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Abstract. Deep embedding learning is expected to learn a metric space in which

features have smaller maximal intra-class distance than minimal inter-class dis-

tance. In recent years, one research focus is to solve the open-set problem by

discriminative deep embedding learning in the field of face recognition (FR) and

person re-identification (re-ID). Apart from open-set problem, we find that im-

balanced training data is another main factor causing the performance degrada-

tion of FR and re-ID, and data imbalance widely exists in the real applications.

However, very little research explores why and how data imbalance influences

the performance of FR and re-ID with softmax or its variants. In this work, we

deeply investigate data imbalance in the perspective of neural network optimisa-

tion and feature distribution about softmax. We find one main reason of perfor-

mance degradation caused by data imbalance is that the weights (from the penul-

timate fully-connected layer) are far from their class centers in feature space.

Based on this investigation, we propose a unified framework, Imbalance-Robust

Softmax (IR-Softmax), which can simultaneously solve the open-set problem and

reduce the influence of data imbalance. IR-Softmax can generalise to any softmax

and its variants (which are discriminative for open-set problem) by directly setting

the weights as their class centers, naturally solving the data imbalance problem.

In this work, we explicitly re-formulate two discriminative softmax (A-Softmax

and AM-Softmax) under the framework of IR-Softmax. We conduct extensive ex-

periments on FR databases (LFW, MegaFace) and re-ID database (Market-1501,

Duke), and IR-Softmax outperforms many state-of-the-art methods.

1 Introduction

Recently, convolutional neural networks (CNNs) have significantly boosted the state-

of-the-art performance in many computer vision tasks especially in image classification

[1,2,3,4,5,6]. Not surprisingly, CNNs have achieved great success in the field of biomet-

rics, in particular, face recognition (FR) [7,8,9,10] and person re-identification (re-ID)

[11,12,13]. This success is derived from the fact that CNNs are able to encode images

into rich, semantic and discriminative representations (features) which can be used to

effectively measure the similarity between two identity-related images. These two tasks

∗indicates equal contribution.
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(FR and re-ID) differ from general image classification in terms of two challenges:

open-set setting and data imbalance in the training set.

Open-set setting is much more widely applied than close-set for FR and re-ID. For

open-set setting, the identities of test set are disjoint with those of training set. In the real

world, FR and re-ID system train the CNN (feature extractor) using images collected

from one specific group of people, e.g. celebrities from IMDb in CASIA WebFace

[14] database. During test stage, however, the FR and re-ID systems work in places,

such as one police station, where the gallery (blacklist) and the probe (people appear

in this police station) are mostly likely disjoint with training set (e.g. those celebrities).

In contrast, classical image classification (e.g. ImageNet Challenge) uses the close-set

setting where training and test sets share the same classes. Traditionally, both open-

set and close-set problems adopt the softmax function because of its simplicity and

probabilistic interpretation. Together with the cross-entropy loss, they form arguably

one of the most commonly-used components in CNN architectures.

Under open-set setting, however, softmax suffers from one drawback: deep learning

with softmax loss only learns separable features that are not discriminative enough for

‘unseen’ classes in testing. It results from the fact that softmax loss does not explicitly

optimise the intra- and inter-class distances. To address this, some methods combine

the softmax loss with metric learning [9,15,10] to enhance the discrimination power

of features. Metric learning based methods commonly suffer from the way of building

mini-batches by sampling. Other methods try to add new constraints (e.g. center loss

[16], large-margin term [17,18], L2 normalization [19,20]) that make features more

compact and thus more discriminative.

Data imbalance is another challenge for FR and re-ID. Unlike those popular datasets

MNIST [21], CIFAR-10 [22] and ImageNet [23], FR and re-ID datasets are commonly

highly imbalanced. As shown in Fig.1, only a limited number of identities appear fre-

quently (more than hundreds), while most of the others appear relatively rarely (fewer

than ten times) in the popular face database CASIA-Webface [14] and re-ID database

Market-1501 [24]. Surprisingly, very little research explores the problem of data im-

balance in FR and re-ID. In this paper, we show that deep embedding learning with

the most widely used softmax (and its variants such as A-Softmax [18]) encounters

difficulty in the presence of imbalanced training data even using either metric learn-

ing or other regularizations. Although some softmax variants such as A-Softmax [18]

can solve the open-set problem by learning compact features, they do not perform well

when the training data is imbalanced. To our knowledge, the only work exploring the

data imbalance problem for FR is the range loss [25]. However, range loss does not

deeply investigate the reason why this imbalance impacts the deep embedding learning.

