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1 CIFAR

1.1 Training setup

We follow standard hyperparameters used for fine-tuning [1–3]: 30 epoch learn-
ing rate 1e−3 on SGD optimizer. That is except comparison with Chen et al. [4]
as the authors train the pruned model with the standard hyperparameters used
for training from scratch: 160 epoch with initial learning rate 0.1 and decays on
epoch [81, 122] by 0.1.
Layer pruning: For layer pruning, we calculate layer importance as explained
in the paper using a one-shot pass over the training set.
Filter pruning: For filter pruning, we prune total 500 and 100 filters in VGG19
and ResNet56 respectively for global-based filter importance criteria such as
weight norm, Taylor, Feature maps. We follow the same iterative pruning hyper-
parameter setup as Taylor [1]. We prune 100 filters each 10 minibatches. Other
pruning methods, we report results using their published code with default setup
setting such as slimming [5] and ECC[6].

1.2 Ablation

Number of filters pruned. We show accuracy degradation on aggressive fil-
ter pruning and the achieved latency reduction compared to LayerPrune. Fig.
1 shows filter pruning under different number of filters pruned (i.e 100:400) and
latency reduction on GPU 1080Ti on batch size=64. Dots are connected based
on ascending order of number of filters pruned. It is apparent that pruning more
filters doesn’t necessarily decrease latency and the relationship between pruned
filters and latency reduction is non-linear. In CIFAR-100, latency reduction ≈
8% results in large drop in accuracy from 71.2% to 67%. It is worth noting that
LayerPrune is able to achieve up to 35% latency reduction with accuracy 71%.
Similarly on CIFAR-10, pruning 50% of the filters can only achieve around 5%
latency reduction.
As for VGG19, the maximally achieved pruning latency reduction is 20% to
maintain the accuracy from baseline; while LayerPrune finds better models than
baseline and filter pruned methods. On comparison with the random experiment
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shown in Section (4.2) in main paper, filter pruning methods hover around base-
line accuracy and fails to discover other regularized models compared to layer
pruning.
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(a) CIFAR-100/ResNet56
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(b) CIFAR-10/ResNet56
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(c) CIFAR-100/VGG19-BN

Fig. 1: Latency reduction of different filter pruning methods under different prun-
ing ratios. Star in each method indicates the lowest pruning ratio (starting point).
Dots are connected based on ascending order of number of filters pruned.

One-shot vs iterative. We also conducted experiments on one-shot vs iterative
filter pruning to be comparable with our one-shot LayerPrune pruning step.
Our reported results on iterative filter pruning follows the same setup used in
literature [1], that is prune 10% each pruning iteration. Table 1 shows results of
iterative vs one-shot (pruning total number of filters at once). Consistent with
[1, 2], iterative pruning (i.e re-evaluating criterion of filter after each prune) gives
a slightly better accuracy. That shows that it is mandatory for filter pruning to
be iterative.
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Dataset/Model Pruning ratio Criterion Iterative One-shot

CIFAR100/ResNet56 (71.20%)

20%

Weight Norm 70.18 70.00
Feature Maps 67.77 67.7
Taylor 70.51 70.01
Batchnorm 70.79 70.36
Median 70.34 70.00

30%

Weight Norm 70.36 69.1
Feature Maps 67.25 66.34
Taylor 70.46 68.27
Batchnorm 70.14 69.4
Median 70.25 68.68

CIFAR10/ResNet56 (93.55%) 20%

Weight Norm 92.35 92.31
Feature Maps 91.94 91.9
Taylor 92.88 92.8
Batchnorm 92.79 92.76
Median 92.57 92.53

Table 1: Evaluation of iterative and one-shot filter pruning. Baseline accuracy
indicates in parentheses.

To analyze the sensitivity of ranking by imprinting on layer pruned mod-
els, we calculated Spearman’s rank-order correlation between layer ranking by
one-shot and layer ranking by re-calculating ranks iteratively after each pruning
step. Table 2 shows accuracy of one-shot and iterative layer pruning and their
ranking correlation. The Spearman column indicates high positive relationship
between both ranking methods demonstrating the robustness of ranking by im-
printing. We observed the difference in ranking is between similarly important
layers and this explains why accuracy isn’t significantly affected even as corre-
lation decreases, and it shows the sufficiency of one-shot rank estimation with
imprinting.

