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1 Channel Recurrent Attention Module Analysis

In the channel recurrent attention module, we use an LSTM to jointly capture
spatial and channel information. In the implementation, we feed the spatial
vectors to the LSTM sequentially, such that the recurrent operation of the LSTM
captures the channel pattern while the FC layer in the LSTM has a global
receptive field of each spatial slice. Since the LSTM is a temporal model and its
output depends on the order of the input sequences, we analyze how the order
of the input spatial vectors affects the attention performance and whether the
LSTM has the capacity to learn the pattern in the channel dimension of the
feature maps.

In the main paper, we feed the spatial vectors to the LSTM sequentially in
a “forward” manner (i.e., from x̂1 to x̂ c

d
). We continue to define other con-

figurations to verify how the sequence order affects the attention performance.
The “reverse” configuration: feeding the spatial vectors from x̂ c

d
to x̂1 to the

LSTM, whose direction is opposite to that in the “forward” configuration. In the
“random shuffle” configuration, we first randomly shuffle the order of spatial
vectors in x̂, and then feed them to the LSTM sequentially. Then we recover the
produced ĥ and generate the attention maps. This “random shuffle” is operated
in each iteration during training. The last configuration, we term “fixed per-
mutation”. In this configuration, we randomly generate a permutation matrix
(i.e., p1) and apply to x̂, to produce x̂p (i.e., x̂p = p1x̂). Then we feed each

row of x̂p to the LSTM and obtain ĥ
p

and apply another permutation matrix

p2, as ĥ = p2ĥ
p
. Here, p2 = p>1 and p1, p2 are fixed during training. For this

configuration, we perform the experiments twice with two different permutation
matrices.

We empirically compare the aforementioned four configurations on the iLIDS-
VID and the MARS datasets, shown in Table 1. From Table 1, we observe that
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the LSTM does indeed learn useful information along the channel dimension
via the recurrent operation (i.e., row (ii), (iv), (v) and (vi)) when the order of
the spatial vectors is fixed during training. However, if we randomly shuffle the
order of the spatial vectors before feeding to them to the LSTM in each iteration
(i.e., row (iii)), the LSTM fails to capture useful information in the channel, and
the attention mechanism even degrades below the performance of the baseline
network on the MARS dataset (i.e., row (i)).

In this analysis, we can draw the conclusion that the order of the spatial
vectors has a minor influence on the attention performance when the order of
spatial vectors is fixed. However, it is still difficult to figure out the optimal
order of spatial vectors. In all experiments, we empirically use the “forward”
configuration in our attention mechanism.

Table 1. Channel recurrent attention module analysis on the iLIDS-VID [1] and the
MARS [2] datasets.

iLIDS-VID MARS

Sequences order R-1 mAP R-1 mAP

(i) No Attention 80.0 87.1 82.3 76.2

(ii) Forward 87.0 90.6 86.8 81.6
(iii) Reverse 86.8 90.7 86.3 81.2
(iv) Random Shuffle 82.7 88.8 79.2 72.4
(v) Fixed Permutation 1 86.4 89.3 85.8 80.4
(vi) Fixed Permutation 2 86.7 90.3 86.1 80.9

Intuitively, we further use Bi-LSTM to replace the LSTM in the channel re-
current attention module, to verify whether the sophisticated recurrent network
is able to learn more complex information in the channel dimension. Table 2
compares the difference of LSTM and Bi-LSTM in channel recurrent atten-
tion module. This study shows that the attention w/ Bi-LSTM cannot brings
more performance gain than the that w/ LSTM. However, the Bi-LSTM almost
doubles the computation complexities and parameters. Thus we choose regular
LSTM in our attention module.

2 Set Aggregation Cell Analysis

In this section, we show the analysis of modeling the video clip as a set and the
set aggregation cell acting as a valid set function.

