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This supplementary material provides the following information: Section 1
describes a 2ORB solver for correspondences of points/features originating from
a general plane. Section 2 provides additional synthetic experiments. Section 3
provides a proof that the rotation estimation is independent of the scale for the
1SIFT solver.

1 Points on a General Plane

We consider the case where the normal of the plane is unknown and has arbitrary
orientation. It is a 6-DOF problem with respect to {θ, tx, ty, tz, nx, ny, nz}, where
θ is the rotation around the vertical axis; tx, ty, tz are the coordinates of the
translation; and nx, ny, nz define the unit-length surface normal, i.e., n2x + n2y +
n2z = 1. We choose to use two orientation-covariant features, e.g., ORB [1], which
provide six linear constraints. These constraints can be written in matrix form
as

Mg = 0 , (1)

where M is a 6× 9 coefficient matrix and the vector g contains the elements of G.
The vector g can be written as a linear combination of the three basis vectors
from the 3-dimensional null space of the matrix M as

g = x1ga + x2gb + x3gc , (2)

where we can fix x3 = 1. Substituting (2) into Ĥy = R2K
−1
2 GK1R

>
1 , the Euclidean

homography matrix Ĥy is parameterized using two unknowns {x1, x2}. The ma-
trix B is defined as

B = Ĥy − λRy
= λtn> .

(3)
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As shown in [2], the matrix B should satisfy rank(B) = 1. Matrix B is formulated
as

B =

h1 − α h2 h3 − β
h4 h5 − λ h6

h7 + β h8 h9 − α

 , (4)

where α = λ cos θ, β = λ sin θ, and θ is the yaw angle. Since rank(B) = 1, each
of the 2 × 2 submatrices of B must have zero determinant and we obtain nine
polynomial equations. Based on α2 + β2 = λ2, we can eliminate α, β from the
nine equations and obtain five constraints on the elements of Ĥy

(h1 − h9)(h5 − λ)− h2h4 + h6h8 = 0 ,

(h3 + h7)(h5 − λ)− h2h6 − h4h8 = 0 ,

λ2(h22 + h28)− (h1h8 − h2h7)2 − (h3h8 − h2h9)2 = 0 , (5)

λ2(h24 + h26)− (h1h6 − h3h4)2 − (h4h9 − h6h7)2 = 0 ,

(h5 − λ)(h27 + h29 − λ2) + (h3 − h7)h4h8 − (h1 + h9)h6h8 = 0 .

Substituting the formulation of Ĥy into (5) results in five polynomials w.r.t three
unknowns {x1, x2, λ}. Finally, using an automatic generator for the polynomial
equations, e.g., [3, 4], we obtain a template of size 24 × 34 for Gaussian-Jordan
elimination.

2 Additional Synthetic Experiments

In this section, we show the results from the synthetic experiments under side-
ways motion. Fig. 1 reports the rotation and translation errors for points on
the ground plane. The top row shows the performance under image noise with
different standard deviations. The bottom row shows the performance with in-
creased directional noise and constant image noise of 2 pixel standard deviation.
Fig. 2 reports the rotation and translation errors for points on a vertical plane.
The top row shows the performance under image noise with different standard
deviations. The bottom row shows the performance with increased directional
noise and constant image noise of 2 pixel standard deviation. Fig. 3 reports the
rotation and translation errors for points on a general plane. The top row shows
the performance under image noise with different standard deviations. The bot-
tom row shows the performance with increased directional noise and constant
image noise of 2 pixel standard deviation.

3 Proof that the Rotation Estimation is Independent of
the Feature Scale for the 1SIFT Solver

Assume that the y-axes of the cameras have been aligned with the gravity direc-
tion. We have 1 SIFT correspondence: m1 = [u1, v1, ϕ1, q1]↔ m2 = [u2, v2, ϕ2, q2].
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Fig. 1: Comparing the proposed 1SIFT solver with the 2PT solver of Saurer et
al. [5] when points are on the ground (2PC), the three-point essential matrix-
based solver of Fraundorfer et al. (3PC Essential) [6] and the five-point solver
of Nister (5PC) [7]. The cameras undergo sideways motions. Top: Performance
under increasing pixel noise. (a–b) Rotation and translation errors with addi-
tional noise added to SIFT orientations. (c) Translation error with additional
noise added to SIFT scales. Bottom: Performance under increased directional
noise and constant image noise of 2 pixel standard deviation. (d–e) Rotation and
translation errors with additional noise added to SIFT orientations. (f) Trans-
lation error with additional noise added to SIFT scales.

A horizontal plane-induced Euclidean homography Hy should obey

h4 = 0, h6 = 0, h1 − h9 = 0, h3 + h7 = 0 . (6)

In this case, we can write

Hy =

h1 h2 h3
0 h5 0

-h3 h8 h1

 , (7)

where h1 = cos θ, h2 = tx, h3 = sin θ, h5 = 1 + ty, h8 = tz. Based on the
homography constraint for points

[u2, v2, 1]×Hy[u1, v1, 1]> = 0 , (8)

where [u2, v2, 1]× is the skew symmetric matrix for the vector [u2, v2, 1]>, we
have two linear constraints

h1v2 − h5v1 − h3u1v2 + h8v1v2 = 0 , (9)

h5u2v1 − h1u1v2 − h3v2 − h2v1v2 = 0 . (10)
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Fig. 2: Comparing the proposed 1SIFT+1PC solver with the three-point solver
of Saurer et al. [5] when points are on a vertical plane (3PC Vertical), 3PC
Essential [6] and 5PC [7]. The cameras undergo sideways motions. Top: Rota-
tion and translation errors under increased pixel noise. Bottom: Rotation and
translation errors under increased directional noise and constant image noise of
2 pixel standard deviation.

Using (6), the SIFT constraints are simplified to

h8u2s1s2−h3u2s2c1−h8v2s1c2+h3v2c1c2−h2s1s2−h1s2c1+h5s1c2 =0 , (11)

h27u
2
1q2 + 2h7h8u1v1q2 + h28v

2
1q2 + h5h7u2q1 − h2h7v2q1 + (12)

h1h8v2q1 + 2h7h9u1q2 + 2h8h9v1q2 − h1h5q1 + h29q2 = 0 ,

where ci = cos(ϕi), si = sin(ϕi). Note that h2 and h8 can be formulated by
{h1, h3, h5} using (9) and (10). Then substituting the formulation into (11), we
obtain the following equation

h3v2s1s2 + h1v
2
2s1c2 − h1v1v2c1s2 + h1u1v2s1s2 − h1u2v2s1s2+

h3v1v
2
2c1c2 − h3u1v22s1c2 + h3u1u2v2s1s2 − h3u2v1v2c1s2 = 0 ,

(13)

where h5 is also eliminated. Now equation (13) contains only two elements of Hy,
i.e., h1 and h3. Note that these two elements represent the rotation of the camera
around the y-axis, i.e., h1 = cos θ and h3 = sin θ. This means that h21 + h23 = 1
and, therefore, θ can be computed from (13). Since equation (13) does not contain
the scale parameters of features q1 and q2, it follows that the camera rotation
estimation is independent of the scale parameters of the features.
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Fig. 3: Comparing the proposed 2ORI solver with the 3PC Essential [6] and
5PC [7]. The cameras undergo forward motions. Top: Rotation and translation
errors under increased pixel noise. Bottom: Rotation and translation errors
under increased directional noise and constant image noise of 2 pixel standard
deviation.
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