In this work, we aim to learn deep embeddings which can achieve two targets: 1)

being discriminative for open-set and 2) being robust to data imbalance. As existing

works [16,17,18,19,20], target 1) can be achieved by learning compact features (i.e. re-

duce intra-class variance). To achieve target 2), we have to first investigate why data im-

balance influences the performance of softmax-based deep classification. In this work,

we explore the reason. During the back-propagation training with imbalanced data,

two strengths, which determine the update of the weights (usually the penultimate fully-

connected layer), are imbalanced (see Eq. 2): the one keeping the weights at their class
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centers is much smaller than that pushing them away. This imbalance causes the weight

of the class with minor samples being far away from its class center, leading to degraded

classification performance. Based on this analysis, target 2) can be achieved by making

the weight from the class with minor samples close to its class center.

To simultaneously achieve targets 1) and 2) , we propose a uniformed framework,

Imbalance-Robust Softmax (IR-Softmax). First, IR-Softmax solves the open-set prob-

lem by being compatible with the softmax variants ( e.g. A-Softmax [18], AM-Softmax

[26] which can learn discriminative embeddings. Second, motivated by the aforemen-

tioned analysis on data imbalance, IR-Softmax alleviates the influence of data imbal-

ance by setting the weights as their class centers in the feature space instead of updating

with back-propagation. In this way, IR-Softmax effectively avoids the shift between the

weights and their centers, which is the main reason of performance degradation caused

by data imbalance detailed in Section 3.1.

Our contributions can be summarised as:

1. We deeply investigate the reason why data imbalance degrades the performance

of softmax-based classifications in the perspective of neural network optimisation (Sec-

tion 3.1) and feature distribution (Section 3.2).

2. IR-Softmax can learn embeddings which are discriminative under open-set pro-

tocol. In particular, IR-Softmax is a unified framework, e.g. it can generalise to softmax

and its variants (e.g. A-Softmax [18], AM-Softmax [26]) to achieve discriminative fea-

ture learning. More importantly, IR-Softmax can effectively reduce the influence of data

imbalance by bridging the gap between weights (the penultimate fully-connected layer)

and their class centers in feature space.

3. Our extensive experiments demonstrate the effectiveness and generalisation of

the proposed IR-Softmax, and we achieve state-of-the-art performance on challenging

FR (LFW [27], MegaFace [28]) and re-ID (Market-1501 [24], DUKE-MTMC [29])

benchmarks. The code will be made publicly available.
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Fig. 1. Long-tailed distribution on WebFace-CASIA [14] and Market-1501 [24] database. The

number of images per person drops drastically, and only a few identities have a large number of

images.
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(a) Softmax, bal. (b) Softmax, imbal. (c) A-Softmax, imbal. (d) IR-Softmax, im-

bal.

Fig. 2. The distribution of deeply learned features. ‘bal.’ (balanced) setting contains 10 classes,

which all has 6,000 images from MNIST [21]. In contrast, ‘imbal.’ (imbalanced) setting contains

6000 images for all classes but class ‘3’ with 300 images. A-Softmax in (c) refers to [18]. The

label of each class is plotted on its center. In addition, we also plot the weights (from the fully-

connected penultimate layer) to each class with an arrow in (b)-(d). Note that our fully-connected

layer consists of only 2 neurons to facilitate visualisation.

2 Related Work

In this section, we briefly review the methods of discriminative feature learning in the

field of face recognition (FR) and person re-identification (re-ID). Recently, two pop-

ular ways of deep embedding learning are: (1) metric learning and (2) discriminative

softmax (softmax’s variants which are more discriminative for open-set problem). Apart

from these two strategies, we discuss the training data imbalanced problem in the field

of FR and re-ID.

Metric Learning Metric learning is widely used for FR and re-ID. In practice, to

learn more discriminative features, many works combine softmax loss and deep metric

learning loss (contrastive [9,30] loss or triplet loss [10]). Unlike softmax, contrastive

and triplet losses accept image pairs or triplets (3 or a multiple of 3) as input respec-

tively. For contrastive loss, if the input pair belongs to the same class, their features

are required to be as similar as possible. Otherwise, the contrastive loss would require

their distance larger than a particular margin. Similar to contrastive loss, the triplet loss

[10] encourages a similar distance constraint. Specifically, the triplet loss minimises the

distance between an anchor sample and a positive sample (of the same identity) and

maximises the distance between the anchor sample and a negative sample (of different

identity). Clearly, the contrastive and triplet losses can encourage intra-class compact-

ness and inter-class separability, making the learned feature more discriminative. How-

ever, both contrastive and triplet losses require a carefully-designed pair/triplet selection

procedure. For example, using contrastive loss, it is hard to build training pairs from a

mini-batch, especially for the training set with many classes. Normally the mini-batch

size is not more than 256, while the number of categories is far more than 256 in the

application of FR and re-ID. Clearly the online selection only produces a few positive

pairs and much more negative ones.

