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Feedback Recurrent Autoencoder for
Video Compression
Supplementary materials

A Model, training and datasets details

A.1 Datasets

Our training dataset was based on Kinetics400 [38]. We selected a subset of the
high-quality videos in Kinetics (width and height over 720 pixels), took the first
16 frames of each video, and downscaled them (to remove compression artifacts)
such that the smaller of the dimensions would be 256 pixels. At train time,
random crops of size 160 × 160 were used. For validation, we used videos from
HDgreetings, NTIA/ITS and SVT from Xiph.org [39].

We used UVG [14] and HEVC Classes BCDE [15] as our test datasets. UVG
contains 7 1080p video sequences and a total of 3900 frames. Both the UVG
and HEVC BCDE sequences are available in YUV420-8bit format. UVG 1080p
frames were converted to RGB using OpenCV [47]. HEVC sequences vary in
resolution per class and use ffmpeg [41] for RGB conversion.

A.2 Training

All implementations were done in the PyTorch framework [48]. The distortion
measure 1−MS-SSIM [16] was normalized per frame and the rate term was
normalized per pixel (i.e. bits per pixel) before they were combined D+βR. We
trained our network with five β values β = {0.025, 0.05, 0.1, 0.2, 0.3} to obtain
a rate-distortion curve. The I-frame network and P-frame network were trained
jointly from scratch without pretraining for any part of the network.

The GoP size of 8 was used during training, i.e. the recurrent P-frame network
was unrolled 7 times. We used a batch size of 16, for a total of 250k gradient
updates (iterations) corresponding to 20 epochs. When training with the flow
enhancement network MENet, we applied Lfe and Lfd until 20k iterations, and
the transition of the input from xt−1 to x̂t−1 was done at iteration 15k. All
models were trained using Adam optimizer [49] with the initial learning rate of
10−4, β1 = 0.9 and β2 = 0.999. The learning rate was annealed by a factor of
0.8 every 100k iterations. Performance on the validation set was evaluated every
epoch, results presented below are the model checkpoints performing best on the
validation set. See Appendix A for details on the architecture and training.

A.3 Model

Detailed architecture of the encoder and decoder in Fig. 2(a) is illustrated in
Fig. 9. For prior modeling, we use the same network architecture as described in
Section B.2 of [6]. Detailed architecture of the optical flow estimation network
in Fig. 2(b) is illustrated in Fig. 10.
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Fig. 9: Architecture of our P-frame network (flow enhanced module is separately
illustrated). Tconv denotes transposed convolution. For (transposed) convolu-
tional layer c denotes the number of output channels, k denotes the kernel size
and s denotes the stride. In all of our experiments, we set C1 = 32, C2 = 10,
and C3 = 32. Architecture of I-frame network differs by removing the final two
layers in the decoder, setting C2 = 3, and having x0 as the only input to the
encoder. Note that a large part of this architecture is inherited from Fig. 2 in
[25] and Fig. 9 in [6].

As can be seen from Fig. 9, we use BatchNorm throughout the encoder and
decoder architecture to help stabilize training. However, since previous decoded
frame is fed back into the encoder in the next time step, during training it is
not possible to apply the same normalization across all the unrolled time steps,
which will lead to an inconsistency across training and evaluation. To solve this
issue, we switch BatchNorm to evaluation mode during training at iteration 40k,
after which its parameters are no longer updated.

B Images used in figures

Video used in Figures 7, 6, 13, 12, 15, and 16 is produced by Netflix, with CC

BY-NC-ND 4.0 license:
https://media.xiph.org/video/derf/ElFuente/Netflix Tango Copyright.txt
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Fig. 10: Architecture of our optical flow estimation network. In all of our exper-
iments, we set W = 16.

