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1 Architecture

In this section, we describe the DeepSEE architecture in more detail. For a
clearer understanding, we provide tabular illustrations for the encoder and gen-
erator networks for 8× magnification (Tables 1, 2, 3 and 4) and we zoom into
the residual blocks where we inject semantic and style information (Fig. 1).

1.1 Style Encoder

The style encoder extracts a style matrix from a low- or high-resolution im-
age. Each row in the style matrix represents a disentangled representation of
the appearance of one semantic region. One important step to achieve such a
disentanglement is regional average pooling. Regional average pooling leverages
segmentation masks to extract spatial-dependent features.

In our implementation, it works as follows: The style encoder computes fea-
tures maps from an image. We average those features along the spatial dimen-
sions in order to obtain a style matrix S ∈ [−1, 1]N×d, where N is the number
of semantic regions and d is the size of the style vector for one region.

Concretely, let F ∈ [−1, 1]Hfm×Wfm×d be the encoder features extracted from
an image, where Hfm and Wfm are the output height and width of the shared
encoder Eshared. For each semantic region, we average the features of that region
along the spatial dimensions. First, we scale the predicted binary segmentation
mask to the size of the feature map: M resized ∈ {0, 1}Hfm×Wfm×N . Second, we
define the set of all spatial locations belonging to region Rn, n = 1, ..., N and
then compute the entries k = 1, ..., d in the style matrix S from the features F :

Rn = {(x, y)|M resized
x,y,n = 1 and x = 1, ..,Hfm and y = 1, ...,Wfm} (1)

Sn,k =
1

HfmWfm
Σ(x,y)∈Rn

Fx,y,k (2)
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Table 1. LR Style Encoder Architecture. The low-resolution style encoder consists
of a series of convolutional layers with kernel size 3×3 and instance norm layers (IN) [1].
We upsample the feature maps for a better style disentanglement (as described in
Section 1.1). The shared style encoder (Table 3) processes the output further and
maps it to a shared latent space.

Block / Layer Stride #Params Output Shape

Conv+IN 1 864 16× 16× 32
Conv+IN 1 18, 432 16× 16× 64
Conv+IN 1 73, 728 16× 16× 128
Upsampling - 0 32× 32× 128
Conv+IN 1 294, 912 32× 32× 256

387, 936

Table 2. HR Style Encoder Architecture. For the high-resolution encoder, we
downsample twice and then re-upsample again to create a bottleneck. All convolutions
have kernel size 3× 3 and they are followed by instance normalization [1]. Again, the
shared encoder (Table 3) processes the output further.

Block / Layer Stride #Params Output Shape

Conv+IN 1 864 128× 128× 32
Conv+IN 2 18, 432 64× 64× 64
Conv+IN 2 73, 728 32× 32× 128
Upsampling - 0 64× 64× 128
Conv+IN 1 294, 912 64× 64× 256

387, 936

1.2 Generator

In this section, we describe the main building block of the generator, the Res-
Block, and explain how DeepSEE injects semantics and style.

Residual Blocks. Starting from a low-resolution image, the generator repeat-
edly doubles the resolution via nearest-neighbour upscaling and processes the
result in residual blocks (ResBlocks). As a guidance, the ResBlocks inject se-
mantic and style information via spatially adaptive normalization (SPADE) [2]
and semantic region adaptive normalization [3].

Fig. 1 shows a ResBlock and zooms into the normalization block (Norm-
Block). The ResBlock follows the design by [3] and processes the input fea-
ture maps with two normalization blocks NormBlocks in a main path and one
NormBlock in a residual connection. It also adds noise from a standard normal
distribution, which improved the FID score in [3].

The NormBlock (Fig. 1) learns two sets of modulation parameters. The first
set is responsible for semantic consistency. The second set applies the disen-
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Table 3. Shared Style Encoder Architecture. The shared style encoder processes
the output of both the low-resolution and the high-resolution encoders and maps their
outputs to a latent space. It uses a predicted semantic mask to extract styles for each
semantic region in the regional average pooling layer. For a detailed description of
regional average pooling, please refer to Section 1.1.

