
FKAConv: Feature-Kernel Alignment
for Point Cloud Convolution

Supplementary material

Alexandre Boulch1, Gilles Puy1, and Renaud Marlet1,2

1 valeo.ai, Paris, France
2 LIGM, Ecole des Ponts, Univ Gustave Eiffel, CNRS, Marne-la-Vallée, France

We present complementary information about the FKAConv paper. In Sec-
tion A, we detail the network architectures used for classification and semantic
segmentation. In Section B, we briefly describe the datasets used for experiments.
In Section C, we discuss the use of a learned normalization of the support point
neighborhoods. Finally, in Section D, we provide more qualitative results on the
semantic segmentation test datasets.

A Network details

As mentioned in Section 5.1 of the paper, the networks we use in our experiments
are based on the residual network architecture in KPConv [5], for which we
replace the convolution by FKAConv and the neighborhood construction by our
point sampling with space quantization. We detail here the main components.

Residual block. The residual block in Fig. 1 (a) is the main module of our
networks. This block is made of an FKAConv layer placed between two linear
layers. The residual connection has one optional linear layer and one optional
max-pooling layer. The optional linear layer is used only when the number of
input channels is different from the number of output channels, and the optional
max-pooling layer is used if the cardinality of the support points is different from
the cardinality of the input points.

Classification and segmentation networks. The two networks for these
tasks are presented in Fig. 1 (b). They share the same encoder structure, i.e., a
FKAConv layer and 9 residual modules with a progressive reduction of the point
cloud size.

– The classification network has an extra point-wise fully-connected layer (or
unary convolutional) with its output dimension equal to the number of
classes. The final prediction is done by averaging the scores of the 8 final
support points.

– The segmentation network has an encoder-decoder structure. The decoder
is a stack of 5 unary layers with, nearest-neighbor up-sampling between
each layer. We use skip connections from the encoder to the decoder: the

2 A. Boulch et al.

M
ax

 P
oo

l.

R
eL

U

Ic to Ic/2 Ic/2 to Ic/2 Ic/2 to Oc

Residual Block

N
o

R
eL

U

Unary conv.
+ BN + ReLU

FKAConv +
BN + ReLU

Optional depending on
stride and/or number of
input/output channels

(a) Residual block. Ic (resp. Oc) is the number of input (resp. output) channels.

512 pts
128 ch.

128 pts
256 ch.

|P| pts
64 ch.

32 pts
512 ch.

8 pts
1024 ch.

Average pooling

Classification
head

Segmentation
head

Unary conv.
+ BN + ReLU

FKAConv +
BN + ReLU

Residual block Upsampling

(b) Classification and segmentation networks.

Segmentation
network 1

Segmentation
network 2

FKAConv +
BN + ReLU

Unary conv.
+ BN + ReLU

(c) Fusion module.

Fig. 1. Network architectures used for semantic segmentation and classification.

FKAConv 3

target points for up-sampling are the support points at the corresponding
scale in the encoder, and the features from the encoder and the decoder are
concatenated at each scale.

Fusion network. The fusion module presented in Fig. 1 (c) is identical to the
module from the official repository of ConvPoint [2], except that it uses our
proposed convolution. It is made of 3 layers: 2 FKAConv layers and 1 unary
layer. The features from the penultimate layer of both segmentation networks
are concatenated and given as input to the first FKAConv layer. The output of
the second FKAConv layer is then concatenated with the predictions of the two
segmentation networks and given to the unary layer.

Parameters of the convolution. In order to keep the setup simple, we use the
same parameters for all FKAConv layers. The neighborhood size of the support
points is fixed to 16 and we use 16 kernels. In the encoder, each odd residual
block but the first reduces the number of support points from |P| to 512, 128,
32, and finally 8.

B Datasets

We evaluate our convolution on three different tasks: object classification, part
segmentation and semantic segmentation.

Classification is evaluated on ModelNet40 [6]. It contains 12,311 point clouds
sampled from CAD models of 40 different categories. 9843 shapes are used for
training, 2468 for testing.

Part segmentation is done on Shapenet [7]. It is composed of 16 object cate-
gory, each category being annotated with 2 to 6 part labels. As a pre-processing,
all models are first normalized to the unit sphere. In our implementation, the
network has 50 outputs (one for each part) and the loss and scores are computed
per object category.

Semantic segmentation is evaluated on 3 different indoor and outdoor datasets:
S3DIS [1], NPM3D [4] and Semantic8 [3].