C ffmpeg and HM experiments

We generated H.264 and H.265 baselines using ffmpeg and HM software tools.
Both HM and ffmpeg received the UVG videos in the native YUV-1080p-8bit
format as inputs. The command that we used to run ffmpeg in low-latency
mode is as follows:

ffmpeg -y -pix fmt yuv420p -s [W]x[H] -r [FR] -i [IN].yuv

-c:v libx[ENC] -b:v [RATE]M -maxrate [RATE]M -tune zerolatency

-x[ENC]-params "keyint=[GOP]:min-keyint=[GOP]:verbose=1" [OUT].mkv

and the command that we used to run ffmpeg in default settings is as follows:

ffmpeg -y -pix fmt yuv420p -s [W]x[H] -r [FR] -i [IN].yuv

-c:v libx[ENC] -b:v [RATE]M -maxrate [RATE]M

-x[ENC]-params "verbose=1" [OUT].mkv

where the values in brackets represent the encoder parameters as follows: H
and W are the frame dimensions (1080 × 1920), FR is the frame rate (120), ENC
is the encoder type (x264 or x265), GOP is the GoP size (12 for low-latency
settings), INPUT and OUTPUT are the input and the output filenames, respec-
tively, RATE controls the intended bit rate in Mega-bits/second (We tried RATE=
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{10, 20, 37, 62, 87, 112} Mega-bits/second that translate to {0.04, 0.08, 0.15, 0.25,
0.35, 0.45} bits/pixel for UVG 1080p at 120 fps). It is worth to mention that we
did not set the -preset flag in ffmpeg that controls the coding performance. As
a result, it used the default value which is medium, unlike some existing papers
that employed ffmpeg in fast or superfast presets that led to poor ffmpeg

performance.
The command we used to run HM is as follows:

TAppEncoderStatic -c [CONFIG].cfg -i INPUT.yuv -wdt [W] -hgt [H]

-fr [FR] -f [LEN] -o OUTPUT.yuv -b -ip [GOP] -q [QP] > [LOG].log

where CONFIG is the HM configuration file (we used LowDelayP.cfg), LEN is the
number of frames in the video sequence (600 or 300 for UVG videos), LOG is
the log file name that we used to read the bit rate values, and QP control the
quality of the encoded video that leads to different bit rates (we tried QP=
{20, 22, 25, 30, 35, 40} in this work).

MS-SSIM for all the experiments was calculated in RGB domain in video-
level. bit rates for ffmpeg were calculated by reading the compressed file size
and for HM by parsing the HM log file. Both values were then normalized by
frame-dimensions and frame-rate.

C.1 YUV to RGB conversion inconsistencies

Since the UVG raw frames are available in YUV format and our model works
in RGB domain only, we had to convert the UVG frames from YUV to RGB
color space. We considered two methods to convert UVG-1080p-8bit videos to
RGB 1080p, i) use ffmpeg to read in YUV format and directly save the frames
in RGB format, ii) read the frames in YUV and convert them to RGB via
COLOR YUV2BGR I420 functionality provided by the OpenCV [47] package. We also
tried a third scenario, iii) use ffmpeg to read UVG-4K-10bit in YUV format and
save the RGB 1080p frames. Fig. 11 shows the performance of our model on the
three different versions of UVG RGB. As can be seen from this figure, there
is an inconsistency in our model performance across different UVG versions. A
potential cause for this behavior could be the interpolation technique employed
in the color conversion method, since in YUV420 format U and V channels are
subsampled and need to be upsampled before YUV to RGB conversion. The
results reported in this paper are based on the OpenCV color conversion.

D Qualitative examples

We provide in this section more qualitative examples for our method in Fig. 12
and for H.265 in Fig. 13. Notably, we overlay the MS-SSIM and MSE error maps
on the original frame to provide indication of the distortion characteristics of
each algorithm. In addition in Fig. 12, we show the BPP maps, as we have access
to the entropy of the corresponding latent using the I-frame and P-frame prior
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Fig. 11: Effect of conversion method on model performance on UVG dataset.

models. We average the entropy across channels, then use bilinear upsampling
to bring the BPP map back to the original image resolution.