Block / Layer Stride #Params Output Shape LR Output Shape HR

Conv+IN 1 294, 912 32× 32× 128 64× 64× 128
Tanh - 0 32× 32× 128 64× 64× 128
Regional avg pool - 0 19× 128 19× 128

294, 912

Table 4. Generator Architecture for 8× Magnification. We list the main layers
and building blocks with the number of parameters and output shapes. All residual
blocks inject semantics [2] and style [3], except for the first residual block, which only
injects semantics. Please refer to Fig. 1 for a detailed view of the ResBlock.

Block / Layer Semantics Style #Params Output Shape

Conv - - 14, 336 16× 16× 512
ResBlock X - 7, 126, 528 16× 16× 512
Upsampling - - 0 32× 32× 512
ResBlock X X 9, 488, 636 32× 32× 512
ResBlock X X 9, 488, 636 32× 32× 512
Upsampling - - 0 64× 64× 512
ResBlock X X 9, 488, 636 64× 64× 512
Upsampling - - 0 128× 128× 512
ResBlock X X 9, 488, 636 128× 128× 512
Conv - - 13, 827 128× 128× 3
Tanh - - 0 128× 128× 3

45, 109, 235

tangled style information from a style matrix. As a reminder, the style matrix
contains a style vector for each semantic region. For computing the modulation
parameters, the style matrix expands and colors the semantic mask, yielding a
styled map. Similar to previous work [2, 3], we compute a scale and offset for
each feature pixel. As a last step, we combine the two sets of modulation pa-
rameters via a weighted average and apply them to the input feature map. In
our ablation study (in the main paper), we compare the model performance for
variants where we remove semantics, style or both from the NormBlock.

Upsampling and Number of Layers. The generator consists of residual
blocks, which refine the output of deterministic upscaling layers. The number
of upscaling layers depends on the magnification factor. Each upscaling layer
increase the image dimensions by the factor 2. For upscaling 4×, our model
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consists of 2 upscaling layers. A model with upscaling factor 2i applies i upscaling
layers. For example, our extreme super-resolution model with upscaling factor
32 = 25 consists of 5 upscaling layers.

1.3 Discriminator

Our Patch-GAN discriminator [4] follows the one in [2]. It consists of two net-
works, one that operates on the high-resolution image and one on the half scale.
The networks take the concatenation of an image together with its segmentation
mask as input. Both networks predict the realism of overlapping image patches
and the loss function computes the average Hinge loss of their outputs.

Architecturally, four convolutional and spectral instance normalization [5]
layers process the input, with leaky ReLU [6–8] as the activation function. In
the first three layers, we use a stride of two in order to reduce the feature map
size. The last convolution applies a stride of one. We use the same number of
discriminator layers for all our experiments.

1.4 Semantic Segmentation Network

We train a state-of-the-art DeepLab semantic segmentation network [9, 10] to
predict a high-resolution segmentation map M ∈ {0, 1}Hhr×Whr×N from a low-
resolution image xlr ∈ RHlr×Wlr×3. Our segmentation model first upscales the
low-resolution image to the high-resolution and then processes it in the same
way as a regular high-resolution image.

We train the segmentation model on the CelebAMask-HQ [11, 12] dataset for
150 epochs, with a polynomially decaying learning rate of 0.001 and stochastic
gradient descent with momentum 0.9 and weight decay 0.0005.

Table 5 lists performance metrics with different backbones. All of the models
are trained with balanced class weights. For our experiments, we choose the best
scoring model with DRN backbone [13, 14]. Fig. 2 shows a random sample of
qualitative results.

2 Training and Testing

In this section, we list formulas for the loss function, training details, hyper-
parameters and describe the test dataset splits. Unless otherwise stated, we use
the same hyper-parameters for all our experiments.

