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Abstract. This supplementary material includes the derivation of dpVAE
training objective, the ELBO definitions of state-of-the-art VAE regu-
larizers with the decoupled prior, and experimental details (architecture,
hyperparameters, and train/test splits) for MNIST, SVHN and CelebA
experiments. It also includes the quantitative results that showcase that
regularization benefit of the disentanglement inducing regularizers does
not diminish significantly when the decouple priors are added. Finally, it
showcases the generation results with different regularization with and
without the decoupled prior on MNIST and Celeb-A, along with the
latent traversal results on Celeb-A.

1 Derivation of KL [qφ(z|x)‖p(z)] with Decoupled Prior

Consider a bijective mapping between Z and Z0 defined by a function gη(z) = z0.
The change of variable formula for mapping probability distribution on z to z0
is given as follows:

p(z) = p(z0)

∣∣∣∣
∂z0
∂z

∣∣∣∣ = p(gη(z))

∣∣∣∣
∂gη(z)

∂z

∣∣∣∣ (1)

The g−bijection is parameterized by K affine coupling layers, each layer is a

bijection block zk−1 = g
(k)
η (zk) of the form,

g(k)η (zk) = bk � zk

+ (1− bk)� [zk � exp (sk(bk � zk))

+tk (bk � zk)] , (2)

where z = zK , � is the Hadamard (i.e., element-wise) product, bk ∈ {0, 1}L is a
binary mask used for partitioning the k−th block input, and η = {s1, ..., sK , t1, ..., tK}
are the deep networks parameters of the scaling sk and translation tk functions
of the K blocks. Stacking these affine coupling layers constitutes the functional
mapping between the representation and the generation spaces. The g−bijection
is thus defined as,

gη(z) = z0 = g(1)η ◦ · · · ◦ g(K−1)η ◦ g(K)
η (z). (3)

The KL divergence is given as,

KL := KL [qφ(z|x)‖p(z)]

=

∫
qφ(z|x) [log(qφ(z|x))− log(p(z))] dz. (4)
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Using the change of variable formula in (1), we have the following.

KL =

∫
qφ(z|x)

[
log(qφ(z|x))− log(p(gη(z)))

− log

(∣∣∣∣
∂gη(z)

∂z

∣∣∣∣
) ]

dz (5)

= KL [qφ(z|x)‖p(gη(z))]

− Eqφ(z|x)
[
log

(∣∣∣∣
∂gη(z)

∂z

∣∣∣∣
)]

. (6)

The first term in (6) can be derived as follows,

T1 = KL [qφ(z|x)‖p(gη(z))] (7)

=

∫
qφ(z|x) log

(
qφ(z|x)

p(gη(z))

)
dz (8)

= −H(qφ(z|x))−
∫
qφ(z|x) log (p(gη(z)) dz, (9)

where H(qφ(z|x)) is the differential entropy of the variational posterior dis-
tribution. This approximate posterior is a multivariate Gaussian with a diag-
onal covariance matrix, i.e., qφ(z|x) ∼ N (z;µz(x),Σz(x)), where Σz(x) =
diag(σz(x)), and σz(x) ∈ RL+. This results in a closed-form expression for the
entropy of the approximate posterior [1], given as:

H(qφ(z|x)) =
L

2
+
L

2
log(2π) +

log |Σz(x)|
2

. (10)

The probability of the base latent space (i.e., the generation space) in the de-
coupled prior is assumed to be a standard normal distribution, i.e., p(gη(z)) =
N (gη(z); 0, IL). Together with (10) and ignoring constants terms, the first term
in (6) can be simplified into,

T1 = − log |Σz(x)|
2

+

∫
qφ(z|x)

L

2
log

(
1

2π

)
dz

+
1

2

∫
qφ(z|x)gη(z)T gη(z)dz (11)

=
1

2

[
− log |Σz(x)|+ const

+ Eq(z|x)
[
gη(z)T gη(z)

] ]
(12)

The second term in (6) can be derived as follows,

T2 = Eqφ(z|x)
[
log

(∣∣∣∣
∂gη(z)

∂z

∣∣∣∣
)]

=

∫
qφ(z|x) log

(∣∣∣∣
∂gη(z)

∂z

∣∣∣∣
)
dz. (13)

Applying the chain rule to gη(z), which is a composition of functions as defined
in (3), and combining this with the multiplicative property of determinants, we
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have the following,
∣∣∣∣
∂gη(z)

∂z

∣∣∣∣ =

K∏

k=1

∣∣∣∣
∂g

(k)
η (zk)