By examining the BPP maps in Fig. 12 (third row), we can see that intuitively
the model spends bits more uniformly across I-frames (first and last column),
while during P-frames bits are mostly spent around edges of moving objects.

Note that our method optimizes for MS-SSIM, while traditional video codecs
like H.265 are evaluated with PSNR. As detailed in Appendix G, MS-SSIM is
insensitive to uniform color shifts and mainly focuses on spatial structure. On
the contrary, PSNR does pick up color shifts, but it tends to care less for fine
details in spatial structure, i.e. texture, sharp edges. Our method’s MS-SSIM
maps (Fig. 12 4th row) show edges are sharply reconstructed, yet does not fully
capture some of the color shifts in the reconstruction. In particular the man in
the pink suit has a consistently dimmer pink suit in the reconstruction (compare
first and second row), which does not appear in the MS-SSIM loss, while MSE
seems to pick up the shift. In contrast in Fig. 13, H.265 MSE maps (last row)
shows that the error is concentrated around most edges and fine textures due to
blurriness, yet most colors are on target.

We observe that for our method, MS-SSIM error maps degrade as we go
from I-frame to P-frame (compare first and second to last column in Fig. 12).
Similarly, the BPP map of the first I-frame show a large rate expenditure, while
consecutive P-frames display significantly less rate. Both of these qualitative
results confirm the quantitative analysis of Fig. 8.
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Fig. 12: Our method’s qualitative evaluation on frames from Netflix Tango in Netflix El Fuente. The rows show the original
frames, the reconstructed frames, then the BPP, MS-SSSIM and MSE maps overlayed on top of the grayscale original frames.
Each column shows a different frame from a full cycle of GoP 8 going from I-frame to I-frame, showing every other frame.
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Fig. 13: H.265 qualitative evaluation on frames from Netflix Tango in Netflix El Fuente. The rows show the original frames,
the reconstructed frames, then the MS-SSSIM and MSE maps overlayed on top of the grayscale original frames. Each column
shows a different frame from a full cycle of GoP 8 going from I-frame to I-frame, showing every other frame.
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E Theoretical justification of the feedback recurrent

module

In this subsection we provide theoretical motivations on having feedback recur-
rency module in our network design. Specifically, we show that, for the compres-
sion of sequential data with a causal decoder and causal encoder, (i) it is im-
perative for encoder to have a memory that summarizes previously latent codes,
and (ii) it is not beneficial for encoder to access history input information.

Below is an abstract view of a generic sequential autoencoder, where X =
{xτ}τ∈N denotes a discrete-time random process that represents the empirical

distribution of our training video data, with Z and X̂ being the induced latent
and reconstruction processes.

X
fenc
−−→ Z

fdec
−−→ X̂.

From an information theoretical point of view, the sequential autoencoding prob-
lem can be abstracted as the maximization of average frame-wise mutual infor-
mation between X and X̂, detailed below, with certain rate constraint on H(Z),

max.
fenc,fdec

∑
τ I (xτ ; x̂τ ) , frame-wise mutual information6

s.t. I (xτ ; x̂τ |z≤τ ) = 0, ∀τ. decoder causality

The decoder causality is encoded in such a form as I(xτ ; x̂τ |z≤τ ) is zero if
and only if x̂τ is not a function of z>τ . It is important to note that mutual
information is invariant to any bijections and thus would not reflect perceptual
quality of reconstruction. Nevertheless, we use this formulation only to figure
out important data dependencies from an information theory perspective and
use that to guide us in the design of network architecture. With a closer look,
the tth term in the objective function can be rewritten as below.

I(xt; x̂t)

=I(xt; x̂t, z≤t)− I(xt; z≤t|x̂t)

=I(xt; z≤t) + I(xt; x̂t|z≤t)− I(xt; z≤t|x̂t)

(a) =I(xt; z≤t)− I(xt; z≤t|x̂t)

=I(xt; z<t) + I(xt; zt|z<t)− (I(xt; z<t|x̂t) + I(xt; zt|x̂t, z<t))

(b) = I(xt; z<t; x̂t)︸ ︷︷ ︸
prediction

+ I(xt; zt; x̂t|z<t)︸ ︷︷ ︸
innovation

. (3)

6 Note that this is different from I(X; X̂). If we instead maximize I(X; X̂), then we
could have a single output frame capturing the information of more than one input
frames, which is not what we want.
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Step (a) incorporates the decoder causality constraint, step (b) comes from the
definition of multi-variate mutual information7, and the rest uses the identity of
conditional mutual information8.