2.1 Loss Function

Our loss function follows [2]. We use a discriminator network D to compute
adversarial losses for the generator and the style encoder Ladv and for the dis-
criminator LadvD . For the generator and the style encoder, we extend the loss
with a discriminator feature matching Lfeat and a perceptual loss Lvgg from
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a VGG-19 network [15, 16]. In the following, we define our loss terms for real
high-resolution images x ∼ pdata and the corresponding model output x̂ ∼ GΘ.

We use a discriminator D to compute an adversarial hinge loss, which is
defined as:

Ladv = − Ê
x

[D(x̂)] (3)

LadvD = −E
x

[min(0, D(x)− 1]− Ê
x

[min(0,−D(x̂)− 1] (4)

The feature matching loss Lfeat is computed from the L1 distance between

the discriminator features for the real and the fake image. Let F
(i)
D (·) be the

discriminator features for the layer i. Then, we compute the feature matching
loss for the intermediate discriminator layers:

Lfeat = E
(x,x̂)

[
4∑
i=2

‖FD(i)(x)− FD(i)(x̂)‖1

]
(5)

We compute our perceptual loss Lvgg from the features of a VGG-19 net-
work [15, 16]. Let Fvgg(i)(·) be the features after ReLU activation for blocks

i = 1, . . . , 5 in the VGG-19 network and let w = [ 1
32 ,

1
16 ,

1
8 ,

1
4 , 1]> a vector with

fixed weights. Then, we compute the perceptual loss as:

Lvgg = E
(x,x̂)

[
5∑
i=1

wi‖Fvgg(i)(x)− Fvgg(i)(x̂)‖1

]
(6)

Our full loss function for the generator LG and style encoder LE , and for the
discriminator LD are defined in Equations 7 and 8:

LG = LE = Ladv + λfeatLfeat + λvggLvgg (7)

LD = LadvD (8)

We set the loss weights to λfeat = λvgg = 10 for all our experiments.

Please note that our model uses two discriminators, one operates on the full
scale of the output image and one on the half scale. The final loss is computed
as their average.

2.2 Training Details

Optimizer. In all our super-resolution experiments, we use the Adam [17] op-
timizer. We set the parameters for the exponentially moving average as beta1 =
0.0 and beta2 = 0.9 for the squared gradient.
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Learning Rate. We chose the learning rate 0.0001 for the generator and 0.0004
for the discriminator. The high-resolution and the shared style encoders have the
same learning rate as the generator. The low-resolution style encoder is trained
with a smaller learning rate of 0.000025.

The reason for the smaller learning rate in the low-resolution style encoder
is that DeepSEE needs to handle both low-resolution and high-resolution style
inputs. The high-resolution style encoder can extract rich style information. The
low-resolution style encoder, however, does not receive such high-frequency in-
formation. Therefore, it needs to predict them, which we consider a considerably
harder task compared to the high-resolution encoder. Therefore, we set a lower
learning rate for the low-resolution style encoder. We train both encoders al-
ternately, by feeding a low-resolution or a high-resolution image in 50% of the
iterations.

Initialization. We initialize all our networks using xavier [18] with a variance
of 0.02.

Training Time. On CelebA [19], a large dataset with 162, 770 training samples,
we train for 8 epochs, linearly decaying the learning rate in the last 3 epochs.
On CelebAMask-HQ [11, 12], whose train split consists of 24, 183 samples, we
train for 75 epochs in total, and linearly decay the learning rate in the last 25
epochs. The training time is between 3-5 days on a TITAN Xp GPU on both
datasets for 8× magnification. For the extreme upscaling factors (32×), training
takes between 7-8 days on 2 Tesla V100 GPUs.

Batch Size. We vary batch size according to the input image size and up-
scaling factors. For experiments starting at 16 × 16 low-resolution images and
magnification factor 8×, we set the batch size to 4. For the experiments that
upscale 32 × 32 images, we reduce the batch size to 1. We use batch size 2 for
all experiments with extreme upscaling factors (32×).

Noise Injection. We inject uniformly distributed noise into the style matrix
to increase the model’s robustness towards exploration of the style space, as
described in the main paper. The scale of the noise depends on the model variant.
For the independent model, we choose δ = 0.2. The guided model is trained with
δ = 0.05.

