

Fig. 6. Visualization of position co-attention affinity matrix. (a) Original image; (b)
Sub affinity matrix of p1; (c) Sub affinity matrix of p2; (d) Color bar.

(a) (b) (c) (d)

Fig. 7. Visualization of channel co-attention affinity matrix. (a) Original images; (b)
Fused feature map of c1; (c) Fused feature map of c2; (d) Color bar.

module (PCFM) and channel co-attention fusion module (CCFM) to capture
inter-modality long-range dependencies in spatial and channel dimensions re-
spectively. Meantime, we design a final fusion module (FFM) to effectively in-
tegrate of position co-attention fusion module and channel co-attention fusion
module. The ablation study and visualization results illustrate the importance
of each component. The experiments on the NYUDv2 and the SUN RGB-D
datasets demonstrate that the proposed CANet outperforms existing RGB-D
semantic segmentation methods. The interdependency between different modal-
ity feature will be further explored in the future.
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