Equation (3) says that I(xt; x̂t) can be broken down into two terms, the
first represents the prediction of xt from all previous latents z<t, and the second
represents new information in zt about xt that is not be explained by z<t. While
this formulation does not indicate how the optimization can be done, it tells us
what variables should be incorporated in the design of fenc. Let us focus on zt:
in our objective function

∑
τ I(xτ ; x̂τ ), zt shows up in the following terms

I(xτ ; zτ ; x̂τ |z<τ ) for τ ≥ t, and I(xτ ; z<τ ; x̂τ ) for τ > t.

It is clear, then, that the optimal zt should only be a function of x≥t, x̂≥t,
z<t and z>t. Combining it with the constraint that the encoder is causal, we
can further limit the dependency to xt and z<t. In other words, it suffices to
parameterize the encoder function as zt = fenc(xt, z<t), which attests to the two
claims at the beginning of this subsection: (i) zt should be a function of z<t and
(ii) zt does not need to depend on x<t.

It is with these two claims that we designed the network where the decoder
recurrent state, which provides a summary of z<t, is fed back9 to the encoder
as input at time step t and there is no additional input related to x<t.

It is worth noting that in [28,29], the authors introduce a neural network
architecture for progressive coding of images, and in it an encoder recurrent
connection is added on top of the feedback recurrency connection from the de-
coder. Based on the analysis in this section, since the optimization of zt does
not depend on x<t, we do not include encoder recurrency in our network design.

F Graphical modeling considerations

In this section we give more details on the reasoning behind how we formulated
the graphical models presented in Fig. 3.

Lu et al., DVC [2,3]
Generative model. Temporally independent prior is used hence no edges between
the latent variables zt. Consecutive reconstructions x̂t depend on the previous
reconstructions x̂t−1 and hence the edge between them x̂t−1 → x̂t.
Inference model. During inference, at timestep t, the current timestep’s latent zt
is inferred based on the previous reconstruction x̂t−1 and current original frame
xt. In turn, the previous reconstruction x̂t−1 is determined based on the infor-
mation from the previous timestep’s latent zt−1 and the earlier reconstruction

7 I(a; b; c) = I(a; b) − I(a; b|c). For a Markov process a → b → c, this indicates the
amount of information flown from a to c through b.

8 I(a; b) = I(a; b, c)− I(a; c|b) for any c.
9 Since x̂<t is a deterministic function of z<t, any additional input of x̂<t to the
encoder is also justified.
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x̂t−2. Since the procedure of determining x̂t−1 from zt−1 and x̂t−2 is determin-
istic, the inference model has an edge zt−1 → zt. Extending this point, since x̂t

is updated at each timestep using a deterministic procedure using its previous
value x̂t−1 and zt, it makes zt dependent on all the past latent codes z<t. Hence
there are edges from all the past latents z<t to the present latent zt.
The edge xt → zt arises from the direct dependence of zt on xt through the
encoder.

Liu et al. [7]
Generative model. Due to the introduction of the time-autoregressive code prior
there are additional edges z<t → zt as compared to model (a) with dashed edges.
Inference model. The inference model remains unchanged.

