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In this document, we provide more support results to show the effectiveness
of our algorithm. Firstly, we present more comparative results with MixMatch [1]
being adopted as the propagation method. Secondly, we show several examples
of propagated attributes of web images. Thirdly, we show the effect of different
parameter settings on our algorithm. Next, we give a convergence analysis of
our algorithm. Finally, we demonstrate the general applicability of our model on
solving the social image annotation (SIA) problem.

1 More Results for Standard FSZSL

We show more comparative results under our standard FSZSL setting on the
CUB [2] dataset (with 5 annotated images per seen class) in Table 1. Four base-
lines (i.e., RPL [3], ESZSL [4], SAE [5], and ZSKL [6]) are selected here because
they can utilize the attributes (with continuous, rather than binary values) as
inputs for ZSL. For each model, the nearest neighbor based label propagation
(NN-LP) and the semi-supervised learning (SSL) method MixMatch [1] (one of
the strongest, but without denoising) are respectively adopted to propagate at-
tributes from a few labelled seen class samples to unlabelled seen class ones. We
can see from Table 1 that NN-LP is generally comparable to MixMatch under
our FSZSL setting. One explanation is that stronger SSL methods tend to induce
too much noise due to the insufficient initial supervision. In contrast, with only
one-step propagation, NN-LP induces much less noise. Therefore, it is reasonable
to use NN-LP for all compared ZSL models in our main paper.

Table 1. Comparative results (%) under the standard FSZSL setting on the CUB
dataset. Average top-1 accuracy is reported (with standard deviation in bracket).

Propagation Method K RPL [3] ESZSL [4] SAE [5] ZSKL [6]

NN-LP 5 29.4(1.4) 24.1(1.4) 29.7(1.5) 32.2(1.6)
MixMatch [1] 5 27.7(1.4) 25.2(1.4) 30.3(2.1) 31.2(1.2)
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Attributes Predicted Values

① has_underparts_color: grey 0.0415

② has_throat_color: grey 0.2470

③ has_eye_color: brown 0.1638

④ has_eye_color: grey 0.1740

⑤ has_eye_color: yellow 0.1780

⑥ has_belly_color: grey 0.0804

Attributes Predicted Values

① has_breast_pattern: spotted 0.0745

② has_eye_color: brown 0.1435

③ has_eye_color: grey 0.1673

④ has_back_pattern: spotted 0.0468

⑤ has_belly_pattern: spotted 0.2293

⑥ has_wing_pattern: spotted 0.0641

Attributes Predicted Values

① has_breast_pattern: spotted 0.4730

② has_eye_color: brown 0.1698

③ has_bill_length: longer-than-head 0.1003

④ has_back_pattern: spotted 0.4351

⑤ has_belly_pattern: spotted 0.4003

⑥ has_wing_pattern: spotted 0.3246
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Fig. 1. Examples of the propagated attributes (right) of web images (left) on the
CUB+Web dataset. For clear illustration, we manually annotate the propagated at-
tributes for each web image.

2 Qualitative Results for SAP

We provide qualitative results to show why our Sparse Attribute Propagation
(SAP) is important under our new FSZSL setting. Fig. 1 presents three exam-
ples of propagated attributes (obtained by our SAP) of web images. Note that
each web image originally has an all-zero attribute vector, and its propagated
attributes take the values in the range (0, 1). We can observe that the attributes
of unannotated web images are often predicted correctly by our SAP.

3 Parameter Sensitivity Test

Since only a few images are annotated with attributes from each seen class
under our new FSZSL setting, it is impossible to select the parameters by cross-
validation. In Section 5.1.1, we have mentioned that our algorithm has five pa-
rameters to tune: kg, m, λ1, λ2, λ3. In Fig. 2, we study how sensitive our model
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Fig. 2. The effect of different parameter settings on our algorithm for the AwA dataset.
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Fig. 3. Convergence analysis of our algorithm for standard FSZSL on the AwA dataset.

is to different values of the five parameters on the AwA [7] dataset, where 25 an-
notated images per seen class are provided. The results show that our algorithm
is insensitive to these parameters when their values are in certain ranges. We
thus uniformly set kg = 300, m = 50, λ1 = 0.01, λ2 = 1e− 4, and λ3 = 1e− 6.

4 Convergence Analysis Results

We further give a convergence analysis of our algorithm for standard FSZSL.
Concretely, we compute the recognition accuracies on the test set at each training
iteration before our algorithm stops. Fig. 3 shows the results on AwA [7] (with
25 annotated images per seen class). It can be seen that our algorithm converges
very quickly (≤ 5 iterations). Moreover, the improvements over iteration 0 also
clearly show the effectiveness of our algorithm under the new FSZSL setting.