– S3DISS [1] is a subset of the 2D-3D-S dataset for semantic segmentation of
building interiors. The data are acquired over 6 building floors with an RGBD
camera. Each points is annotated with one of 13 labels: 12 semantic labels
(floors, tables, chairs, etc.) and 1 label for a “clutter” class, mostly including
office supplies. The evaluation is done using a 6-fold cross validation.

– NPM3D [4] is a lidar dataset for large-scale outdoor semantic segmentation.
Points were acquired in 4 sites using a car equipped with lidar. 10 classes of
urban entities are labeled, such as impervious surface, poll or pedestrian.

4 A. Boulch et al.

– Semantic8 [3] is the main dataset in the Semantic3D benchmark suite. It
contains 30 lidar scenes, 15 for training and 15 for testing. Over 4 billion
points are labeled with 8 classes such as building, vegetation and car, and a
challenging class for scanning artifacts. The test set is particularly difficult
as it covers several diverse scenes such as city streets, villages or old castles.

C K-nearest neighbors search with learned neighborhood
normalization

As described in Section 4 of the paper, we normalize the size of point neigh-
borhoods. After recalling the principle of this normalization, we analyze here its
effect empirically, for different datasets and for different layers in our networks.

To normalize the neighborhoods, we estimate an average neighborhood radius
rt using an exponential average of the actual neighborhood radius r̂t seen at
training time in the successive batches indexed by t (see Equation (1) below
where m is the momentum parameter). The point coordinates (pi)1≤i≤k of the
k nearest neighbors of a support point q are then centered and normalized as
specified in Equation (2), yielding normalized points (p̂i)1≤i≤k:

rt = r̂t ∗m+ rt−1 ∗ (1−m), (1)

p̂i = (pi − q)/rt. (2)

We also proposed a gating mechanism to reduce, if needed, the negative effect of
faraway points. Given the centered and normalized points (p̂i)i computed above,
the spatial gate weight s = (si)i satisfies:

si = σ(β − α||p̂i||2), (3)

where σ(·) is the sigmoid function, and α, β are parameters to learn.

Average neighborhood radius rt. First, we study the estimated neighbor-
hood size rt at each layer of the encoder after training. This size is the averaged
radius of the smallest sphere centered on the support point and encompassing
the 16 nearest neighbors. We present in Fig. 2 (a) the evolution of this radius as
a function of the layer’s depth, for different datasets.

We observe that this radius is directly linked to the size of the bounding box
of the input point cloud in the 3D space, i.e., to the size of the point cloud pillars
(vertical infinite cylinders of diameter 8 meters for Semantic8 and NPM3D, and
2 meters for S3DIS) or to the size of the ShapeNet’s CAD models.

Weighting function. In Figs. 2 (b-c), we plot the values of parameters α and
β as a function of the depth of the FKAConv layers. First, we observe that
these parameters, which are optimized with the network, take values that are
different from the initial values that are set at the training initialization, i.e.,
α = 1 and β = 1. Second, the values of α and β are similar after training on

FKAConv 5

LCP layer index

A
ve

ra
g
e

si
ze

 o
f
th

e
su

p
p
or

t
p
o
in

t
n
ei

g
h
b
or

h
oo

d

(a) Average neighborhood radius at each layer.

LCP layer index

al
p
h
a

LCP layer index

B
et

a

(b) α learned at each layer. (c) β learned at each layer.

Relative distance to support point

Fe
at

u
re

 w
ei

g
h
t

Average
neighborhood
size

Fe
at

u
re

 w
ei

g
h
t

Relative distance to support point

Average
neighborhood
size

Influence of the distance to support point on feature weight

(d) for the first FKAConv layer. (e) for the 7th residual block.

Fig. 2. Behavior of the learned neighborhood normalization and feature weighting
across the segmentation network for various datasets.

6 A. Boulch et al.

Semantic8 and NPM3D. This could be expected as both datasets share common
characteristics: outdoor urban scenes, same pillar size. Third, we observe the
same global variations of the curves on all datasets: α tends to decrease with the
depth while β tends to increase. As a result, the transition of the gating function
becomes wider in deeper layers, i.e., deeper layers tend to take into account more
far away points.

We illustrate this phenomenon on Figs. 2 (d-e), where we represent the weight-
ing function after optimization for the first and for the seventh FKAConv layer
of the network. For comparison purpose, we normalize the curves by setting
the weight to 1 at distance 0. The black curve is the initial function, before
optimization.

At the first layer, only the neighboring points that are very close to the
support point are taken into consideration to estimate matrix A. We hypothesize
that, in the absence of noise in data, a small neighborhood is sufficient to estimate
local geometric features.

On the contrary, in the 7th layer, all the neighboring points are taken into
consideration to compute A. At this stage, the number of support points is small
and each point carries features that are discriminating for the task. The network
considers all available information, including points that are faraway from the
support points.