Lin et al., M-LVC [9]
Generative model. Due to the introduction of warping referencing k > 1 previ-
ously reconstructed frames x̂t−k:t−1 for the purpose of reconstructing x̂t there
are additional edges x̂t−k:t−2 → x̂t as compared to DVC, i.e. model (a) with
solid lines only. Also, previously reconstructed flow values v̂t−k:t−1 (as per no-
tation of [9]) are utilized for the purpose of warping x̂t−k:t−1 what motivates
additional edges zt−k+1:t−1 → x̂t. Fig. 3(a), including all the solid and dotted
lines, presents the graphical model for the buffer of size k = 2 previously recon-
structed frames. Note that there is no edge z1 → x̂2 since the I-frame doesn’t
carry any flow information.
Inference model. The inference model remains unchanged.

Rippel et al. [5] and ours
Generative model. Model (b) differs from model (a) in the introduction of the
recurrent connection and hence hidden state ht, hence the full graphical model
could be drawn as per Fig. 14. However, the ht is not a stochastic random
variable, but a result of a deterministic function of ht−1 and zt. For that reason
we can drop explicitly drawing nodes ht and move the deterministic relationship
they are implying into the graphical model edges between the latent variables
zt. This way we arrive from the models in Fig. 14 to models in Fig. 3(b).
Inference model. Analogous reasoning applies in the case of the inference model.

Fig. 14: Left: Generative model of our method with intermediate variable ht.
Right: Inference model of our method with intermediate variable ht.



28 A. Goliński et al.

Han et al. [8]
Graphical models are derived based on equations by Han et al. [8]: Eq. (4) and
Eq. (6) for the generative model, and Eq. (5) for the inference model.

Habiban et al. [6]
Generative model. Due to the use of a prior which is autoregressive in the
temporal dimension (across the blocks of 8 frames that Habiban et al. are using)
we draw edges z<t → zt. The latent codes are generated by a deterministic
composition of 3D convolutional layers with the input of the original frames.
The temporal receptive field is larger than original input sequence which means
that every latent variable in the block can be influenced by each of the original
input frames and hence the fully connected clique between z1:T and x1:T .
Inference model. The same reasoning applies for the inference model.

F.1 Full flexibility of the marginal PX(x1:T )

The graphical model corresponding to the approach of Liu et al. [7] is presented
in Fig. 3(a) including dashed lines. In this case, the marginal PX(x1:T ) is fully
flexible in the sense that it does not make any conditional independence assump-
tions between x1:T .

To see that consider considering what happens when we marginalize out z1:T
from PZ(z1:T )PX|Z(x1:T |z1:T ) using the variable elimination algorithm [35]. As-
sume we use an elimination order τ which is permutation of a set of numbers
{1, . . . , T}, e.g., for T = 4 a viable permutation is τ = {2, 1, 4, 3}. Let’s think
about the process of variable elimination in terms of the induced graph. Elim-
inating the first variable zτ1 induces a connection between xτ1 and each of the
other latent variables z 6=τ1 . Eliminating consecutive latent variables zt will in-
duce connections between corresponding observed variables xt and every other
z 6=t. This way the final latent variable to be eliminated zτT will be connected in
the induced graph with all the observed variables x1:T . Hence when we eliminate
zτT that will result in a factor φ(x1:T ) (a clique between all nodes x1:T thinking
in terms 2of the induced graph). The marginal distribution we are looking for is
PX(x1:T ) ∝ φ(x1:T ), and it makes no conditional independence assumptions.

The graphical model corresponding to our and Rippel et al. approach is
presented in Fig. 3(b). In this case, showing that the marginal PX(x1:T ) makes
no conditional independence assumptions between x1:T is simpler – no matter
what variable elimination order we choose, since z1 is connected to all the nodes
x1:T eliminating z1 will always result in a factor φ(x1:T ).