4 N. Fei et al.

Table 2. Comparative results of social image annotation on the NUS-WIDE dataset.

Method Label Correlation C-P (%) C-R (%) C-F1 (%) I-P (%) I-R (%) I-F1 (%)

Ours (Refined Tags+CNN+SVM) no 64.79 68.16 66.43 77.71 70.69 74.03
Ours (Refined Tags+SVM) no 56.70 58.79 57.73 70.65 61.31 65.65
Ours (Noisy Tags+SVM) no 14.13 53.75 22.38 22.75 47.91 30.85

SR-CNN-RNN [11] yes 71.73 61.73 66.36 77.41 76.88 77.15
SINN [8] yes 58.30 60.30 59.44 57.05 79.12 66.30
TagNeighboor [10] no 54.74 57.30 55.99 53.46 75.10 62.46
RIA [9] yes 52.92 43.62 47.82 68.98 66.75 67.85
CNN-RNN [12] yes 40.50 30.40 34.70 49.90 61.70 55.20
CNN+WARP [14] no 31.65 35.60 33.51 48.59 60.49 53.89
CNN+softmax [14] no 31.68 31.22 31.45 47.82 59.52 53.03
CNN+logistic [8] no 45.60 45.03 45.31 51.32 70.77 59.50

5 Generalization to Social Image Annotation

5.1 Methodology

Our SAP model can be easily extended to other partially labelled image clas-
sification tasks. To demonstrate that, we choose the social image annotation
(SIA) task [8–12]. In this task, the side information collected from social media
websites is typically exploited to improve the performance on image annotation.
The user-provided side information can be extracted from the noisy tags [10,
11] and group labels [8]. Since the noisy tags of social images are analogous to
the attributes in ZSL, by forming the semantic space using the social tags, our
algorithm originally developed for ZSL can also be generalized to SIA.

However, the user-provided social tags are rather noisy and sparse, offering
only a partial semantic description of the image content. With the proposed SAP
model, the SIA problem can be solved as follows: (1) The noise in social tags is
reduced by sparse coding; (2) The noise reduction problem is further regularized
by BPL to obtain better results. Although the label correlation is not considered
in our model, it is shown to generally outperform the state-of-the-art alternatives
[8, 9, 11, 12] that employ the well-known recurrent neural network (RNN) [13] to
model the label correlation for SIA (see Table 2).

Concretely, we first replace Y(s) with the semantic representation defined
with noisy tags, and then refine Y(s) by running our algorithm. By concatenating
Y∗ and X(s), we finally train multi-class classifiers (i.e., one-vs-all SVM) for SIA.
Note that it is still time consuming to find the m smallest eigenvectors of L on
an extremely large dataset (e.g., NUS-WIDE [15]). To keep the scalability of our
model, we thus employ nonlinear approximation to find m smallest eigenvectors
as in [16]. In this application, our model can be fairly compared to the state-of-
the-art alternatives [8, 9, 11, 12].

5.2 Experiments

We make performance evaluation on the NUS-WIDE [15] benchmark dataset,
which consists of 269,648 images and 81 class labels from Flickr image metadata.
By removing invalid Flickr links and also images with no social tags, we obtain
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162,806 training images and 57,202 test images. In this paper, we keep 1,000
most frequent tags to form the semantic space, and finetune ResNet101 [17]
with the training set to extract the visual features.

The per-class and per-image metrics including precision and recall have been
widely used in previous works. In the following, the per-class precision (C-P) and
per-class recall (C-R) are obtained by computing the mean precision and recall
over all the classes, while the overall per-image precision (I-P) and overall per-
image recall (I-R) are computed by averaging over all the test images. Moreover,
the per-class F1-score (C-F1) and overall per-image F1-score (I-F1) are used for
comprehensive performance evaluation by combining precision and recall with
the harmonic mean.

Our model has three variants: 1) Ours (Noisy Tags+SVM) – SVM trained
with the original noisy tags; 2) Ours (Refined Tags+SVM) – SVM trained with
the refined tags; 3) Ours (Refined Tags+CNN+SVM) – SVM trained with the re-
fined tags and CNN features. Moreover, we also make comparison to the state-of-
the-art models [14, 8–12]. The comparative results in Table 2 show that: (1) The
refined tags obtained by our model yield over 30% improvements when C-F1 and
I-F1 are concerned. (2) Our model achieves state-of-the-art performance accord-
ing to C-F1 and competitive results according to I-F1. This is really impressive
given that the label correlation is not exploited for SIA in our model.
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