
18 Garnett et al.

A Appendix - implementation details

A.1 Training

All training sessions consisted of 30,500 iterations (batches) with constant learn-
ing rate and no weight decay. In case of adversarial training, on each iteration,
both discriminator and generator were updated. Test results reported were av-
eraged over results obtained with model snapshots at iterations 30,100, 30,200,
30,300, 30,400 and 30,500.

Batch size. For all supervised methods (optimizing Ltask), including the
supervision over translated images in the image translation method, we used
batch size 24. In cases in which supervised training is with two domains (e.g.
small + syn. supervision) each batch consisted of 12 examples from each do-
main. For the other domain adaptation methods, CMD, autoencoder, embed-
ding GAN and self-supervision methods, each batch consisted of 16 source
domain images and 16 target ones.

learning rate. For all weight updates the learning is 10−4 except for the
discriminator weights updated with learning rate 5 · 10−4.

Loss balancing. For all wgan-gp implementation the gradient penalty loss
weight was 10. In adversarial training the generator loss weight is 0.2. For the
CMD the regularization loss weight is 10−3. For the autoencoder the weight of
the reconstruction loss α = 10.

DA method combination. Whenever DA methods are combined (e.g.
AE+S), the same target domain batch is used multiple times (one per method),
each time for optimizing a different loss.

A.2 CMD

Moment matching aims at matching the distributions of the intermediate feature
maps of the source and target domain by minimizing the distance between their
first order moments. We follow the method described in [11]. Given a batch
of source and domain examples their corresponding feature maps fs, ft with
C channels in each are computed. For each example, each spatial entry in the
feature map is considered as a single C dimensional sample. The collection of all
samples from each domain zs, zt ∈ RC is then the input to the central moment
discrepancy loss [11].

A.3 Evaluation

Segment-based evaluation To complete the description of the proposed segment-
based evaluation described in Section 4 we define the distance seg dist(p,q)
between two segments in the plane. The idea was to try to match lane segments
that belong to the same lane, and therefore there is an emphasis on their orien-
tation, and different treatment of the distance along the segment direction and
perpendicular to it.

Synthetic-to-real domain adaptation for lane detection 19

Fig. 5. Two examples of the forgivingness of the tuSimple evaluation towards the lane
segment output. Ground truth marked in blue and detected segments in red. In both
examples the per-image tuSimple score was high: 0.93 (left), 0.94 (right), while as can
be observed there are many erroneous segments. In the right example, at the far range
there are clearly large lateral offsets between the detections and the gt. However, since
the tuSimple evaluation is in the image plane, these offsets become very small. In the
right example, there are many small false segments on the far left and far right sides
which the clustering manages to filter out.

Let lp, lq be the corresponding infinite lines on which p, q reside, and let
((p1, p2), (q1, q2) ∈ R2 be the segment endpoints. We project each endpoint to
the opposite line (i.e. p1 is projected to lq and denoted by p1q) to generate four
projected points: (p1q, p

2
q), (q

1
p, q

2
p) ∈ R2. We start by eliminating some of the

matches if the projected segment doesn’t sufficiently overlap with the oppo-

site segment:
|p1qp

2
q|

|q1q2| > 0.5 or
|q1pq

2
p|

|p1p2| > 0.5. Matches are eliminated by setting

seg dist(p,q) = ∞. Finally, for the remaining matching pairs, distance is com-
puted as the maximum distance between the end-points and their projected
counterparts: seg dist = max(|p1p1q|, |p2p2q|, |q1q1p|, |q2q2p|).

tuSimple evaluation As mentioned in Section 4 for the tuSimple evaluation
we need to cluster the segments. For this purpose we apply a heuristic clustering
algorithm, operating on the tile representation output. Initially, in each row we
apply a 1D non-maxima suppression with kernel size 20cm to suppress redundant
detections of the same lane in neighboring tiles.

The clustering progresses row by row from bottom to top. For each segment
in a top row, it is connected to its 3 closest neighbors in the previous (bottom)
row. Per connection, an affinity score is computed. The affinity measures the
likelihood that the two segments belong to the same lane, using the following
parameters. θ - the orientation difference between the segments, dmin - the min-
imum euclidean distance between their endpoints, bcurr - confidence score for
the current segment and bprev - confidence score of the connected neighbor from
the previous row. If θ > 45 then the affinity a = 0, otherwise, it is computed
as: a = bcurr · bprev · cos(θ) · 8−dmin

8 . We then cluster the current segment with

20 Garnett et al.

its highest scoring neighbor. For each cluster bmax is set as the maximum score
over segments in the cluster.

We next apply a filtering stage dropping clusters with less than four segments,
and clusters with bmax < 10−2. Finally, we loop over all remaining cluster pairs
and merge a pair if one cluster starts on the same row as the other one ends on
horizontally-adjacent tiles. We continue untill no pairs can be merged. As can
be seen in Figure 5, due to the clustering, and the forgivingness of the tuSimple
evaluation, especially at the farther ranges, the final metric is not very indicative
of the quality of the raw tile-representation output.

