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1 Proof

Proposition 1 Let x, y be two n-dimensional data vectors with elements {x;}
and {y;}, respectively. Assume their Pearson correlation coefficient is 4, i.e.,
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where T =Y, x;/n, g =, yi/n. Let e; = y; — x;,i = 1,2,...,n, be the residuals

of data elements, forming a vector €. Suppose that the variances of € and y are

o2, O'Z respectively, and 05 >0, 02 # 05. Then we have:
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Proof. Without loss of generality, we assume that £ = y = 0. In convenient
vector notation, we define
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the inner product between x and y. Then we can write
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By the Cauchy-Schwarz inequality, we have
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Combing the preceding inequalities and noting that o = (y,y)/n, 02 = (¢,¢) /n,
we conclude the proof.
O

2 Network-Equivalent Transformation Invariance

As illustrated in the paper, due to the positively homogeneous property of ReLU
and normalization process of BN, there exist two network-equivalent transfor-
mations. Mathematically, they can be expressed as:

BN(K!, + X') = BN( K}, * X'), (7)
and
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Here oy, as > 0, and the superscript [ represents the layer index of that variable.
Our proposed metric is:
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For the first transformation, which scales a filter by a4, we have the following
transformed results:

]/W\Jl}i :[?Jlﬂ*)?ll :alKJl',i*Xz; :alMJl‘,i’ i=1,...,C, (11)
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and
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The effect of a; is canceled by the division. The calculated SFVR of each channel
in the [-th layer is thus unaffected. For the later layers, the calculated results are
also unchanged since the effect of «; has been normalized by the BN transform
in the I-th layer.

For the second transformation, we have:
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Y/ =Y/, j=1...N. (14)

The calculation of SFVR remains the same.
Concluding above, we arrive at our result that SFVR is invariant to the two
equivalent transformations.

3 General Networks without Batch Normalization

For the general networks without BN, we can still use SEVR to measure the
importance of corresponding channels in the network. Just in this case we cannot
leverage the statistics of BN to estimate the variances of output feature maps
and therefore require spending a little extra computation cost on them.

In fact, for the network without BN, the magnitude of parameters can also
vary independently of the channel importance:

1
KlLox (KT XLl = 2K« flaK T s X abl™h), (15)

where a is a positive scalar, b/ ! is the i-th bias term in the (I-1)-th layer, and f(-)
is a positively homogeneous activation like ReLU(-). The parameter magnitudes
are less relevant to the identification of channel importance, either. In this case,
however, since the scale and bias of convolutional output feature map le can
be relearned by the channel weights K lJ]rl and bias term bé, we can still use the
Pearson correlation coefficient to characterize the essential information loss of le
resulted from pruning and then derive SFVR from Proposition 1 to describe the
channel importance. SFVR is also invariant to the transformation 15. Note that
for the activation that is not positively homogeneous, SFVR is also meaningful
from the feature-correlation perspective.

4 Comparison of Channel Importance Metrics on Deeper
Networks

Fig. 1 presents the single-shot pruning results of different metrics on deeper net-
works. Consistently, our proposed SFVR metric outperforms the conventional
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magnitude-based ones, better in identifying redundant channels in modern net-
works. All these experiments are repeated 3 times with different random seeds.
+ standard derivation is reported with the shaded region.
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Fig. 1. Comparison of channel importance metrics on deeper networks.

5 Pruned Architectures

Fig. 2 shows the FVRCP-pruned architectures of many popular networks, in-
cluding ResNets, pre-activation ResNets, DenseNets, and MobileNets.
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Fig. 2. Illustration of FVRCP-pruned architectures. The FLOPs pruning ratio and
corresponding (top-1) accuracy are reported in the legend.
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6 Distribution of SFVR

Fig. 3 shows the distribution of SFVR in the original and pruned ResNet-18 and
ResNet-50 models. After pruning, the distribution of SFVR concentrates on a

larger value, which implies that the representation of feature maps has become
more compact.
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Fig. 3. Distribution of SFVR in the original and pruned (50% FLOPs reduction by
FVRCP) ResNet-18 and ResNet-50 models.



