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1 Impact of Coarse Caption Quality

We verify how the quality of the coarse caption influences the performance of
the Pro-LSTM model. Different checkpoints of the AoA* model, which is the
coarse caption generator, are exploited to generate coarse captions. The quality
of the coarse caption is assessed using its CIDEr-D score on the Karpathy’s test
split. We leverage the aforementioned model with baseline + AAD (in Table 4
of the paper) as a new baseline model to evaluate the impact of different coarse
captions.

Table 1 demonstrates that the performance of our proposed Pro-LSTM mod-
el generally improves as the CIDEr-D of the coarse caption increases. However,
it can be noticed that too poor quality coarse captions harm the performance
of the Pro-LSTM model, as the prospective information contained in these cap-
tions may be erroneous. The erroneous prospective information would mislead
the Pro-LSTM model and result in poor performance. When the quality of the
coarse captions improves, the Pro-LSTM model outperforms the baseline mod-
el thanks to the semantically correct prospective information. We notice that
when the CIDEr-D score of the coarse caption reaches 106.9, the Pro-LSTM
model achieves comprehensive improvement than the baseline + AAD model
in terms of CIDEr-D. Considering that 106.9 is much lower than 118.3, which
is the CIDEr-D score of the baseline + AAD model, our proposed Prospective
information guided Attention (ProA) mechanism does enhance the captioning
model even when the coarse caption is not that satisfying.

Table 1. The performance of using different coarse captioner with different quali-
ty (CIDEr-D score) in the XE training phase.

CIDEr-D of coarse caption|Bleu-1 Bleu-4 Meteor Rouge-L CIDEr-D SPICE
baseline+AAD 76.8 36.5 28.0 56.9 118.3 21.3
59.9 76.2 363 27.7 56.5 117.0  20.9
78.2 76.4 36.5 27.7 56.6 117.3 21.0
92.2 76.5 365 279 56.8 117.6 21.1
101.3 76.7 36.7 27.8 57.0 118.1  21.3
106.9 76.8 36.6 28.1 57.2 118.4 21.3
112.7 771 369 28.1 57.1 119.0 21.4
115.8 775 37.2 28.2 57.2 119.7 21.4
118.4 77.8 37.1 28.2 57.3 120.2 21.5
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More Qualitative Results

More qualitative results are shown in Figures 1 - 2 in which the weights of
prospective feature in the ProA module (in Eq.10 of the paper) and the visual
attention in AAD are plotted. Considering that the weights are 1024d vectors in
practice, we show the mean value of &; in both object attention and attribute
attention for simplicity.

For example, Figure 1 shows the corresponding results for an image selected
the MSCOCO test set. The coarse caption and the top-ranked predicted image
attributes are shown in the top right of the figure. Although the coarse caption
is roughly a semantically correct description for this image, it fails to point out
the key object ‘fence’, which may help to describe the scene more reasonably.
Nevertheless, the caption generated by the Pro-LSTM model, which is shown in
green at the bottom of Figure 1(a), successfully describes the fence with the help
of ProA and AAD. We first visualize how ProA influences our model by showing
the weights of prospective information in the modified object attention and at-
tribute attention sub-modules in the ProA module. Generally, these two weights
are close in all the time steps, suggesting that the influence of prospective infor-
mation is similar in the two modalities. It can be noticed our model assigns more
weights to the prospective information to generate the nouns like ‘motor’, ‘herd’
and ‘sheep’ since these nouns are already predicted by the coarse caption. More
importantly, the prospective information is successfully exploited to generate
the new key word ‘fence’. This is because the ‘sheep’, which has been generat-
ed in the coarse caption, frequently appears with the ‘fence’ in the countryside
landscape images. Thus, the prospective information guides our model to attend
to the features that are correlated to the ‘fence’ in both modalities by form-
ing relatively global linguistic contexts, which further leads to the generation
of the new instance ‘fence’. We also visualize the attended areas of some image
attributes in the AAD to show how we integrate the object features. Fig. 1(b)
shows the attended areas for the top-ranked image attributes, where the lighter
the area is the larger its corresponding weight is. The attribute ‘fence’ is accu-
rately detected since the AAD precisely attend to the most related areas inside
the image. Consequently, the ‘fence’ is successfully depicted by the Pro-LSTM
model thanks to the plausible image attributes.

Similarly, in Fig. 2, the AoA* model fails to point out the ‘clock tower’.
However, with the help of AAD, although the linguistic information in the coarse
caption is thoroughly utilized after the generation of ‘building’, our model still
delineates the ‘clock tower’ as these two attributes are predicted with relatively
high confidence by the AAD.

To conclude, we can witness that the collaboration of ProA and AAD enables
our model to spot the new instances in the image so as to polish the coarse
caption.
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3 Implementation Details

3.1 Attentive Attribute Detector

We leverage the focal loss [1] to train AAD (in section 4.2 of the paper) as
shown in Eq. 1, where I; denotes whether the i attribute is in the ground truth
captions or not, and § and 7 are empirically set to 0.95 and 2. The AAD model
was trained 10 epochs in the MSCOCO dataset. The Adam Optimizer [2] was
used with a batch size of 10. The learning rate was initially set to 5e-4 and
decayed by a factor of 0.8 every 3 epochs.

loss{' = — 1;6(1 — p;)"log(p:)
— (L =1;)(1 = d)p]log(1 — p;) (1)

The performance of AAD is evaluated by the average F1 score (in Table 1
of the paper), here we explain how to compute it in detail. The precision and
recall of attribute detection for each image are defined in Eq. 2, in which I is
the set of ground truth attributes of an image, I; is the set of top-L detected
attributes, and | - | represents the cardinality of a set. The F1 score is defined as
the harmonic mean of precision and recall.

I I I I isi I
Mot Lol oy = MoeNTal g precision x recall

recision =
prects Lyl 7 Lq| precision + recall

3.2 Prospective attention guided LSTM

The Pro-LSTM model (in section 4.1 of the paper) adopted the bottom-up
36x2048 object feature provided in [3]. The dual encoder was formed with 6
attention blocks, where the sizes of hidden layer and the feed-forward network
were set to 1024 and 2048 respectively. The Adam optimizer was also adopted to
train the Pro-LSTM model. In the cross-entropy (XE) training phase, we trained
our model for 15 epochs with a batch size of 40. The learning rate was initially
set as 2e-4 and then reduced by a factor 0.8 every 3 epochs. We optimized the
CIDEr-D score with SCST [4] for another 10 epoch with a batch size of 40. The
learning rate was initially set as 2e-5 and then reduced by a factor 0.5 when
the CIDEr-D on the validation set does not improve for 4500 iterations. The
gradients were clipped by the maximum absolute value of 0.1 in both training
phases. We used the beam search strategy with the beam size of 2 to generate
the image captions. Note that our model was trained for much fewer epochs than
other compared methods with the aid of prospective information in the coarse
caption. In practice, after only 1 epoch XE training, the CIDEr-D score on the
validation set is over 110.
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