Discriminative Softmax Apart from metric learning, some softmax variants are pro-

posed, aiming to learn more discriminative features to solve the open-set problem. Wen
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et al.[16] add a new supervision signal, called center loss, to softmax loss for face

recognition. Specifically, the center loss simultaneously learns a feature center for each

identity and penalises the distances between the deep features of examples and their

corresponding feature centers. With the joint supervision of softmax loss and center

loss, this method can easily obtain inter-class dispersion and intra-class compactness.

Large-Margin Softmax loss [17] proposes a new perspective to softmax and optimises

the angles between weights and features. However, the magnitude of weights are also

considered, and thus it is also sensitive to data imbalance just the same as softmax.

By contrast, A-Softmax loss [18] controls the magnitude of weights (i.e. ‖w‖2 = 1)

and thus make the weights optimised in an angular space. Although A-Softmax is the-

oretically suitable for deep embedding learning, it actually does not work well in the

setting of data imbalance detailed in Section 3. [31,26,32] relax the margin with more

efficient and effective ways. Some works [19,20,32] try to optimise the features on a

hyper-sphere to make features more discriminative.

Training Data Imbalance The aforementioned methods ignore the problem of train-

ing data imbalance which widely exist in FR and re-ID. In [33], researchers investigate

many factors that influence the performance of fine-tuning for object detection with

long-tailed distributions of samples. Their analysis and empirical results indicate that

classes with more samples will achieve greater impact on the feature learning, and it is

better to make the sample number more uniform across classes. In the field of FR and

re-ID, unfortunately, the data imbalance problem is much worse than object detection

[33]. Specifically, few identities have more than 1000 images and many identities have

fewer than 10 images. Commonly a large-scale face dataset has more than 10,000 iden-

tities [14]. However, we still cannot simply discard these identities that only have few

images. For face recognition, identities with few images cannot provide enough intra-

class information for the model, but provide inter-class information which is more use-

ful to open-set protocol. Many methods [25,34,35,36,37] have been proposed to solve

the data imbalance in face recognition. However,these works do not deeply investigate

the reason why the imbalance impacts softmax based deep embedding learning.

3 Methodology

In this section, we first provide insights into the influence of data imbalance on CNN

performance by training a LeNet [21] on an imbalanced MNIST. Based on the con-

clusion drawn from the experiments, we propose a new loss function, Imbalance Ro-

bust Softmax (IR-Softmax), to reduce the influence of data imbalance while perform

discriminative feature learning. Last, we discuss the relations between the proposed

method and metric learning.

3.1 Motivation

Softmax regression (or multinomial logistic regression) is a generalisation of logistic re-

gression to multi-class problem, therefore, softmax can handle yi ∈ {1, . . . ,K} (where

K is the number of classes). Given a training set {(xi, yi), . . . , (xn, yn)}, we learn an
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embedding/projection f(x), with which the softmax can be written as

J = −
1

n

[
n∑

i=1

log
exp (fyi

(xi))
∑K

j=1 exp(fj(xi))

]

(1)

where fj denotes the j-th dimension of the learned function f(x), and n is the number

of training samples. In CNNs, f is usually the output of a fully connected layer W =
[w1, ...,wk] , so fj = w

T
j xi + bj and fyi

= w
T
yi
xi + byi

.

To analyse the influence of data imbalance, we come to the neural network optimi-

sation process (we omit the bias term for simplicity):

∇wk
J = −

1

n

n∑

i=1

xi (1{yi = k} − P (k|xi))

=
1

n
(

n∑

i=1

xi(P (k|xi)− 1)1{yi = k}

︸ ︷︷ ︸

term 1

+
n∑

i=1

xiP (k|xi)1{yi 6= k}

︸ ︷︷ ︸

term 2

)
(2)

where P (k|xi) = exp (fk(xi))∑
K
j=1

exp(fj(xi))
, and 1{·} is the indicator function: 1{true} = 1,

and 1{false} = 0. It can be observed that the gradient of the parameter ∇wk
J contains

two terms: term 1 (which is activated if yi = k) and term 2 ( if yi 6= k). Thus the update

of parameter wk during optimisation depends on the samples not only from the k-th

class but also from the other classes. Term 1 is actually the weighted center of the

observed class; Term 2 can be viewed as the weighted centers of all the other classes

if n is big enough. The update of wk is determined by the balance of two strengths:

one leads wk to the center of class k (term 1), one ‘pushes’ wk away from class k

(weighted center of all the other classes). If the training data is imbalanced, the update

of wk corresponding to class k, which has much fewer samples than other classes, is

fully dominated by term 2, making wk being far away from center of class k.