CIFAR-10 ResNet-56 (93.55%) CIFAR-100 ResNet-56 (71.2%)

N pruned One-shot (%) Iterative (%) Spearman One-shot (%) Iterative (%) Spearman

1 93.32 93.32 0.99 71.10 71.10 0.96

2 93.28 93.31 0.97 70.93 70.94 0.97

3 93.17 93.15 0.96 70.88 70.86 0.94

4 93.10 93.03 0.96 70.64 70.71 0.91

Table 2: Spearman rank correlation between one-shot and iterative ranking with
imprinting.
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1.3 Architectures

Architectures for results on VGG19-BN are presented in Table 3. All layer
pruning methods mostly agree on removing same layers. While in filter pruning
methods, as minimum number of filters are required per layer, the early layers
are pruned as well and thus hurting accuracy.

Method Accuracy Architecture

VGG19 (baseline) 73.11 [64, 64, ’M’, 128, 128, ’M’, 256, 256, 256, 256, ’M’, 512, 512, 512, 512, ’M’, 512, 512, 512, 512, ’M’]

Weight norm [7] 73.01 [47, 64, ’M’, 127, 128, ’M’, 256, 256, 256, 256, ’M’, 512, 508, 494, 472, ’M’, 502, 512, 499, 509, ’M’]
ECC [6] 72.71 [50, 23, ’M’, 128, 128, ’M’, 254, 254, 254, 254, ’M’, 508, 311, 164, 131, ’M’, 158, 319, 509, 64, ’M’]
Layer pruning2 73.60 [64, 64, ’M’, 128, 128, ’M’, 256, 256, 256, 256, ’M’, 512, 512, 512, 512, ’M’, 0, 0, 512, 512,’M’]
Layer pruning5 74.80 [64, 64, ’M’, 128, 128, ’M’, 256, 256, 256, 256, ’M’, 512, 512, 0, 0, ’M’, 0, 0, 0, 512, ’M’]

Slimming [5] 72.32 [42, 64, ’M’, 125, 128, ’M’, 255, 256, 255, 256, ’M’, 433, 291, 82, 46, ’M’, 45, 44, 62, 367, ’M’]
Layer pruning2 73.60 [64, 64, ’M’, 128, 128, ’M’, 256, 256, 256, 256, ’M’, 512, 512, 512, 512, ’M’, 0, 0, 512, 512,’M’]
Layer pruning5 74.80 [64, 64, ’M’, 128, 128, ’M’, 256, 256, 256, 256, ’M’, 512, 512, 0, 0, ’M’, 0, 0, 0, 512, ’M’]

Taylor [1] 72.61 [61, 64, ’M’, 127, 128,’M’, 256, 256, 256, 256,’M’, 512, 505, 383, 205,’M’, 109, 118, 422,482, ’M’]
Layer pruning2 73.60 [64, 64, ’M’, 128, 128, ’M’, 256, 256, 256, 256, ’M’, 512, 512, 512, 0, ’M’, 0, 512, 512, 512,’M’]
Layer pruning5 74.80 [64, 64, ’M’, 128, 128, ’M’, 256, 256, 256, 256, ’M’, 512, 512, 0, 0, ’M’, 0, 0, 0, 512, ’M’]

Table 3: Architectures of different pruning methods on VGG19-BN CIFAR-100.
x in Layer pruningx indicates number of layers removed. Number of filters per
layer is shown where 0 indicates removed layers and ’M’ indicates max pooling
operation.

