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In this supplementary material, we provide specific technical details and extra
results visualization for the main paper.

1 Network Architecture

We summarize each module of our pipeline in Table A. More details about
PWCNet module could be found in [1]1. Besides, the slicing layer interpolates
the reshaped color coefficients (layer 30) with the guidance map (layer 32) in a
bilateral-grid upsampling way [2]. Afterwards, the color coefficients at high reso-
lution are applied to the input monochromic image IYv2,sH ,lH

in the form of affine
combination via the applying coefficients layer for chrominance reconstruction.

2 Training Details

Details on training process are listed in Table B as the supplementary of Table
1 and section 4.1 in the body paragraphs. Losses in Table B are in the form as,

L1 loss: `(y, ŷ) =

∑n
i=1 | yi − ŷi |

n

MSE loss: `(y, ŷ) =

∑n
i=1(yi − ŷi)2

n

Cosine similarity loss: similarity(y, ŷ) =
y · ŷ

max(‖y‖2 · ‖ŷ‖2, ε)
,

`(y, ŷ) = mean(
1− similarity(y, ŷ)

2
)

3 Ablation Study

We have divided the overall problem defined in this paper using three consecu-
tive operational subtasks, i.e., RefEC for illumination compensation, RefColor
for image alignment and color transfer, and RefSR for final spatial resolution
enhancement. Visualizations with partial subtasks disabled are shown in Fig. 1
while Table C demonstrates the quantitative evaluation.

1 https://github.com/NVlabs/PWC-Net
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Table A. Network configuration for our workflow.

Layer Description Output Tensor Dim.

Input color image IYUV
v1,sL,lL

3 × h
4
× w

4

Input monochrome image IYv2,sH ,lH
h× w

RefEC net

1 9 × 9 conv 64 × h
4
× w

4

2-6 (3 × 3 conv, ReLU) × 5 64 × h
4
× w

4

7 3 × 3 conv, Sigmoid, extra bias 3 × h
4
× w

4

RefColor net

8 PWCNet module 2 × h
16

× w
16

9 upsampling & warping layer 3 × h
4
× w

4

10 9 × 9 conv 64 × h
4
× w

4

11 3 × 3 conv, Batch Normalization , ReLU 64 × h
4
× w

4

12 3 × 3 conv, Batch Normalizatoin 64 × h
4
× w

4

13 skip connection between layer 10 and 12, ReLU 64 × h
4
× w

4

24 repeat (layer 11,12,13) × 4 64 × h
4
× w

4

25 3 × 3 conv, Sigmoid, extra bias 3 × h
4
× w

4

RefSR net

26 3 × 3 conv (stride 2), ReLU 8 × h
8
× w

8

27 3 × 3 conv (stride 2), ReLU 16 × h
16

× w
16

28 3 × 3 conv (stride 2), ReLU 32 × h
32

× w
32

29 3 × 3 conv (stride 2), ReLU 64 × h
64

× w
64

30 global & local stream fusion with 1 × 1 conv, ReLU 96 × h
64

× w
64

31 3 × 3 conv, ReLU 16 × h× w

32 1 × 1 conv, Tanh 1 × h× w

33 slicing layer 12 × h× w

34 applying coefficients layer 3 × h× w

35 3 × 3 conv, ReLU 16 × h× w

36 1 × 1 conv, Tanh 1 × h× w

37 skip connection between layer 25 and 36 3 × h× w

Local stream in layer 30

3 × 3 conv, ReLU 64 × h
64

× w
64

3 × 3 conv, w/o ReLU 64 × h
64

× w
64

Global stream in layer 30

3 × 3 conv (stride 2), ReLU 64 × h
128

× w
128

3 × 3 conv (stride 2), ReLU 64 × h
256

× w
256

FC(1024,256) 256

FC(256,128) 128

FC(128,64) 64
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Table B. Training details

Module Input-color Input-monochrome GT-color Loss

RefEC (v1, sL, lL) (v2, sL, lH) (v1, sL, lH) L1+ CosineSimlarity loss

RefColor (v1, sL, lH) (v2, sL, lH) (v2, sL, lH) L1+ CosineSimlarity loss

RefSR (v2, sL, lH) (v2, sH , lH) (v2, sH , lH) MSE+ CosineSimlarity loss

Overall (v1, sL, lL) (v2, sH , lH) (v2, sH , lH) L1+ CosineSimlarity loss

descrip-

tion

v, s, l represent the viewpoint, spatial resolution and light engergy specification

of the image while detailed introduction is in the Table 1 of the manuscript.

The loss in each task is calculated between the GT and corresponding predici-

tion. For faster convergence, we use MSE loss in the RefSR.

Table C. Ablation study

PSNRY UV /dB PSNRUV /dB MS-SSIM

w/o RefEC 37.22 35.51 0.9773

w/o RefColor 31.94 30.20 0.9552

Overall 38.60 38.91 0.9804

4 User Study

We randomly pick up 5 cases for qualitative performance validation with 25
subjects. First, we investigate the user preference of reconstrcuted image quality
at each intermediate step by asking the subjects to pickup their favorites. We
enforce the random display order of algorithms used in each case. Results are
shown in 2, revealing that our proposed algorithms are preferred in each subtask.

We further invite subjects to rate the final reconstructed images from 1 to 5
scales (e.g., representing the Bad, Poor, Fair, Good, Excellent levels) as suggested
in ITU-R BT.500-11. As depicted in Fig. 3, the average score of reconstructed
images reaches at 4.56, revealing the perceptual quality that is close to the
“Excellent” scale. This validates the efficiency of our algorithm as well.

5 Results Visualization

In this section, we present more details of the overall test performance of our
proposal. Fig. 4 illustrates the qualitative results on the simulated dataset (Mid-
dlebury2014 [3]). And Fig. 5 shows the complete performance on the captured
scene via industrial cameras and Huawei P20, which supplements Fig. 8 in the
main paper. These visualization envidences our workflow’s efficiency in differ-
ent low-light condition. As referred in the last paragraph of Section 4, the only
supervision of the re-colored HSR monochromic image influences the separative
performance on refEC, refColor and refSR, inducing the slightly over-saturated



4 P. Guo et al.

Input-color(x4) Input-monoOverlap w/o RefColor w/o RefEC Overall GT

Fig. 1. Visual performance with partial subtasks disabled
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Fig. 2. Subjective preference distribution of each sub-task

color which is shown in 4th row of Fig. 4. Besides, the color bleeding caused
via the ill-measured gray channel correlation affects the final reconstruction’s
quality as shown in the third row of Fig. 4.
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Fig. 3. Subjective score distribution of 5 test cases
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(a) (b) (c) (d)

Fig. 4. Overall simulation on Middlebury2014: (a) is the input color image with poor
illumination at the low resolution IYUV

v1,sL,lL
. (×4 for illusration) (b) represents the

monochrome input at the high resolution IYv2,sH ,lH
. (c) and (d) show the prediction

and the ground truth of the color image IYUV
v2,sH ,lH

.
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(a) (b) (c)

Fig. 5. Overall performance on captured scenes: (a) is the input color image with
poor illumination at the low resolution IYUV

v1,sL,lL
. (×4 for illusration) (b) represents the

monochrome input at the high resolution IYv2,sH ,lH
. (c) presents the final reconstruction

of the color image IYUV
v2,sH ,lH

.


