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1 Overview

This document contains supplemental material for the paper Best Buddies Reg-
istration for Point Clouds. It includes:

1. Diagram of implementation of BBR as a Neural Network (figure 1).

2. Additional experimental results

3. Definitions of angular and translational error

Fig. 1: Implementation of Best-Buddies Registration (BBR) as a Neural Net-
work. Registration of a pair of point clouds is equivalent to ”training” this neural
network. Unlike in a typical neural network setting, the weights are not learned
from a training set. Instead, performing ”training” (optimization) on a pair of
input point clouds P and Q is equivalent to a gradient-descent search for the
optimal rigid transformation between them (equation 1 in main paper). Each
forward pass calculates the loss for the current value of R = R(θ, φ, ψ) and
t = (x, y, z). The back propagation step updates the parameters to improve the
match between P and Q. The network’s weights hold the result of the optimiza-
tion: the 6 parameters of the transformation, and the temperature parameter α
of the soft-argmin function.
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Fig. 2: TUM-RGB-D pair used in experiment in main paper: Left - RGB-
D image from the TUM-RGBD data set [1]. This data is captured by the Kinect
sensor, and exhibits warp and scanning noise. Right - Sampled point clouds of
1000 points of the same scene, emphasizing the small area of overlap.

2 Additional Experimental Results

Run-time. Table 1 shows the time it takes to run a single iteration of the
different variants of our loss function, as a function of the number of points
(measured with a PyTorch implementation running on a GTX 980 Ti GPU).
All of the algorithm variants typically converge in few hundreds of iterations,
depending on the learning rate.

Points BBR-softBBS BBR-softBD BBR-N BBR-F

200 4 4 4 6
500 4 4 6 6
1000 8 8 13 8
5000 140 140 240 24
30000 - - - 125

Table 1: Average running time of a single gradient descent iteration in mil-
liseconds, as a function of the number of points in the cloud. Due to memory
limitations, only BBR-F is able to handle 30000 points.

Convergence. In the accuracy section of the paper, we demonstrated the ability
of BBR-softBD, BBR-N and BBR-F to handle cases where the initial error is
of the order of up to 10◦. In this section we show that BBR-softBBS can be
used to register in situations where the initial error is much larger. This is due
to its large basin of convergence. In this section we use the same Bunny, Horse
and Dragon models that were used in the accuracy test, this time with a large
random rotation in range θrot∈ [30, 60] degrees, and run BBR-softBBS. We set
∆trans =0.005m and T =20. As can be seen in Figure 3, BBR-softBBS manages
to reduce the rotation error significantly, to below 3◦, in all experiments.

Measurement noise. In the main paper we presented an experiment using
a pair of scans from the TUM RGB-D dataset [1], shown in figure 2. Here we
present registration results on an additional pair of scans, 1305031794.813436
and 1305031794.849048 of the freiburg1 xyz sequence from the TUM RGB-D
(Figure 4). We sample 1500 points from each, and experiment with adding a
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Fig. 3: Convergence test: Top - Point clouds examples as used in the accuracy
test. In this experiment, θrot was randomized in range = [30, 60] degrees. In the
point cloud visualizations above, the Bunny (left) is rotated by 50◦ . The Horse
(middle) is rotated by 30◦. The Dragon (right) is rotated by 45◦. Center and
Bottom - angular and translation error as a function of the number of points.
In all cases, BBR-softBBS (labeled BBS) manages to reduce the large initial
rotation error significantly.
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random rotation of up to 5◦ around a random axis. We repeat this 50 times and
perform registration for each, showing the cumulative distribution of the final er-
rors in Figure 5. BBR-softBD (labeled BBR) performs considerably better than
either Sym-ICP [2] or CPD [3], showing its robustness to realistic measurement
noise and occlusions.

Fig. 4: Additional TUM-RGB-D pair: Left - RGB-D image from the TUM-
RGBD data set [1]. This data is captured by the Kinect sensor, and exhibits
warp and scanning noise. Right - Sampled point clouds of 1500 points of the
same scene.

Fig. 5: Convergence Analysis (TUM): The cumulative distribution of errors over
50 repeats. The x-axis is the error threshold and the y axis is the fraction of
results that achieved an error smaller than this threshold. BBR-softBD is labeled
BBR
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3 Definitions of Angular and Translational Error

In all our experiments, we follow Lu [4] in defining angular distance as chordal
distance [5], and translational distance as the Euclidean norm of the difference
between two translation vectors.
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