To further analyse the influence of data imbalance on optimisation, we take one

binary classification with softmax for example. As shown in Fig.3(a) and (b), there are

both five samples for class 1 (blue points) and class 2 (red points) for balance setting;

and nine samples for class 1 and one sample for class 2 for imbalance setting. Clearly,

both w1 and w2 are influenced by all the samples from class 1 and 2. In imbalance

setting (Fig.3(b)), w2 is determined by term 1 (1 sample from class 2) and term 2 (9

samples of class 1), where term 1 and 2 are detailed in Eq. (2). Clearly, the update of

w2 is dominated by term 2, which pushes w2 far away from the center of class 2.

To explicitly show the influence of data imbalance on classification performance,

we conduct a toy experiment on MNIST [21]. From Fig.2(b) and 2(c), not surprisingly,

the data imbalance degrades the performance of the models trained with softmax and A-

Softmax [18]. We can find the main issue caused by data imbalance: centers of relevant

feature distributions being away from their weights (from penultimate fully-connected

layer). For example, in Fig. 2(b), the feature center of class ‘3’ (minor training data)

and centers of ‘5’ and ‘7’ (the neighbours of ‘3’) are all distant from their weights.

Thus these biases (feature centers being far from its weights) caused by data imbalance
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Fig. 3. One example of binary classification with softmax. (a) balance setting with five samples

of class 1 (blue spots) and five samples of class 2 (red spots). (b) imbalance setting with nine

samples of class 1 and one sample of class 2. Black and green lines indicate term 1 and term 2 in

Eq. (2), influencing the update of w1 and w2 respectively.

will induce classification error for the corresponding categories. Though A-Softmax

can learn discriminative features, it suffers from the same aforementioned bias problem

as shown in Fig. 2(c). This observation provides the cue to solve the data imbalance

problem and inspires our solution (Fig. 2(d)) detailed in Section 3.2.

3.2 Imbalance Robust Softmax (IR-Softmax)

In this work, we aim to learn features which can (i) improve the discriminative power of

features in open-set protocol, and (ii) alleviate data imbalance problem. For (i), the de-

sired open-set criterion is that the maximal intra-class distance is smaller than the min-

imal inter-class distance. However, softmax only maximises the the distance between

weights rather then inter-class distance (Fig .4(a)). Derived from softmax, A-Softmax

[18], however, only focuses on minimising intra-class distance, leading to compact fea-

tures as shown in Fig. 4(b). For (ii), data imbalance can degrade the performance of deep

CNNs. As analysed in Section 3.1, in particular Eq. (2), the data imbalance can cause

imbalanced gradient updates during optimisation: the strength of making the weights

close to feature center (term 1 in Eq. (2)) is much smaller than the strength of pushing

away (term 2). This strength imbalance causes the weights being far away from their

feature centers as shown in Fig. 4(b) , 2(b) and 2(c).

Based on the above analysis, to simultaneously solve the open-set and data im-

balance problems, two criteria corresponding these two problems are: 1) minimising

the intra-class distance by making the feature distribution with the same label more

compact; 2) maximising the low bound of inter-class distance by making the center

of features of each class being close enough (ideally equal) to its weights (usually the

penultimate fully-connect layer). Criterion 1) can be achieved by learning compact fea-

tures e.g. A-Softmax [18] and AM-Softmax [26]. To our knowledge, we are the first

to investigate Criterion 2). To simultaneously achieve these two targets, we propose a
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(a) Softmax, balanced (b) A-Softmax, imbalanced (c) IR-Softmax, imbalanced

Fig. 4. Feature distributions in angular space: (a) separable features under balanced data, feature

center being close to its weight (the black arrow); (b) compact features under imbalanced data,

and the feature center being far from its weight; (c) compact features under imbalanced data, the

feature center being close to its weight.

novel framework, IR-Softmax∗, which can achieve Criterion 1) by incorporating itself

into discriminative softmaxs e.g. A-Softmax [18] and AM-Softmax [26].

Now we detail the way of meeting Criterion 2). As the analysis in Section 3.1, we

can find that the imbalanced data causes the weights (from penultimate fully-connected

layer) being away from their class centers after training as shown in Fig. 2(b), leading to

degraded classification performance. Based on Criterion 2), the key idea of IR-Softmax

is setting the weights as their corresponding class centers in the feature space, naturally

avoiding the shift between the weights and their centers.