G MS-SSIM color issue and corner artifact

G.1 MS-SSIM color shift artifact

MS-SSIM, introduced in [16], is known to be to some extent invariant to color
shift [46]. Inspired by the study in Fig. 4 of [50], we designed a small experiment
to study the extent of this issue. We disturbed an image x slightly with additive
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Gaussian noise to obtain x̂0, such that x̂0 lies on a certain equal-MS-SSIM
hypersphere (we choose 0.966 which corresponds to the average quality of our
second lowest rate model). Then we optimize x̂ for lower PSNR, under the
constraint of equal MS-SSIM using the following objective:

L = PSNR(x, x̂) + αt · |MS-SSIM(x, x̂)−MS-SSIM(x, x̂0)| (4)

We use Adam optimizer with a learning rate of 10−4 (otherwise default pa-
rameters) for T = 20, 000 iterations. We use αt = min(1, 2t

T
) × 103, with t

representing the iteration index.
In Fig. 15, (a) corresponds to x, (b) corresponds to x̂0, (c) to x̂ at iteration

2, 000 and (d) to x̂ at iteration 20, 000. All frame (b), (c) and (d) are on the
equal-MS-SSSIM hypersphere of 0.966 with respect to the original frame x. We
can observe that it is possible to obtain an image with very low PSNR, mainly
due to drastic uniform color shifts, while remaining at equal distance in terms of
MS-SSIM from the original image. This helps explain some of the color artifacts
we have seen in the output of our models.

G.2 MS-SSIM corner artifact

The standard implementation of MS-SSIM, when used in LRD, causes corner
artifacts as shown in Figure 16. Although the artifact is subtle and barely no-
ticeable when looking at full-size video frames, it is worth investigation. We
found the root cause in the convolution-based implementation of local mean
calculations in SSIM function where a Gaussian kernel (normally of size 11) is
convolved with the input image. The convolution is done without padding, as a
result the contribution of the corner pixels to MS-SSIM is minimal as they fall
at the tails of the Gaussian kernel. This fact is not problematic when MS-SSIM
is used for evaluation, but can negatively affect training. Specifically in our case,
where MS-SSIM was utilized in conjunction with rate to train the network, the
network took advantage of this deficiency and assigned less bits to the corner
pixels as they are less important to the distortion term. As a result, the corner
pixels appeared blank in the decoded frames. We fixed this issue by padding, e.g.,
replicate, the image before convolving it with the Gaussian kernel. The artifact
was eliminated as can be seen from Fig. 16.

It is worth to mention that we used the standard MS-SSIM implementation in
all the trainings and evaluations in this paper for consistency with other works.

H HEVC & PSNR results

The comparison using PSNR metric on UVG dataset are in Fig. 17 and the re-
sults for HEVC Classes BCDE datasets using both MS-SSIM and PSNR metrics
are in Fig. 18.
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(d) PSNR 9.5dB(c) PSNR 12.7dB

(b) PSNR 22.0dB(a) Original

Fig. 15: An illustration of MS-SSIM color issue. All frames (b), (c) and (d) have
an MS-SSIM of 0.966. (a): original frame, (b): perturbed image with slight addi-
tive gaussian noise, (c) and (d): images obtained by optimizing (b) for L = PSNR
under equal MS-SSIM contraint.
Crop of frame 229 of Tango video from Netflix Tango in Netflix El Fuente; see
Appendix B for license information.
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Fig. 16: An illustration of the MS-SSIM corner artifact, best viewed on screen.
Left: uncompressed frame, middle: corners when trained with default MS-SSIM
implementation, right. corners when trained with replicate-padded MS-SSIM
implementation.
Frame 10 of Tango video from Netflix Tango in Netflix El Fuente; see Appendix B
for license information.
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Fig. 18: Comparison to the state-of-the-art learned methods on HEVC Classes BCDE using MS-SSIM (top) and PSNR (bottom)
distortion metrics.
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I Computational efficiency

In its current form, the decoding speed is the bottleneck because of the use of an
auto-regressive entropy model that factorizes over each latent dimension, which
may hinder it from being directly applicable to real-time use-cases. Sidestepping
this limitation without sacrificing the rate-distortion performance is a subject of
ongoing research [51].

When comparing the computational performance of neural compression to
HEVC one has to take into account that the performance of HEVC is a product
of 30 years of algorithmic and hardware optimizations, e.g., our model is orders
of magnitude faster in encoding and comparable in decoding w.r.t. HEVC refer-
ence implementation HM [42]. We anticipate similar hardware optimizations for
CNNs and other neural architectures will yield similar acceleration for neural
compression in the future.