In our channel recurrent attention network, we sample t frames in a video
sequence randomly, to construct a video clip (i.e., [T 1, . . . , T t], T j ∈ RC×H×W )
with its person identity as label (i.e., y). In such a video clip, the frames are
order-less and the order of frames does not affect the identity prediction by
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Table 2. Comparison of LSTM and Bi-LSTM in channel recurrent attention module on
the iLIDS-VID [1] and the MARS [2] datasets. FLOPs: the number of FLoating-point
OPerations, PNs: Parameter Numbers.

iLIDS-VID MARS Comparison

Model R-1 mAP R-1 mAP FLOPs PNs

(i) No Attention 80.0 87.1 82.3 76.2 3.8 × 109 25.4 × 106

(ii) CRA w/LSTM 87.0 90.6 86.8 81.6 0.18 × 109 2.14 × 106

(ii) CRA w/ Bi-LSTM 87.2 90.2 85.4 81.0 0.32 × 109 4.25 × 106

the network during training. The video frames are fed to the deep network and
encoded to a set of frame feature vectors (i.e., F = [f1, . . . ,f t],f j ∈ Rc), then
the frame features are fused to a discriminative clip representation (i.e., g) by
the aggregation layer (i.e., set aggregation cell).

The set aggregation cell realizes a permutation invariant mapping, gκ : F →
G from a set of vector spaces onto a vector space, such that the frame features
(i.e., F = [f1, . . . ,f t],f j ∈ Rc) are fused to a compact clip representation (e.g .,
g ∈ Rc). If in this permutation invariant function (i.e., gκ), the input is a set,
then the response of the function is invariant to the ordering of the elements of
its input. This property is described as:

Property 1. [3] A function gκ : F → G acting on sets must be invariant to
the order of objects in the set, i.e., for any permutation Π : gκ

(
[f1, . . . ,f t]

)
=

gκ
(
[fΠ(1), . . . ,fΠ(t)]

)
.

In our supervised video pedestrian retrieval task, it is given t frame samples
of T 1, . . . , T t as well as the person identity y. Since the frame features are fused
using average pooling, shown in Fig. 1, thus it is obvious that the pedestrian
identity predictor is permutation invariant to the order of frames in a clip (i.e.,
fθ([T

1, . . . , T t]) = fθ([T
Π(1), . . . , TΠ(t)]) for any permutation Π). We continue

to study the structure of the set function on countable sets and show that our
set aggregation cell satisfies the structure of the set function.

Theorem 1. [3] Assume the elements are countable, i.e., |X| < N0. A function
gκ : 2X → Rc, operating on a set F = [f1, . . . ,f t] can be a valid set function,
i.e. it is permutation invariant to the elements in F , if and only if it can be
decomposed in the form β

(∑
f∈F γ(f)

)
, for suitable transformations β and γ.

In our deep architecture, we use an aggregation layer (i.e., set aggregation
cell) to fuse frame features in a countable set (i.e., |F | = t), and this aggregation
layer is a permutation invariant function. We use a simple case as an example,
shown in Fig. 2(a). In this architecture, the γ function is a mapping: Rc×t →
Rc×t, formulated as:

G = γ(F ) = σ
(
$
(
Avg(F )

))
� F , (1)
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Fig. 1. The pipeline of fusing frame features. The frame features are fused by using
average pooling; thus the pedestrian identity predictor is permutation invariant to the
order of frames in a clip.

where G = [g1, . . . , gt] and F = [f1, . . . ,f t]. Thereafter, average pooling oper-
ates on the feature set, to realize the summation and β function. Since the γ
and β functions are all permutation invariant, the set aggregation cell is a valid
set function. Similarly, in Fig. 2(b), the γ function is realized as:

G = γ(F ) = σ
(
$
(
Max(F )

))
� F , (2)

which also satisfies the condition of permutation invariance of its input. In the
main paper, we evaluated the performance of two vanilla aggregation cells em-
pirically and we observed that the aggregation cell with Avg function is superior
to that with the Max function.

(a) Set aggregation cell with γ containing the Avg function.

(b) Set aggregation cell with γ containing the Max function.

Fig. 2. Two set aggregation cells following from β
(∑

f∈F γ(f)
)
.

Since the Avg and the Max operations are permutation invariant, their sum-
mation is also permutation invariant; thus we continue to develop our set aggre-
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gation in the main paper, shown in Fig. 3. The γ function is formulated as:

G = γ(F ) = σ
(
$
(
Avg(F )

)
⊕ ψ

(
Max(F )

))
� F . (3)

Fig. 3. The architecture of the proposed set aggregation cell in the main paper.