IR-Softmax is a unified framework which can be incorporated into softmax and its

variants, leading to different forms of IR-Softmax. For classical softmax in Eq. (1),

fj = w
T
j xi + bj is fed into softmax. In our IR-Softmax framework, f

′

j = (c
′

j)
T
xi + bj

replaces fj , where c
′

j , the center of features from class j, is defined as:

c
′
j =

1
∑n

i 1{yi = j}

n∑

i

1{yi = j}xi

‖xi‖2
(3)

Most importantly, in this work, we formulate two discriminative IR-Softmaxs de-

rived from A-Softmax and AM-Softmax, respectively. To formulate A-Softmax and

AM-Softmax which both normalise the weight wj (||wj ||2 = 1), Eq. (1) can be modi-

fied as:

J = −

[
m∑

i=1

log
exp(‖xi‖ψ(θyi

))

exp(‖xi‖ψ(θyi
)) +

∑K

j 6=yi
exp(‖xi‖ cos(θj))

]

(4)

From fj = w
T
j xi+bj (classical softmax) and f

′

j = (c
′

j)
T
xi+bj (IR-Softmax version),

we use c
′

j to replace wj . Similarly, we use c
T
j xi (cj =

c
′

j

‖c′

j
‖2

) to replace ‖xi‖ cos(θj)

∗code is available in https://github.com/allenhaozhu/IR-Softmax
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for both A-Softmax and AM-Softmax. Thus, our IR-Softmax version of Eq. (4) is:

J = −

[
m∑

i=1

log
exp(‖xi‖ψ(θyi

))

exp(‖xi‖ψ(θyi
)) +

∑K

j 6=yi
exp(cTj xi)

]

(5)

For A-Softmax,

ψ(θyi
) = ((−1)k cos(mθyi

)− 2k), θyi
∈ [

kπ

m
,
(k + 1)π

m
] (6)

where k ∈ [0,m− 1] and m ≥ 1 is an integer that controls the size of angular margin.

For original A-Softmax, θyi
(0 ≤ θi ≤ π) is the angle between wi and xi. Note that,

in our IR-Softmax, θyi
is the angle between the cyi

and xi, where cyi
is the center of

class i. For AM-Softmax,

ψ(θyi
) = cos(θyi

+ α) (7)

ψ(θyi
) = cos(m1θyi

−m2)−m3 (8)

where θyi
(0 ≤ θyi

≤ π) of the original AM-Softmax is the angle between wi and xi.

Note that θyi
of IR-Softmax is the angle between the cyi

and xi.

Now we can summarise the difference between IR-Softmax and softmax (and its

variants). First, the weight wi of softmax is updated via back-propagation, however, ci
of IR-Softmax can be computed directly from Eq. (3). Second, the update of wi depends

on samples of class i and samples from other classes as shown in Eq. (2). In contrast,

the update of ci of IR-Softmax only depends on the samples from class i, effectively

avoiding the influence of data imbalance.

In practice, it is impossible to use all samples to calculate the centers as shown in

Eq.(3). We have tried three different updating strategies for feature centres. i.replacing

the weight with an instance feature (which makes the proposed method like docFace [34]).

ii.memory bank: estimate the centre with last few (in a fixed window) samples in the

same class (without BP). iii.a loss function to estimate centres on the unit sphere for

different classes. The disadvantage of the first solution is that an additional softmax is

necessary in case the convergence is slightly slow and unstable. The second solution re-

lieves the unstable issue but no improvement in performance. The third method is equal

to adding a new term ‖ci−
xi

‖xi‖2

‖22, s.t.‖ci‖ = 1 to Eq.4 and use the corresponding BP

process to update feature centres (weights in Eq.5) rather than Eq.4. After that ℓ2 nor-

malization is used on feature centres to make sure new ci on the unit sphere. We select

the third one in our experiments because it works better than other two approaches.

3.3 Relation to Metric Learning

N-pairs loss [38] enforces softmax cross-entropy loss among the pairwise similarity in

the mini-batch.

E =
−1

|P |

∑

(i,j)∈P

log
exp(Si,j)

exp(Si,j) +
∑

k:yk 6=yj
exp(Si,k)

(9)
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where Si,j = f(xi,Θ)T f(xj ,Θ) represents the inner product between two embed-

dings. and |P | indicates the number of positive pairs (i,j). Comparing Eq. (4) and

(9), we can see our method can be viewed as a special form of N-pair loss. However,

there are two main differences: (1) Unlike softmax embedded in N-pairs, we employ

A-Softmax [18] and AM-Softmax [26] to improve the discriminability of features. (2)

The size of mini-batch (where N-pair works) limits the number of negative samples. In

practice, it is usually difficult to make mini-batch more than 256 due to the memory

limitation of GPU. In contrast, our method alleviates the problem by caching historical

features. The positive and negative samples are equal to the number of categories.