2.3 Testing

Datasets. We compute the following test scores for all datasets on the official
test splits [19, 11, 12]: PSNR, SSIM [20], LPIPS [21] and FID [22]. For CelebA,
the test dataset consists of 19, 962 samples. The CelebAMask-HQ test set con-
tains 2, 824 samples. For CelebA, the predicted segmentation masks are of size
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Table 5. Results for Semantic Segmentation on Low-resolution Images. The
segmentation network predicts 128×128 segmentation masks from 16×16 images. We
report accuracy (Acc), mean Intersection-over-Union (mIoU) and frequency-weighted
Intersection-over-Union (fwIoU).

Backbone Acc ↑ mIoU ↑ fwIoU ↑

Xception [25] 0.821 0.457 0.714
Resnet [26] 0.848 0.457 0.747
DRN [13, 14] 0.877 0.547 0.794

128 × 128, and for CelebAMask-HQ, we predict high-resolution segmentation
masks of size 512× 512.

Our guided model, as well as some of the related work [23, 24] require an
additional guiding image from the same person. For those experiments, we omit
people who only appear once in the dataset.

Pre-processing. For our models, we calculate the low-resolution input via
bicubic interpolation. For the related work, we follow their pre-processing and
use their respective downsampling method as input to their models.

The CelebA [19] images have height 218 and width 178 pixels. We center
crop the CelebA images to 178× 178 pixels and resize them to 128× 128 for the
high-resolution ground truth.

For CelebAMask-HQ [11, 12], we resize the images to the desired high-resolution
(512× 512 for the extreme super-resolution and 256× 256 for comparing to [23,
24]).

3 Additional Results

3.1 Exploration of the Solution Space

As an explorative super-resolution model, DeepSEE allows to sample in the
manifold of possible solution for a given low-resolution image. This can be very
useful in a broad range of scenarios. For example, some applications might be
more interested in high fidelity, while others need images of high perceptual
quality. To illustrate the dynamic nature of DeepSEE , we take 12 random images
and sample 1,000 different potential solutions for each of them by adding scaled
Gaussian noise to the style matrix. Fig. 5 shows some visual examples. The plots
in Fig. 6 and Fig. 7 show the resulting scores for fidelity (SSIM [20], y-axis) and
perceptual quality (LPIPS [21], x-axis).

In theory, one could sample an infinite number of times to increase the
chances of producing the desired result. However, in most cases, a relatively
small sample of 10 already contains sufficient variability. To illustrate the im-
pact of sampling upscaled variants on the fidelity and perception metrics, we
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sample 1, 10, 100 and 1,000 random solutions and mark the best-scoring sample
in terms of SSIM (Fig. 7) and LPIPS (Fig. 6). We conclude that DeepSEE can
obtain high scoring solutions for both objectives: high fidelity and perceptual
quality.

3.2 Semantic Manipulations

We provide additional semantic manipulations on images with upscaling factor
32×. Fig. 8 demonstrates multiple manipulations for the same sample. In the
group, we first close the eyes and reopen them again. For the last two versions, we
slightly open the mouth and remove the glasses. For the second example, we play
with the mouth and hair. It is interesting to note that despite the large added
hair region (light blue in the last two columns), the model produces relatively
little hair. This is most likely due to the low-resolution prior, which does not
have hair in that region. In the last example, we close the mouth in multiple
steps for a smooth transition.

In Fig. 9, we replace the teeth region with lips in the top row and in the second
row, we remove the eyebrows. In the third row, we remove the annotations for
the large hair region. One might expect the model to produce a bold head,
but instead we get a head with smooth hair. The reason for this is again the
conditioning on the low-resolution input. The low-resolution image indicates the
presence of a dark region, which is in contrast to a bright bold head. Hence,
the model decides to create some smooth hair, despite the missing annotation in
the semantic input. In the last row, we remove the annotations for eye glasses.
Remarkably, DeepSEE interprets the dark pixels from the low-resolution input
as strong makeup.