The above analysis shows the necessity to model the frame features in a clip
as a set and that the set aggregation cell is a valid set function. In the main
paper, we also verify the effectiveness of the set aggregation cell.

3 Loss Function

Triplet Loss. To take into account the between-class variance, we use the triplet
loss [4], denoted Ltri, to encode the relative similarity information in a triplet. In
a mini-batch, a triplet is formed as {T i,T

+
i ,T

−
i }, such that the anchor clip T i

and the positive clip T+
i have the same identity, while the negative clip T−i has a

different identity. With the clip feature embedding, the triplet loss is formulated

as: Ltri = 1
PK

∑PK
i=1

[
‖F i − F+

i ‖ − ‖F i − F−i ‖ + ξ
]
+

, where ξ is a margin and

[·]+ = max(·, 0). A mini-batch is constructed by randomly sampling P identities
and K video clips for each identity. We employ a hard mining strategy [5] for
triplet mining.
Cross-entropy Loss. The cross-entropy loss realizes the classification task in
training a deep network. It is expressed as: Lsof = 1

PK

∑PK
i=1 −log

(
p(yi|F i)

)
,

where p is the predicted probability that F i belongs to identity yi. The classifica-
tion loss encodes the class specific information, which minimizes the within-class
variance. The total loss function is formulated as: Ltot = Lsof + Ltri.

4 Description of Image Pedestrian Datasets

In the main paper, we evaluate our attention module on image person re-ID tasks
on the CUHK01 [6] and the DukeMTMC-reID [7] datasets. The description of
the two datasets is as follows:
CHUK01 contains 3, 884 images of 971 identities. The person images are col-
lected by two cameras with each person having two images per camera view
(i.e., four images per person in total). The person bounding boxes are labelled
manually. We adopt the 485/486 training protocol to evaluate our network.
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DukeMTMC-reID is the image version of DukeMTMC-VideoReID dataset for
the re-ID purpose. It has 1, 404 identities and includes 16, 522 training images
of 702 identities, 2, 228 query and 17, 661 gallery images of 702 identities. The
pedestrian bounding boxes are labeled manually.

We use a single query (SQ) setting for both datasets when calculating the
network prediction accuracy.

5 Pedestrian Samples of Datasets

In the main paper, we have evaluated our attention mechanism across four video
person re-ID datasets and two image person re-ID datasets. Here, we show some
samples from the aforementioned datasets, in Fig. 4 and Fig. 5. In each pedes-
trian bounding box, we use a black region to cover the face parts for the sake of
privacy.

(a) Samples from the PRID-2011
dataset.

(b) Samples from the iLIDS-VID
dataset.

(c) Samples from the MARS dataset. (d) Samples from the DukeMTMC-
VideoReID

Fig. 4. Samples from: (a) PRID-2011 dataset [8], (b) iLIDS-VID dataset [1], (c) MARS
dataset [2] and (d) DukeMTMC-VideoReID dataset [9]. In each dataset, we sample
two video sequences from one person, and the video sequences are captured by disjoint
cameras. For the sake of privacy, we use a black region to cover the face in each frame.
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(a) Samples from the CUHK01 dataset. (b) Samples from the DukeMTMC-reID
dataset.

Fig. 5. Samples from: (a) CUHK01 [6], and (b) DukeMTMC-reID [7]. In each dataset,
we sample two images from each person, and the video sequences are captured by
disjoint cameras. For the sake of privacy, we use a black region to cover the face in
each frame.

6 Ablation Study for the Baseline Network

In this section, extensive experiments are performed to choose a proper setting
for the baseline network, including the number frames to use from a video clip,
dimensionality of the video feature embedding and the training strategies (e.g .,
pre-training and random erasing [10]). This ablation studies are performed on
the iLIDS-VID [1] and the MARS [2] datasets.
Number of Frames in Video Clip. First, we perform experiments with a
different number of frames (i.e., t) in a video clip. When t = 1, it is reduced to
the single image-based model. From Table 3, we observe that t = 4 achieves the
highest accuracy in both R-1 and mAP values. Thus we use t = 4 in our work.