4 Experiments

In this section, we first describe the experimental settings. We then evaluate our method

on two different tasks, face recognition (FR) and person re-identification (re-ID), against

four different benchmarks. For FR, we use CASIA-WebFace [14] as training set and

evaluate our method on LFW [27] and MegaFace [28]. For re-ID, we evaluate on the

Market-1501 [24] and Duke [29] datasets.

4.1 Face Verification

All the faces and their landmarks are detected by MTCNN [39]. We use the detected 5

landmarks (two eyes, nose and two mouth corners) to perform similarity transformation.

When the detection fails, we simply discard the image if it is in the training set, but use

the provided landmarks if in the test set.

We use the publicly available training dataset CASIA-WebFace [14] (excluding the

images of 59 identities appearing in testing sets [26]) to train our CNN models. CASIA-

WebFace has 494,414 face images belonging to 10,575 (in fact, 10,516 after removing)

different individuals. As shown in Fig. 1, CASIA-WebFace is an imbalance dataset.

Some identities have very few images (e.g, only one image), while some have more than

300 images. These face images are horizontally flipped for data augmentation in the

training process. Note that the number of samples in training set (0.49M) is relatively

small compared to other private datasets used in DeepFace [2] (4M), VGGFace [40]

(2M) and FaceNet [10] (200M). In the testing process, we extract the deep features

from the output of the FC1 layer and do not employ any pre-processing (such as PCA

and flipped features). The cosine distance between two features is applied. A nearest

neighbor classifier and thresholding are used for face identification and verification,

respectively.

To make fair comparison, we use two widely used CNN architectures for face recog-

nition: 9-layer Light CNN [41] and 20-layer ResNet-20 [18]. Note that the faces are

cropped to two different sizes (128x128 and 112x96) to fit the setting in [41] and [18]

respectively. In the training process, our IR-Softmax is appended after the feature layer,

i.e. the second last inner-product layer. The networks are trained in an end-to-end way.

For simplicity, we denote IR-Softmax (A) as our IR-Softmax instance derived from

A-Softmax, and IR-Softmax (AM) from AM-Softmax in the whole experiment section.
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LFW The LFW dataset [27] contains 13,233 images from 5,749 identities, with large

variations in pose, expression and illumination. All the images are collected from the

internet. We evaluate our methods on two protocols: (1) official protocol [27] and (2)

BLUFR protocol [42]. For (1), LFW is divided into 10 predefined splits for cross vali-

dation. We follow the standard ‘Unrestricted, Labeled Outside Data’ protocol. Because

the performance of face recognition is almost saturated on this protocol, researchers

propose a more challenging BLUFR protocol [42]. For (2), BLUFR utilises all 13,233

images to evaluate the performance in the open-set setting. The Verification Rate (VR)

at False Accepted Rate (FAR) 0.1% (VR@FAR=0.1%) and Detection and Identification

rate (DIR) at FAR 1% (DIR@FAR=1%) are reported under BLUFR. It is noteworthy

that not only three identities exist in both CASIA-Webface [14,26] and LFW [27]. We

removed them according to [26] during training to build a complete open-set validation.

LFW Official Protocol, Light CNN As shown in Table 2, the performance is evaluated

by six methods. The proposed IR-Softmax(A) and IR-Softmax(AM) greatly outperform

their original versions (A-Softmax and AM-Softmax). Compared with the baseline (i.e.

Softmax), IR-Softmax (A) improves the verification accuracy from 97.15% to 98.38%,

and IR-Softmax (AM) from 97.15% to 98.63%.

LFW Official Protocol, ResNet-20 The evaluation results of ResNet-20 are listed in Ta-

ble 1. Other state-of-the-art results of A-Softmax and AM-Softmax using ResNet-20 are

also presented for comparison. Compared with the baseline (i.e. Softmax), IR-Softmax

(A) loss improves the verification accuracy from 97.08% to 99.23% on LFW. From the

results, we can see that the proposed methods IR-Softmax(A) and IR-Softmax(AM) can

outperform the corresponding original versions.

BLUFR, Light CNN From Table 2, we can observe that the proposed method signif-

icantly outperforms the other methods [17,18]. Specifically, IR-Softmax(A) beats the

softmax baseline (which we finetune our model from), and improves the VR@FAR=0.1%

from 83.32% to 94.61%, while DIR@FAR=1% from 60.64% to 75.12%. Both versions

of IR-Softmax are able to outperform their counterparts. It means that the proposed

method can significantly enhance the discriminability of deeply learned features in the

open-set protocol, demonstrating the effectiveness of the proposed method.