∂zk

∣∣∣∣. (14)

Hence, we have the second term in (6) can be expressed as follows:

T2 = Eqφ(z|x)

[
K∑

k=1

log

(∣∣∣∣
∂g

(k)
η (zk)

∂zk

∣∣∣∣

)]
. (15)

Similar to [2], deriving the Jacobian of individual affine coupling layers yields to
an upper triangular matrix. Hence, the determinant is simply the product of the
diagonal values, resulting in,

log

(∣∣∣∣
∂g

(k)
η (zk)

∂zk

∣∣∣∣

)
=

L∑

l=1

blksk(blkz
l
k). (16)

Using this simplification, we finally have an expression for the second term ex-
pressed as,

T2 = Eqφ(z|x)

[
K∑

k=1

L∑

l=1

blksk(blkz
l
k)

]
. (17)

Substituting (17) and (12) in (6), the KL divergence term of the decoupled
prior can be written as,

KL =
1

2

[
− log |Σz(x)|+ Eq(z|x)

[
gη(z)T gη(z)

] ]

− Eqφ(z|x)

[
K∑

k=1

L∑

l=1

blksk(blkz
l
k)

]
(18)

2 ELBOs for Different Regularizers

In this section, we define the ELBO (i.e., training objective) for individual regu-
larizers considered (see section 4.3 in the main manuscript) and how they differ
under the application of decoupled prior. Here, we only serve to provide more
mathematical clarity of these modifications.

β-dpVAE: The ELBO for the β-VAE [3] can be expressed as follows:

L(θ, φ) = Ep(x)
[
Eqφ(z|x) [log pθ(x|z)]− βKL [qφ(z|x)‖p(z)]]

]
(19)

By substituting the KL divergence under the decoupled prior, the ELBO for
β-dpVAE can defined as follows:

L(θ, φ, η) = Ep(x)

[
Eqφ(z|x) [log pθ(x|z)]

− β

2

[
− log |Σz(x)|+ Eq(z|x)

[
gη(z)T gη(z)

] ]

− βEqφ(z|x)
[
K∑

k=1

L∑

l=1

blksk(blkz
l
k)

]]
(20)
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The alternate formulation, β-VAE-B [4], has a similar ELBO function with
some additional parameters applied to the KL divergence term.

Factor-dpVAE: The ELBO for FactorVAE [5] is given as follows:

L(θ, φ) = Ep(x)
[
Eqφ(z|x) [log pθ(x|z)]−KL [qφ(z|x)‖p(z)]

]

− γKL [qφ(z)‖qφ(z̄)] (21)

To modifying this ELBO with the decoupled prior, the KL divergence term
between the posterior and prior that contains p(z) is the only term that needs
to be reformulated. This results in:

L(θ, φ, η) = Ep(x)

[
Eqφ(z|x) [log pθ(x|z)]

− 1

2

[
− log |Σz(x)|+ Eq(z|x)

[
gη(z)T gη(z)

]]

− Eqφ(z|x)

[
K∑

k=1

L∑

l=1

blksk(blkz
l
k)

]]
(22)

− γKL
[
qφ(z)‖ ¯qφ(z)

]
(23)

β-TC-dpVAE: Following similar notation as provided in [6], the ELBO for
β-TCVAE [6] is given as follows:

L(θ, φ) = Ep(n)

[
Eqφ(z|n) [log pθ(n|z)]]

− αIqφ(z;n)− βKL


qφ(z)‖

∏

j

qφ(zj)



]

− γ
∑

j

KL [qφ(zj)‖p(zj)] (24)

Due to the factorized representation of the prior, the last KL divergence is com-
puted via sampling. Hence, the modification for the decoupled prior becomes
trivial. We simply sample from z0 space (which is assumed to be factorized) and
pass it through g−1η (z0j) to obtain a sample in z space, the ELBO can thus be
modified as follows:

L(θ, φ, η) = Ep(n)
[
Eqφ(z|n) [log pθ(n|z)]]− αIqφ(z;n)

]

− βKL


qφ(z)‖

∏

j

qφ(zj)


− γ

∑

j

KL
[
qφ(zj)‖p(g−1η (z0j))

]
(25)

Info-dpVAE: For InfoVAE [7], the ELBO (using the MMD divergence) is given
as follows:

L(θ, φ) = Ep(x)
[
Eqφ(z|x) [log pθ(x|z)]− (1− α) KL [qφ(z|x)‖p(z)]

]