ResNet56 has 3 groups of 9 basicblocks where each basicblock has two 3x3
convolution layer. We show block importance based on each criterion for CIFAR-
10 in Fig. 2 and CIFAR-100 in Fig. 3. Weight magnitude, Batch Normalization
and Taylor magnitude criteria have similar block ordering that focus more on the
early layers. On the other hand, feature maps criterion is more biased to pruning
the deeper layers. This stems from the fact that as we go deeper, feature maps
tend to be sparser and so their importance calculated using Taylor on feature
maps [8] will lead to a bias and failure in deeper models. Ensemble selects layers
that are constantly voted as not important (e.g CIFAR-10 blocks 6,4,5), however,
it is sensitive to individual errors. For example in CIFAR-10, ensemble prioritizes
pruning block17 over block7 even when the latter has lower ranks in most of the
criteria but the large ranking gap in one criterion, that is feature maps criterion,
resulted in block17 to have lower rank.
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(a) Weight norm (b) Weight Taylor

(c) Batch Normalization (d) Batch Normalization Taylor

(e) Feature maps (f) Ensemble

Fig. 2: Plots of block importance using different layer criterion on CIFAR-10
ResNet56. Legend on each sub-plot shows sorted blocks in ascending order based
on importance.
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(a) Weight norm (b) Weight Taylor

(c) Batch Normalization (d) Batch Normalization Taylor

(e) Feature maps (f) Ensemble

Fig. 3: Plots of block importance using different layer criterion on CIFAR-100
ResNet56. Legend on each sub-plot shows sorted blocks in ascending order based
on importance.
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2 ImageNet

2.1 Training setup

Filter pruning. We follow the same setup as Taylor [1] for global-based filter
pruning, we prune 100 filters each 30 minibatches for 10 iterations. For methods
like ECC [6], slimming [5], SSS [3] and HRank [9], we report using their default
hyperparameter either reported in their papers or using their code. We fine-tune
using the same setup as previously mentioned in CIFAR.

2.2 Ablation

Aggressive layer pruning. In this section we show results on small light-
weight models with accuracy drop from baseline to show the effectiveness of Lay-
erPrune under high pruning ratio. We compare pruned models from ResNet50
and ResNet34 with handcrafted small variants of ResNet. Results are presneted
in Table 4. We achieve 1.44% better accuracy on similar latency as ResNet34
(74.74 vs 73.30). In addition, we match ResNet34 accuracy (73.39 vs 73.30) with
1.2x speedup. Similarly, we match ResNet18 latency with 0.5% higher accuracy.

Model Accuracy FPS (1080Ti) FPS (Xavier)

ResNet50 76.14 129 62

LayerPrune6-ResNet50 74.74 214 108
LayerPrune7-ResNet50 74.31 239 114
LayerPrune8-ResNet50 73.39 248 122
ResNet34 73.30 206 105

LayerPrune8-ResNet34 70.32 364 168
LayerPrune9-ResNet34 69.00 405 181
ResNet18 69.76 360 169

Table 4: Accuracy with small handcrafted ResNets on similar frames per second.

Training from scratch Traning from scratch for ImageNet is done for 90
epochs with 0.1 initial lr, 0.1 lr decay each 30 epochs. Fine-tuning is done for 30
epochs with 1e−3 initial lr, 0.1 lr decay each 10 epoch. In Table 5, we compare
our LayerPrune models trained from scratch and fine-tuned. Fine-tuned models
consistently outperform training from scratch of the same pruned architecture.

Training speed End-to-end optimization filter pruning methods such as slim-
ming require training from scratch with sparsity inducing terms in the training.
This requires 90 epochs in ImageNet. All methods, including ours, fine-tuned for
30 epochs. Hence, our layer-pruning is 4 times faster than these methods.
For iterative filter pruning methods we observed an average 1.9x speedup in the
fine-tuning phase in layer-pruned models compared to fine-tuning phase in filter
pruning. The training is conducted on 4 x V100 GPUs.
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N Blocks pruned Fine-tuned Scratch

1 76.72 75.70

2 76.53 75.96

3 76.40 75.80

4 75.82 75.0

Table 5: Accuracy of our ResNet50 pruned models trained from scratch and
fine-tuned.

2.3 Architectures

ResNet50 Details of block importance for each criterion is shown in Fig. 4.
Unlike criteria that depend on filter statistics like weight values or gradients,
imprinting asses quality of a block based on accuracy gained. This handles the
network’s distribution discrepancy in these statistics.
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(a) Weight norm (b) Weight Taylor

(c) Batch Normalization (d) Feature maps

(e) Ensemble (f) Imprinting

Fig. 4: Plots of block importance (normalized for visualization) using different
layer criterion on ImageNet ResNet50. Legend on each sub-plot shows sorted
blocks in ascending order based on importance.
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