BLUFR, ResNet-20 Since ResNet-20 models [18,19] are also widely used for face

recognition, we make comparisons based on ResNet-20 in Table 1. IR-Softmax with

ResNet-20 keeps the similar superiority compared with other models in the BLUFR

protocol of LFW. Note that our approach is better than range loss, which is proposed to

solve the problem of data imbalance in face recognition. Though range loss uses a larger

training set (MS-celeb [43]) and a deeper network (ResNet-50), our method still out-

performs it with VR@FAR=0.1% from 93.72% to 97.08% (IR-Softmax(A)) or 98.09%

(IR-Softmax(AM)) while DIR@FAR=1% from 71.11% to 81.52% (IR-Softmax(A)) or

85.00% (IR-Softmax(AM)).

MegaFace One of the most challenging datasets for face recognition is MegaFace [28].

The MegaFace dataset contains a gallery set and a probe set. The gallery set contains
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Table 1. Performance on ResNet with various loss functions. CenterLoss, NormFace model and

sphereface model are provided by authors. NormFace and CenterLoss use ResNet-28 like [16],

another two methods use ResNet-20 [18].

loss function LFW [27] BLUFR [42] BLUFR [42] MegaFace [28] MegaFace [28]

6000 pairs VR@FAR=0.1% DIR@FAR=1% rank1@1e-6 VR@FAR=1e-6

Softmax 97.08% 78.26% 50.85% 45.26% 50.12%

CenterLoss [16] 99.00% 94.50% 65.46% 63.38% 75.68%

NormFace [19] 98.98% 96.16% 75.22% 65.03% 75.88%

A-Softmax [18] 99.08% 96.58% 79.97% 67.41% 78.19%

IR-Softmax(A) 99.23% 97.08% 81.52% 69.48% 80.32%

AM-Softmax [26] 98.98% 97.69% 84.82% 72.47% 84.44%

IR-Softmax(AM) 99.21% 98.09% 85.00% 75.28% 85.67%

Table 2. Performance on Lighten CNN with various loss functions. All Results are derived under

the same settings used in [41].

loss function LFW [27] BLUFR [42] BLUFR [42] MegaFace [28] MegaFace [28]

6000 pairs VR@FAR=0.1% DIR@FAR=1% rank1@1e-6 VR@FAR=1e-6

Softmax 97.15% 83.32% 60.64% 47.31% 54.86%

Large-Margin [17] 98.35% 91.62% 64.76% 59.03% 70.57%

A-Softmax [18] 98.20% 91.16% 66.55% 54.87% 60.75%

IR-Softmax(A) 98.38% 94.61% 75.12% 64.71% 75.94%

AM-Softmax [26] 98.58% 94.67% 72.80% 65.33% 78.76%

IR-Softmax(AM) 98.63% 95.36% 79.92% 66.71% 78.83%

more than 1 million images from 690K identities; The probe set consists of two existing

datasets: Facescrub [44] and FGNet. MegaFace has multiple testing scenarios including

identification, verification and pose-invariance under two protocols i.e. large or small

training sets. The training set is considered small if it is less than 0.5M. We evaluate our

IR-Softmax under the small training set protocol.

Lighten-CNN Table 2 shows that our IR-Softmax(A) outperforms A-Softmax result by

a margin (almost 10% for rank-1 identification rate and 15% for VR at 1e-6 FAR) on

the small training dataset protocol while IR-Softmax(AM) outperforms AM-Softmax

result by a margin (7% for rank-1 identification rate and 1.4% for VR at 1e-6 FAR).

Compared to the softmax baseline, our method performs significantly better: 15% from

IR-Softmax (A) and 19% IR-Softmax(AM) for identification, 21% from IR-Softmax

(A) and 24% from IR-Softmax (AM) for verification.

ResNet-20 Table 1 shows that our IR-Softmax (A) outperforms A-Softmax result by

a margin (almost 2% for rank-1 identification rate and 2% for VR at 1e-6 FAR) on

the small training dataset protocol while IR-Softmax(AM) outperforms AM-Softmax

result by a margin ( almost 3% for rank-1 identification rate and 1.2 % for VR at 1e-

6 FAR). Compared to the softmax baseline, our method performs significantly better:

24% from IR-Softmax (A) and 30% from IR-Softmax (AM) for identification, 30%

from IR-Softmax (A) and 35% IR-Softmax (AM) for verification.
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Note that the performance of any testing methods on Megaface is intimately linked

to the quality of face alignment. Thus we do not compared with other methods with

different alignments. The results in Table 2 are therefore computed under the same set-

ting of face alignment and are directly comparable. These results demonstrate that our

IR-Softmax is well designed for open-set face recognition especially when the training

set is imbalanced. One can also see that, smaller intra-class distance is not the only im-

portant issue for learning features, but larger and evenly inter-class angular margin can

significantly improve face recognition performance.