In summary, DeepSEE allows a broad range of semantic manipulations, as
long as they are roughly consistent with the low-resolution input.

3.3 Influence of Gradual Changes in the Style Matrix

We provide additional results for the independent model, where we walk in the
latent style space. Fig. 3 and Fig. 4 show results for the independent model.
We predict the style matrix from a low-resolution image (column two) and pro-
duce multiple gradually varying solutions. The middle image (column five) is
generated via the unmodified predicted style from the low-resolution image. The
images to the left (columns three and four) are generated after subtracting a
δ from the original style matrix. Similarly, we generate the images on the right
(columns six and seven) by adding a δ to the style matrix. As a result, we observe
that larger values in the style matrix (columns six and seven) tend to yield more
contrast and darker colors, in particular for lips, eyes and eyebrows. Contrary,
smaller values in the style matrix (columns three and four) produce a rather
bleached out image.
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3.4 Disentangled Manipulations

In above section (Section 3.3), we modified the full style matrix. Now, in Fig. 10,
we only manipulate some specific rows in the style matrix. This limits the changes
to the corresponding semantic region. For example, the first two rows show the
same output face, but with changes in the hair style. The changes in row three
and four are limited to the skin area. Please zoom in to see differences in skin
texture. Similarly, the rows five to seven manipulate a single semantic region
only (lips, eyebrows and eyes).

3.5 Visualizations of Extreme Super-resolution

Fig. 14, Fig. 15 and Fig. 16 visualize extreme super-resolution examples in high
resolution. For Fig. 14, some high-frequency components slightly differ (e.g . the
exact trimming of the beard, or the wrinkles on the forehead), yet our model cap-
tures the main essence and identity from the low-resolution image. Given such
extreme upscaling factors, it is not surprising that we do not always observe such
consistent results out of the box. In the second example (Fig. 15 on the right),
the upscaled image shows a young woman with a smooth skin texture. In reality,
however, the ground-truth image is a middle-aged woman with wrinkles. Wrin-
kles are a typical example of a high-frequency component that is not clear in a
low-resolution image. Most images in CelebAMask-HQ [12, 11] show young peo-
ple with smooth skin. Given the low-resolution version of a middle-aged woman,
the style encoder incorrectly inherits the bias of the dataset and predicts the
style code of a young woman. This case highlights the benefits of an explorative
super-resolution model. With DeepSEE , a user is now able to manipulate the
style for the skin and generate a solution that matches the ground-truth. Fig. 16
shows the example from the main paper in higher resolution.

3.6 Additional Comparisons with Related Work

We extend our quantitative comparison to related work in Tables 6 and 7. Qual-
itatively, we add more examples for GFRNet [23] and GWAInet [24] in Fig. 11
and Fig. 12. Finally, we provide a visual comparison to methods based on facial
landmarks [27, 28] in Fig. 13. Comparing to Kim et al., our models achieve better
results for perceptual metrics. Qualitatively, their outputs struggle with texture
and shape of the more difficult areas, like hair or teeth. This outcome is not
surprising because their face alignment ignores out-of-face regions, and without
guidance, it is much more difficult to learn concepts that only cover a small area,
as in the mouth region. In contrast, our method benefits from knowledge about
semantic regions, which allows for guidance beyond facial landmarks.

3.7 Results on Other Datasets

We provide more qualitative results on two additional datasets. The first dataset,
Flickr-Faces-HQ (FFHQ) [29], is a collection of high-resolution face images. The
second dataset contains outdoor scenes from ADE20K [30, 31].
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Table 6. Extended Quantitative Evaluation on CelebA. We copy the values
from Table 1 from the main paper and add PSNR. The scores are computed on the
full test set after center cropping and resizing to 128× 128 and the upscaling factor is
8×, starting at 16× 16.