− (α+ λ− 1)DMMD(qφ(z)||p(z)) (26)
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The modification for the decoupled prior takes place in two terms; the MMD
divergence term, which is computed via sampling from the aggregate posterior,
and the prior in z space, which acts on the representation space in the decoupled
prior. Therefore, the modification is very similar to the one applied in β-TCVAE.
Additionally, the KL divergence term will be modified normally. The final ELBO
is thus as follows:

L(θ, φ, η) = Ep(x)

[
Eqφ(z|x) [log pθ(x|z)]− 1− α

2

[
− log |Σz(x)|

+ Eq(z|x)
[
gη(z)T gη(z)

] ]

− (1− α)Eqφ(z|x)

[
K∑

k=1

L∑

l=1

blksk(blkz
l
k)

]]

−DMMD

(
qφ(z)||p(g−1η (z0))

)
(27)

3 Architectures and Hyperparameters

In this section, we give more details for the architecture and hyperparameters
used and the data handling for the four different datasets used in the paper,
namely two moons toy data, MNIST, SVHN, and CelebA. These are also de-
scribed for different regularizers used on each of these datasets.

Figure 1 illustrates the VAE architecture for all the datasets and the regular-
izers reported in the experiments section of the paper. For MNIST and SVHN,
we use ReLU as the non-linear activation function, and for CelebA we use leaky
ReLU [8]. For the two moons data, the VAE architecture consists of two fully
connected layers of size 100 and 50 (from input to latent space) in the encoder.
The decoder is a mirrored version of the encoder.We use two-dimensional latent
space for the two moons data. The architecture that is added for the decou-
pled prior is the same for all the experiments we present in the paper. This
architecture for the affine coupling layers that connects z and z0 is shown in
Figure 2.

FactorVAE [5] has a discriminator architecture, which has five fully connected
layers each with 1000 hidden units. Each fully connected layer is followed by a
leaky ReLU activation of negative slope of 0.2. This discriminator architecture is
the same for all experiments, except for the changing input size (i.e., the latent
dimension L).

The learning rate for all the experiments was set to be 10−4, and the batch
size for MNIST was 100, SVHN and CelebA were 50. We execute all the ex-
periments for 100,000 iterations (100,000/B epochs where B is the batch size).
No other pre-processing was performed while conducting these experiments. The
regularization specific hyperparameters are mentioned in Table 1. These hyper-
parameters were kept the same for all datasets.
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Figure 1. Architecture description for different datasets. This figure shows the
VAE architecture for MNIST, SVHN, and CelebA datasets. This architecture is kept
the same for all the regularizations with and without the decoupled prior.

Table 1. Table representing hyperparameters for individual regularizations.
These hyperparameters were set to be the same with and without the decoupled prior.

Methods Parameters

β-VAE-H [3] β = 4

β-VAE-B [4] γ = 15, Cmax = 25, Cstop = 100000

β-TC-VAE [6] α = 1, β = 4, γ = 15

FactorVAE [5] γ = 1000

InfoVAE [7] α = 0, λ = 1000
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sk
<latexit sha1_base64="bpvGYsAYfW0nEyn5/yE4fcsmm4Y=">AAAB6nicbVDLSsNAFL2pr1pfUZduBovgqiRafOyKblxWtA9oQ5lMJ+3QySTMTIQS+gluXCji1i9y5984SYOo9cCFwzn3cu89fsyZ0o7zaZWWlldW18rrlY3Nre0de3evraJEEtoiEY9k18eKciZoSzPNaTeWFIc+px1/cp35nQcqFYvEvZ7G1AvxSLCAEayNdKcGk4FddWpODrRI3IJUoUBzYH/0hxFJQio04VipnuvE2kux1IxwOqv0E0VjTCZ4RHuGChxS5aX5qTN0ZJQhCiJpSmiUqz8nUhwqNQ190xliPVZ/vUz8z+slOrjwUibiRFNB5ouChCMdoexvNGSSEs2nhmAimbkVkTGWmGiTTiUP4TLD2ffLi6R9UnNPa/XberVxVcRRhgM4hGNw4RwacANNaAGBETzCM7xY3HqyXq23eWvJKmb24Res9y91FI4N</latexit>