4.2 Person Re-identification

For the evaluation of re-ID, we focus on two well-known re-ID databases: Market-1501

[24] and DUKE [29] datasets. As shown in Fig. 1, we demonstrate the distribution of

market-1501 database. Although there are no identities with more than 100 images like

WebFace dataset, the number of images per person ranges from 5 to 80. The DUKE [29]

also has the similar imbalance pattern. We use the standard evaluation metrics for both

datasets, namely the mean average precision score (mAP) and the cumulative matching

curve (CMC) at rank-1. We follow common practice by using random crops and ran-

dom horizontal flips during training. Specifically, we resize all images to 256 × 128,

of which we take random crops of size 224 × 112. Many methods for re-ID rely on

pre-trained models (e.g. ResNet). Indeed, these models usually lead to impressive re-

sults. However, pre-trained models reduce the flexibility to make task-specific changes

in a network. For example, some application scenarios need compact models rather than

large ones pre-trained on Imagenet. Our method clearly suggests that it is also possible

to learn deep models from scratch and achieve state-of-the-art performance. We use a

Lighten CNN [41] based on the ResNet Architecture, which is faster than the current

ResNet-50 used by many works [45]. Compared with other methods, we do not use the

corresponding pretrained models in ImageNet for finetuning. Thus we use the softmax

to train a baseline model with the re-ID dataset directly. And other methods (e.g. large-

margin and the proposed method) employ the baseline model as the pre-trained model

and finetune this model further.

Market-1501 The Market-1501 dataset contains 1,501 identities, 19,732 gallery im-

ages and 12,936 training images captured by 6 cameras. All the bounding boxes are

generated by the DPM detector [46]. The dataset uses both single and multi-query eval-

uation, we report the results for both. Table 3 compares our IR-Softmax (A) to other ap-

proaches. For Market-1501, the improvements achieved by IR-Softmax are significant:

(1) Compared with softmax, the Rank-1 accuracy rises from 81.47% to 91.87%, and the

mAP from 57.42% to 76.72% in the setting of single query; (2) In the setting of multi

query, the Rank-1 accuracy rises from 86.40% to 94.33%, and the mAP from 65.97%

to 82.22%. IR-Softmax (A) significantly outperforms not only the softmax baseline but

also other state-of-the-art methods [13].

DukeMTMC-reID The DukeMTMC-reID dataset is collected via 8 cameras and used

for cross-camera tracking (handover). Table 4 compares our IR-Softmax to other ap-

proaches. For DukeMTMC-reID, IR-Softmax(A) works much better than softmax: the
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Table 3. Comparison with the state-of-the-art methods on the Market-1501 dataset. The rank-1

accuracy and mAP on single and multiple query are reported respectively.

Method
Single Query Multi. Query

rank-1 mAP rank-1 mAP

BoW +KISSME [24] 44.42 20.76 - -

MR CNN [47] 45.58 26.11 56.59 32.26

DSN [48] 55.43 29.87 71.56 46.03

Gate Reid [49] 65.88 39.55 76.04 48.45

SOMAnet [50] 73.87 47.89 81.29 56.98

DeepTransfer [30] 83.70 65.50 89.60 73.80

Basel+LSRO [13] 83.97 66.07 88.42 76.10

SVDNet [45] 82.30 62.10 - -

Softmax 81.47 57.42 86.40 65.97

Large-margin [17] 90.08 72.22 92.75 78.79

IR-Softmax(A) 91.87 76.72 94.33 82.88

Table 4. Comparison with state-of-the-art methods on DukeMTMC-reID. Rank-1 accuracy and

mAP are reported.

Method Rank-1 (%) mAP (%)

BoW + KISSME [24] 25.13 12.17

LOMO + XQDA [51] 30.75 17.04

Basel + LSRO [13] 67.68 47.13

ACRN [52] 72.58 51.96

PAN [53] 71.59 51.51

SVDNet [45] 76.70 56.80

Softmax 61.98 41.17

Large-margin [17] 75.58 56.25

IR-Softmax(A) 76.84 57.47

Rank-1 accuracy: 76.84% vs 61.98%, and the mAP 57.47% vs 41.17%. Beyond that,

the imbalance robust softmax also outperforms other state-of-the-art methods[45].

5 Conclusion

In this paper, we investigated thoroughly the potential effects of data imbalance on the

deep embedding learning and proposed a new framework, Imbalance Robust Softmax

(IR-Softmax). IR-Softmax can simultaneously solve the open-set problem and reduce

the influence of data imbalance. Extensive experiments on FR and re-ID are conducted,

and the results show the effectiveness of IR-Softmax. In Future work, we plan to extend

this framework to more softmax based methods and other applications like few-shot

learning.
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