A.4 Additional examples

In Figure 6 we show examples of additional results before and after domain
adaptation in the UDA setting for the three leading methods, namely, image
translation, self-supervision and our auto-encoder approach.

A.5 Architectures

Tables 2-7 in this section specify the CNN architectures. Wherever input name
is empty it is the output of the line above. ”+” in the input means concatenation
along channel dimension. All ReLUs are leaky relu with factor 0.1.

type Cin Cout Kernel Stride input name Output name

ConvBNRelu 3 32 3 1 bev image
ConvBNRelu 32 32 3 1
maxpool 2 2 embed 2
ConvBNRelu 32 64 3 1 embed 2
ConvBNRelu 64 64 3 1
maxpool 2 2 embed 4
ConvBNRelu 64 128 3 1 embed 4
ConvBNRelu 128 128 3 1
ConvBNRelu 128 128 3 1
maxpool 2 2 embed 8
ConvBNRelu 128 128 3 1 embed 8
ConvBNRelu 128 128 3 1
ConvBNRelu 128 128 3 1
maxpool 2 2 embed 16

Table 2. Base architecture. Image Embedding network, φ.

Synthetic-to-real domain adaptation for lane detection 21

type Cin Cout Kernel Stride input name

ConvBNRelu 128 64 3 1 embed 16
ConvBNRelu 64 64 3 1
ConvBNRelu 64 64 3 1
ConvBNRelu 64 10 1 1

Table 3. Base architecture. Embedding to tile-representation network, ψ

type Cin Cout Kernel Stride input name output name

ConvBNRelu 128 256 3 1 embed 16
ConvBNRelu256 256 256 3 1
ConvBNRelu 256 256 3 1
maxpool 2 2 embed 32
ConvBNRelu 128 64 3 1 embed 16 embed 16 reduced
ConvBNRelu 128 64 3 1 embed 8 embed 8 reduced
ConvBNRelu 64 32 3 1 embed 4 embed 4 reduced
Nearest Upsample 2 embed 32
ConvBNRelu 256 64 3 1
ConvBNRelu 64 64 3 1
ConvBNRelu 64 64 3 1 embed 16 up
Nearest Upsample 2 embed 16 reduced +

embed 16 up
ConvBNRelu 128 64 3 1
ConvBNRelu 64 64 3 1
ConvBNRelu 64 64 3 1 embed 8 up
Nearest Upsample 2 embed 8 reduced +

embed 8 up
ConvBNRelu 128 32 3 1
ConvBNRelu 32 32 3 1
ConvBNRelu 32 32 3 1 embed 4 up
ConvBNRelu 64 64 3 1 embed 4 reduced +

embed 4 up
ConvBNRelu 64 64 3 1
ConvBNRelu 64 64 3 1
ConvBNRelu 64 1 3 1 l - lanes image

Table 4. Autoencoder. embedding to skeleton network, δ

22 Garnett et al.

type Cin Cout Kernel Stride input name output name

convSpectralNormRelu 10 64 4 2 lanes image
convSpectralNormInstanceNormRelu 64 128 4 2
convSpectralNormInstanceNormRelu 128 256 4 2
convSpectralNormInstanceNormRelu 256 512 4 2
Conv 512 128 4 1 d internal
Minibatch discrimination layer 128 128 d internal md
Conv 256 1 1 1 d internal +

md
Table 5. Autoencoder. Discriminator network, γ. For Embedding GAN the dis-
criinator is identical, and the input is embed 16 with channel size is 128. Spectral Norm
is described in [44] and the Minibatch discrimination layer in [45]

.

type Cin Cout Kernel Stride input name

ConvBNRelu 1 16 3 1 lane image
ConvBNRelu 16 32 3 1
ConvBNRelu 32 64 3 1
Nearest Upsample 2
ConvBNRelu 64 64 3 1
ConvBNRelu 64 64 3 1
ConvBNRelu 64 64 3 1
Nearest Upsample 2
ConvBNRelu 64 64 3 1
ConvBNRelu 64 64 3 1
ConvBNRelu 64 64 3 1
ConvBNRelu 64 1 3 1

Table 6. Autoencoder. Skeleton to gradient image network, λ.

type Cin Cout Kernel Stride input name

ConvBNRelu 128 64 (5, 3) 1 embed 16
maxpool 2 2
ConvBNRelu 64 64 (5, 3) 1
maxpool 2 2
conv 64 3 1 1

Table 7. Self-supervision. Auxiliary task classifier, ρ.

Synthetic-to-real domain adaptation for lane detection 23

Autoencoder Image translation Self-Supervision

3
D

L
a
n
e
s

ll
a
m

a
s

tu
S
im

p
le

Fig. 6. Additional Results in the unsupervised domain adaptation (UDA)
setting. Sample results using the three leading methods (columns) on samples from
the three different datasets we tested on (rows). In each cell we show the result before
(top within cell) and after domain adaptation with the respective method (bottom).
Results are shown in each cell in both top-view (right) and regular view (left).