,

L/2	index

bk =

(
[0, ..., 0, 1, ..., 1] k is even

[1, ..., 1, 0, ..., 0] k is odd
<latexit sha1_base64="aKT/O4me8m4I/sD29mqqJMtbucM=">AAACgXicbVHbbtQwEHVSLmW5LfDIy4gFBFKJklIVEEKq4IXHIrFtpU20cpzJ1lrHiexJ1VWU/+C7eONnEM6FCliOZPloZs6MfSatlLQUhj88f+fa9Rs3d29Nbt+5e+/+9MHDE1vWRuBclKo0Zym3qKTGOUlSeFYZ5EWq8DRdf+rypxdorCz1V9pUmBR8pWUuBScXWk6/xQWn8zRv0nbZrFv4AHGKK6kb4ZraFibQYxHuQRAEe+DuaKRRAs9hDTHhJZmiAWkBL1C3EMe/VVelvXBosK0qs2wYFKPOxsGT5XQWBmEP2CbRSGZsxPFy+j3OSlEXqEkobu0iCitKGm5ICoXtJK4tVlys+QoXjmpeoE2a3sEWnrlIBnlp3NEEffRPRcMLazdF6io7v+y/uS74v9yipvxt0khd1YRaDIPyWgGV0K0DMmlQkNo4woWR7q0gzrnhgtzSBhPedTi8+vI2OdkPotfBwZeD2dHH0Y5d9pg9YS9YxN6wI/aZHbM5E+yn99R75QX+jv/SD/39odT3Rs0j9hf8978AIVC1Zw==</latexit>

k = 1, ..., K

K = 6

zK = z, z1 = z0
<latexit sha1_base64="TT2L5jTECeqzx5TxST66RByBSIE="></latexit>

Figure 2. Architecture details of the decoupled prior. Architecture description
of individual affine coupling blocks and the details of binary masks. The top shows
the structure of an individual affine coupling layer representing the function g

(k)
η (zk).

Sndividual scaling sk and translation tk functions have the same architecture for all
the block (bottom-left). Bottom-right shows the binary masks and number of affine
coupling layers.
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4 Disentanglement Results

In order to showcase that introduction of decoupled prior does not adversely
affect the representation learning performance we evaluate for the disentangle-
ment metric proposed in FactorVAE paper [5] which does not require supervised
factors to evaluate. In Table 2 we compute for this metric for four different
regularizers which promote disentanglement on MNIST data trained with and
without decouple prior for same number of epochs. Even without adjusting for
hyper-parameters the difference between the metrics evaluated with and without
prior are negligible, giving further evidence for the proposed hypothesis.

Table 2. Disentanglement results on MNIST, with and without the VAE. The
numbers represent the ability to learn disentangled features, 1 representing perfect
disentanglement. We notice that even with slight drop the numbers with decoupled
prior remain very close to that of without it, showcasing that introduction of prior
does not adversely affect the representation learning aspect.

Method Without Decoupled Prior With Decoupled Prior

β-VAE-H 0.87 0.85

β-VAE-B 0.67 0.61

β-VAE-TC 0.98 0.96

FactorVAE 0.98 0.99

5 Generation Results

In this section we provide generation results on MNIST and Celeb-A datasets
using the decoupled prior with different regularizers, additionally we also gener-
ate the low-posterior samples explained in Section 4.1. For MNIST these results
are showcased in Figure 3. For Celeb-A we present these results for each of the
regularizer in three separate images in Figures 4, 5 and 6. The latent traversal
results on CelebA are shown in Figure 7.
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Figure 3. Genrative Results for MNIST data, on three different regularizers with
and without the decoupled prior. The Gen tag means these are generated via standard
sampling and LP-Gen means they are generated using the low-posterior samples.
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(a)	:	Without	Decoupled	Prior (b)	:	With	Decoupled	Prior
Figure 4. Celeb-A generation results using β-VAE-B

, with and without the decoupled prior. Gen: generated via standard sampling,
LP-Gen: generated via low-posterior sampling.
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Figure 5. Celeb-A generation results using InfoVAE

, with and without the decoupled prior. Gen: generated via standard sampling,
LP-Gen: generated via low-posterior sampling.
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FactorVAE
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Figure 6. Celeb-A generation results using FactorVAE

, with and without the decoupled prior. Gen: generated via standard sampling,
LP-Gen: generated via low-posterior sampling.



dpVAEs, Supplementary 13

Figure 7. Latent traversals on CelebA: (a) with and (b) without decoupled prior.
We notice for InfoVAE, the green boxes highlight the faces with unrealistic deforma-
tions, such as excessive teeth in the second row and noisy images in the fourth row.
In comparison, Info-dpVAE results in a more smooth traversal. We see similar effects
from β-VAE, with odd shadowing due to hair and face rotation, highlighted in blue
boxes. Again, β-dpVAE makes these transitions smooth and seamless.