Influence on performance. To quantify the impact of the neighborhood nor-
malization and gating mechanism, we trained a segmentation network using five
different configurations.

– Baseline (no normalization). We do not normalize the neighborhood coor-
dinates. The network sees different neighborhood sizes.

– Baseline (normalization to the unit ball). Each neighborhood is normalized
into the unit sphere, regardless of its original size.

– Learned normalization + fixed gating at r. The radius used for normalization
is estimated using the proposed exponential moving average. The gating
mechanism is replaced by hard-thresholding: features of all points outside
the ball with the learned radius r are set to zero.

– Learned normalization + fixed gating at 2r. Same as above but using a radius
of 2r for hard-thresholding.

– Our approach. The radius used for normalization and the gating function
are learned as proposed.

The results, reported in Table 1, show a slight improvement using our ap-
proach with respect to the baselines: the mean class intersection over union
(mcIoU) increases by 0.2 point and the instance average intersection over union
(mIoU) by 0.1 point. This gain may seem small, but it is significant on this
dataset as the performance are close to saturation in the leaderboard.

We also observe that the learned gating is an important factor of the success
of our approach. Fixed gating leads to a performance drop (see Table 1). This is

FKAConv 7

Table 1. Impact of the neighborhood normalization and gating on ShapeNet.

Method mcIoU mIoU

Baseline (no normalization) 84.3 85.3
Baseline (normalization to unit ball) 84.6 85.6

Learned normalization + fixed gating
si = 1 if d(p,q) < rt, and si = 0 otherwise. 83.8 84.8
si = 1 if d(p,q) < 2rt, and si = 0 otherwise. 84.0 85.2

(p denotes a point in the neighborhood of q, and rt is

the estimated radius in Equation (1).)

Our method (learned normalization and gating) 84.8 85.7

due to the fact that hard-thresholding suppresses too much information, partic-
ularly in the late stages of the network where the neighborhoods are less regular
and more subject to size variation.

D Qualitative results of segmentation

Finally, we provide more visual results illustrating our semantic segmentation
predictions on datasets NPM3D (Fig. 3), Semantic8 (Fig. 4) and S3DIS (Fig. 5).

Fig. 3. Visual results of our predictions on the test scenes of the NPM3D dataset. The
input data is colored according to lidar intensity, from blue (low intensity) to red (high
intensity) through green, yellow and orange. Colored, predicted, semantic segments are
immediately on the right to lidar images. The segmentation results are obtained with
the fusion model (intensity + geometry).

8 A. Boulch et al.

Fig. 4. Visual results of our predictions on the 15 test scenes of the Semantic8 dataset.
The segmentation results are obtained with the fusion model (RGB + geometry).

FKAConv 9

Fig. 5. Visual results of our predictions on the S3DIS dataset obtained with the fusion
model (RGB + geometry).

References

1. Armeni, I., Sener, O., Zamir, A.R., Jiang, H., Brilakis, I., Fischer, M., Savarese, S.:
3D semantic parsing of large-scale indoor spaces. In: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). pp. 1534–1543 (2016)

2. Boulch, A.: ConvPoint: Continuous convolutions for point cloud processing. Com-
puters & Graphics 88, 24 – 34 (2020)

3. Hackel, T., Savinov, N., Ladicky, L., Wegner, J.D., Schindler, K., Pollefeys, M.:
Semantic3D.net: A new large-scale point cloud classification benchmark. In: ISPRS
Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
(ISPRS Annals). vol. IV-1-W1, pp. 91–98 (2017)

4. Roynard, X., Deschaud, J.E., Goulette, F.: Paris-Lille-3D: A large and high-quality
ground-truth urban point cloud dataset for automatic segmentation and classifica-
tion. International Journal of Robotics Research (IJRR) 37(6), 545–557 (2018)

5. Thomas, H., Qi, C.R., Deschaud, J.E., Marcotegui, B., Goulette, F., Guibas, L.J.:
KPConv: Flexible and deformable convolution for point clouds. In: IEEE Interna-
tional Conference on Computer Vision (ICCV) (2019)

6. Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao, J.: 3D ShapeNets:
A deep representation for volumetric shapes. In: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). pp. 1912–1920 (2015)

7. Yi, L., Kim, V.G., Ceylan, D., Shen, I., Yan, M., Su, H., Lu, C., Huang, Q., Sheffer,
A., Guibas, L., et al.: A scalable active framework for region annotation in 3D shape
collections. ACM Transactions on Graphics (TOG) 35(6), 210 (2016)