J Generalization with respect to GoP size

In this section we take a look at the generalization of the model with respect
to the GoP size. Fig. 19 shows the results achieved by a model trained with a
GoP of 8 when evaluated with a GoP of 10, such that the recurrent model at
runtime is unrolled for longer than at training time. Similarly as in Fig. 8, as
expected, we see a gradual degradation of P-frame quality as it moves further
away from the I-frame. However, in Fig. 19 we also see that the degradation for
the frames index 8 and 9, i.e. the steps that were not unrolled at training time,
accelerates significantly. The model in its current form and with the current
method of training cannot dynamically adapt to larger GoP sizes.
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Fig. 19: Results achieved by a model trained with a GoP of 8 when evaluated
with a GoP of 10.
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13. Yang, Y., Sautiére, G., Ryu, J.J., Cohen, T.S.: Feedback Recurrent AutoEncoder.
In: IEEE International Conference on Acoustics, Speech and Signal Processing.
(2019)

14. Mercat, A., Viitanen, M., Vanne, J.: Uvg dataset: 50/120fps 4k sequences for video
codec analysis and development. In: Proceedings of the 11th ACM Multimedia
Systems Conference. MMSys ’20, New York, NY, USA, Association for Computing
Machinery (2020) 297–302

15. Bossen, F.: Common test conditions and software reference configurations.
JCTVC-F900 (2011)

16. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P., et al.: Image quality as-
sessment: from error visibility to structural similarity. IEEE Trans. on Image
Processing 13 (2004) 600–612

https://www.ncta.com/whats-new/report-where-does-the-majority-of-internet-traffic-come
https://www.ncta.com/whats-new/report-where-does-the-majority-of-internet-traffic-come


Feedback Recurrent Autoencoder for Video Compression 35

17. Summerson, C.: How much data does Netflix use? https://www.howtogeek.com/

338983/how-much-data-does-netflix-use/ (2018) Accessed: 2020-02-28.

18. Pearlman, W.A., Said, A.: Digital Signal Compression: Principles and Practice.
Cambridge University Press (2011)

19. Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed,
S., Lerchner, A.: beta-VAE: Learning Basic Visual Concepts with a Constrained
Variational Framework. In: International Conference on Learning Representations.
(2017)

20. Theis, L., Shi, W., Cunningham, A., Huszár, F.: Lossy Image Compression with
Compressive Autoencoders. In: International Conference on Learning Representa-
tions. (2017)

21. Moreira, L.: Digital video introduction. https://github.com/leandromoreira/

digital_video_introduction/blob/master/README.md#frame-types (2017) Ac-
cessed: 2020-03-02.

22. Sullivan, G.J., Ohm, J.R., Han, W.J., Wiegand, T.: Overview of the High Efficiency
Video Coding (HEVC) Standard. IEEE Trans. Circuits Syst. Video Technol. 22
(2012) 1649–1668

23. Ballé, J., Laparra, V., Simoncelli, E.P.: End-to-End Optimized Image Compression.
In: International Conference on Learning Representations. (2017)
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33. Ballé, J., Laparra, V., Simoncelli, E.P.: Density Modeling of Images using a Gen-
eralized Normalization Transformation. In: International Conference on Learning
Representations. (2016)

34. Liu, H., Chen, T., Guo, P., Shen, Q., Cao, X., Wang, Y., Ma, Z.: Non-local
Attention Optimized Deep Image Compression. arXiv:1904.09757 (2019)

35. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Tech-
niques. MIT Press (2009)

https://www.howtogeek.com/338983/how-much-data-does-netflix-use/
https://www.howtogeek.com/338983/how-much-data-does-netflix-use/
https://github.com/leandromoreira/digital_video_introduction/blob/master/README.md#frame-types
https://github.com/leandromoreira/digital_video_introduction/blob/master/README.md#frame-types


36 A. Goliński et al.
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