Method PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓

Bicubic 20.67 0.5917 0.5625 159.60
FSRNet [28] (MSE) 20.03 0.5647 0.2885 54.480
FSRNet [28] (GAN) 19.75 0.5403 0.2304 55.616
Kim et al. [27] 23.29 0.6634 0.1175 11.408

ours (independent) 21.85 0.6631 0.1063 13.841
ours (guided) 21.73 0.6628 0.1072 11.253

Table 7. Extended Quantitative Evaluation on CelebAMask-HQ. We copy the
values from Table 1 from the main paper and add PSNR. We compare to models that
require a guiding image from the same person. The 32 × 32 face images are upscaled
8×.

Method PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓

Bicubic 23.13 0.6635 0.5443 125.148
GFRNet [23] 24.69 0.6726 0.3472 55.22
GWAInet [24] 24.81 0.6834 0.1832 28.79

ours (independent) 23.54 0.6770 0.1691 22.97
ours (guided) 23.94 0.6887 0.1519 22.02

For FFHQ, we downsample the images via bicubic interpolation. Then, our
segmentation network predicts high-resolution segmentation masks from low-
resolution images. For inference, we upscale the images with our independent
model trained on CelebAMask-HQ [11]. Fig. 17 shows the results (32× upscal-
ing).

The focus of our paper is on face images. However, DeepSEE could potentially
be applied to other domains, such as outdoor scenes. We show some initial results
on a subset containing outdoor scenes [31] from ADE20K [30]. We use the pre-
trained segmentation network from [31] to predict the semantic regions from
low-resolution images and retrain our style encoder and generator. Fig. 19 shows
examples for 4× upscaling.