Table 3. Effect of the number of frames in a video clip on the iLIDS-VID [1] and the
MARS [2] datasets.

iLIDS-VID MARS

Num of Frames R-1 mAP R-1 mAP

(i) t = 1 76.3 84.2 79.2 74.3
(ii) t = 2 79.3 86.1 81.5 75.6
(iii) t = 4 80.0 87.1 82.3 76.2
(iv) t = 8 79.6 86.4 82.1 76.0

Dimensionality of Video Feature Embedding. The dimension, i.e., Dv,
of the video feature embedding is evaluated and illustrated in Table 4 on both
the iLIDS-VID [1] and the MARS [2] datasets. On iLIDS-VID, it is clear that
the video feature embedding with Dv = 1024 performs better for both R-1
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and mAP accuracy. Therefore, we choose Dv = 1024 as the dimension of the
feature embedding across all datasets. On the MARS dataset, we observe that
R-1 has the peak value when Dv = 512, while mAP achieves the peak value
when Dv = 1024. However, the mAP value in Dv = 512 is much lower than that
in Dv = 1024. Thus we also choose Dv = 1024 for MARS.

Table 4. Effect of the dimensionality of video feature embedding on the iLIDS-VID [1]
and the MARS [2] datasets.

iLIDS-VID MARS

Dim of Embedding R-1 mAP R-1 mAP

(i) Dv = 128 72.0 81.0 82.0 75.1
(ii) Dv = 256 73.3 82.5 82.4 76.3
(iii) Dv = 512 76.6 85.5 82.6 75.2
(iv) Dv = 1024 80.0 87.1 82.3 76.2
(v) Dv = 2048 79.6 86.5 82.0 75.6

Training Strategies. We further analyze the effect of different training strate-
gies of the deep network (e.g ., random erasing, pre-training model) in Table 5
on both the iLIDS-VID and the MARS datasets. Here, fθ denotes the backbone
network (see Fig. 3 in the main paper). Pre-T and RE denote pre-training on
imageNet [11] and random erasing data augmentation, respectively. This table
reveals that both training components of pre-training (i.e., Num (ii)) and ran-
dom erasing (i.e., Num (iii)) improve the R-1 and mAP values, compared to
the baseline (i.e., Num (i)). In addition, the network continues to improve its
performance when both training strategies are employed, showing that those
two training strategies work in a complementary fashion. Thus we choose the
network with the pre-trained model and random erasing as our baseline network.

Table 5. Effect of the different training strategies on the iLIDS-VID [1] and the
MARS [2] datasets. fθ, Pre-T and RE denote backbone network, pre-training and
random erasing, respectively

iLIDS-VID MARS

Model R-1 mAP R-1 mAP

(i) fθ 60.8 67.6 76.4 71.8
(ii) fθ + Pre-T 70.8 81.6 81.1 75.4
(iii) fθ + RE 65.3 74.6 78.8 74.5
(iv) fθ + Pre-T + RE 80.0 87.1 82.3 76.2
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7 Ablation Study for Set Aggregation Cell

In this section, we perform experiments for parameter selection in the set aggre-
gation cell.
Effectiveness of Dimension Reduction in the Self-gating Layers. The
dimension of the hidden layer in the self-gating layers (i.e., $ and ψ) of the set
aggregation block is studied. The dimension of the hidden layer is reduced by
a factor of r (i.e., Dhid = 2048/r). Table 6 reveals that setting r = 16 achieves
good performance in both datasets; thus we use this value for the set aggregation
cell.

Table 6. Effect of dimension reduction in the self-gating layers on the iLIDS-VID [1]
and the MARS [2] datasets.

iLIDS-VID MARS

Reduction Ratio R-1 mAP R-1 mAP

(i) Only CRA 87.0 90.6 86.8 81.6

(ii) r = 2 88.2 91.2 87.2 82.1
(iii) r = 4 88.4 91.6 87.6 82.4
(iv) r = 8 88.5 91.7 87.9 82.8
(v) r = 16 88.7 91.9 87.9 83.0
(vi) r = 32 87.9 90.9 87.6 82.2

8 Visualization

Fig. 6 shows additional visualizations of feature maps for qualitative study. In the
visualizations, we can clearly observe that our attention module has the capacity
to focus more on the foreground areas and ignore some background areas, which
boosts the baseline network to achieve the state-of-the-art performance on the
video pedestrian task.
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Fig. 6. Visualization of feature maps. We sample video clips from different pedestrians
and visualize the feature maps.
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