3.8 Ablation Study

Fig. 18 shows visual examples from our ablation study. Please look at the zoomed
in areas to see subtle differences.
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Fig. 1. ResBlock Architecture. The ResBlock consists of a series of normalization
blocks (NormBlock) with a residual connection. The NormBlock injects semantics [2]
and style [3]. For semantics, the NormBlock computes scale and offset modulation pa-
rameters from the binary semantic mask. For style, we first merge the regional style
with the semantic mask yielding the styled map, from which we then compute a set of
modulation parameters. A learned weighted average combines the two sets of modu-
lation parameters, which are finally applied to the normalized input. In our ablation
study (main paper), we investigate the model performance when omitting semantics
or style.
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Fig. 2. Semantic Segmentation Results. We predict a high-resolution semantic
mask (resolution 512 × 512 for CelebAMask-HQ and 128 × 128 for CelebA) from a
low-resolution image (16× 16). Columns three and five show the high-resolution image
and column four and eight an overlay for a better comparison. The images are random
samples from the test set.
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Fig. 3. Exploring Solutions by Walking the Latent Style Space (1). We pre-
dict the style from the low-resolution image (LR) and generate five smoothly varying
solutions. The middle image (column five) uses the predicted style matrix without any
changes. For the images on the either side, we subtract (left), respectively add (right)
a linearly interpolated δ to the style matrix. We apply the same δ = 0.15 to all regions.
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Fig. 4. Exploring Solutions by Walking the Latent Style Space (2). This vi-
sualization extends Fig. 3 with more examples. Note, how large regions, like hair, are
very consistent, and small regions, such as lips and eyebrows, vary a lot more. The
reason is that the low-resolution input image provide the generator with a strong for
larger regions. In contrast, the generator has more freedom for small, uncertain regions
and relies more on the style matrix to provide appearance information. This behaviour
is wanted because it allows to preserve identities, but leaves the possibility to explore
uncertain areas.
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Fig. 5. Sampling in The Solution Space. We choose random test images and sample
a large number of outcomes from our model by adding noise to the style matrix. We
now pick 10, 100 and 1,000 random solutions and display the best-scoring image—in
terms of LPIPS distance to the ground truth [21]. The score is highlighted in the top
right of each image (lower is better). In contrast to our method, most related works
are not able to produce more than a single solution for a given input.
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Fig. 6. Explorative Oracle Selection for Perceptual Quality. We choose 12 ran-
dom test images (one image per plot) and sample many possible outcomes from our
model (illustrated as point clouds). We now pick 1, 10, 100 and 1,000 random solutions
and mark best-scoring image (in terms of LPIPS [21]) with a cross. Fig. 7 shows a sim-
ilar plot for the image with highest SSIM [20]. While Kim et al. [27] and FSRNet [28]
predict a single deterministic solution, DeepSEE can generate an infinite number of
solutions and enables the user to pick the most desirable outcome.
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Fig. 7. Explorative Oracle Selection for Image Fidelity. We apply the same
process as in Fig. 6, but sample with respect to highest SSIM [20]. In most cases, the
best out of 10 random solutions is already very close to the best sample overall.
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Fig. 8. Multiple Continuous Semantic Manipulations We show three examples,
where we modify the semantic mask multiple times. For each sample, the first semantic
mask is the original prediction and the subsequent masks have been modified. In the
first example, we manipulate eyes, mouth and glasses. In the second example, we also
add some hair to the top of the bold head. The third example shows a smooth transition
from an open to a closed mouth.
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Fig. 9. Semantic Manipulations for 32× Upscaling In the top row, we replace
the mouth region with lips, which yields a closed mouth. The second row replaces
eyebrows with skin, making them disappear. The bottom two rows show cases where the
manipulated semantic mask is inconsistent with the low-resolution input. For example,
when replacing the annotations for hair with skin, the model still renders a dark region,
resembling smooth hair. In the last row, we remove glasses, which produces a strong
makeup around the eye-region. Please read Section 3.2 for a discussion.
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Fig. 10. Disentangled Manipulations for the Independent Model. We show
multiple 8× upscaled variants, where we modify the style input for the highlighted
semantic region. We observe a high identity consistency across different variants, but
visible changes in the selected semantic regions. For this figure, we focus on high-
frequency details, which are better visible in the small, so please zoom in for better
view.
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Fig. 11. Additional Comparison to Related Work (1). We visually compare to
related models (GFRNet [23] and GWAInet [24]) for upscaling 8×. The small image
in the top right corners shows a random image from the same person, used as guiding
image. For our models, we show the predicted segmentation mask in the bottom right
corner. The last row shows the ground truth with the low-resolution input image in
the bottom right. Please zoom in for better view.
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Fig. 12. Additional Comparison to Related Work (2). We extend Fig. 11 with
additional examples. Please zoom in for better view.
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Fig. 13. Comparison with Methods Guided by Facial Landmarks. We compare
to FSR [28] and Kim et al. [27] with upscaling factor 8×, starting at 16× 16. For the
guided model, the small image in the top right shows the reference image. Our method
produces more realistic outputs, in particular for difficult regions, like hair, glasses or
earrings.
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Fig. 14. Extreme Super-resolution (1). This figure shows a larger version of the
extreme super-resolution example in the main paper. The yellow image in the bottom
right is the low-resolution input image, which is upscaled 32×.
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Fig. 15. Extreme Super-resolution (2). This figure shows a larger version of the
extreme super-resolution example in the main paper. The style encoder did not recog-
nize the low-resolution image as a middle-aged woman, and instead produces the style
code for a young woman. We discuss this observation in the main paper in more detail.
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Fig. 16. Manipulating Extreme Super-resolution Output. Note how in this case
the model generated a closed mouth in the default solution (top left). While a deter-
ministic model would fail, DeepSEE allows the user to manipulate the segmentation
mask and generate the correct version with an open mouth (top right).
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Fig. 17. Upscaling FFHQ Images [29]. We provide additional results for 32× up-
scaling on the Flickr-Faces-HQ Dataset [29]. We show the two inputs (low-resolution
image and predicted semantic mask) and the high-resolution output of our independent
model.
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Fig. 18. Visual Ablation Study Examples. The results without any additional
guidance besides the low-resolution image (prior-only) improve when adding style (LR-
style-only and HR-style-only), semantics (semantics-only), or both (independent and
guided). We highlight our final models (independent and guided) in orange and the
ground-truth in green.
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Fig. 19. Upscaling Outdoor Scenes. We show outdoor scene images from
ADE20K [30, 31] for 4× upscaling.


