

000  
001        **Supplementary Material:**  
002        **Show, Conceive and Tell: Image Captioning with**  
003        **Prospective Linguistic Information**004  
005              Anonymous ACCV 2020 submission  
006  
007              Paper ID 808  
008  
009  
010  
011        **1 Impact of Coarse Caption Quality**  
012  
013        We verify how the quality of the coarse caption influences the performance of  
014        the Pro-LSTM model. Different checkpoints of the AoA\* model, which is the  
015        coarse caption generator, are exploited to generate coarse captions. The quality  
016        of the coarse caption is assessed using its CIDEr-D score on the Karpathy's test  
017        split. We leverage the aforementioned model with *baseline + AAD* (*in Table 4*  
018        *of the paper*) as a new baseline model to evaluate the impact of different coarse  
019        captions.020        Table 1 demonstrates that the performance of our proposed Pro-LSTM model  
021        generally improves as the CIDEr-D of the coarse caption increases. However,  
022        it can be noticed that too poor quality coarse captions harm the performance  
023        of the Pro-LSTM model, as the prospective information contained in these cap-  
024        tions may be erroneous. The erroneous prospective information would mislead  
025        the Pro-LSTM model and result in poor performance. When the quality of the  
026        coarse captions improves, the Pro-LSTM model outperforms the baseline model  
027        thanks to the semantically correct prospective information. We notice that  
028        when the CIDEr-D score of the coarse caption reaches 106.9, the Pro-LSTM  
029        model achieves comprehensive improvement than the *baseline + AAD* model  
030        in terms of CIDEr-D. Considering that 106.9 is much lower than 118.3, which  
031        is the CIDEr-D score of the *baseline + AAD* model, our proposed Prospective  
032        information guided Attention (ProA) mechanism does enhance the captioning  
033        model even when the coarse caption is not that satisfying.034        **Table 1.** The performance of using different coarse captioner with different qual-  
035        ity (CIDEr-D score) in the XE training phase.  
036

| CIDEr-D of coarse caption | Bleu-1      | Bleu-4      | Meteor      | Rouge-L     | CIDEr-D      | SPICE       |
|---------------------------|-------------|-------------|-------------|-------------|--------------|-------------|
| baseline+AAD              | 76.8        | 36.5        | 28.0        | 56.9        | 118.3        | 21.3        |
| 59.9                      | 76.2        | 36.3        | 27.7        | 56.5        | 117.0        | 20.9        |
| 78.2                      | 76.4        | 36.5        | 27.7        | 56.6        | 117.3        | 21.0        |
| 92.2                      | 76.5        | 36.5        | 27.9        | 56.8        | 117.6        | 21.1        |
| 101.3                     | 76.7        | 36.7        | 27.8        | 57.0        | 118.1        | 21.3        |
| 106.9                     | 76.8        | 36.6        | 28.1        | 57.2        | 118.4        | 21.3        |
| 112.7                     | 77.1        | 36.9        | 28.1        | 57.1        | 119.0        | 21.4        |
| 115.8                     | 77.5        | <b>37.2</b> | <b>28.2</b> | 57.2        | 119.7        | 21.4        |
| 118.4                     | <b>77.8</b> | 37.1        | <b>28.2</b> | <b>57.3</b> | <b>120.2</b> | <b>21.5</b> |

045 **2 More Qualitative Results** 045  
046  
047  
048

049 More qualitative results are shown in Figures 1 - 2 in which the weights of  
050 prospective feature in the ProA module (*in Eq.10 of the paper*) and the visual  
051 attention in AAD are plotted. Considering that the weights are  $1024d$  vectors in  
052 practice, we show the mean value of  $\bar{\alpha}_t$  in both object attention and attribute  
053 attention for simplicity.  
054

055 For example, Figure 1 shows the corresponding results for an image selected  
056 the MSCOCO test set. The coarse caption and the top-ranked predicted image  
057 attributes are shown in the top right of the figure. Although the coarse caption  
058 is roughly a semantically correct description for this image, it fails to point out  
059 the key object ‘*fence*’, which may help to describe the scene more reasonably.  
060 Nevertheless, the caption generated by the Pro-LSTM model, which is shown in  
061 green at the bottom of Figure 1(a), successfully describes the *fence* with the help  
062 of ProA and AAD. We first visualize how ProA influences our model by showing  
063 the weights of prospective information in the modified object attention and at-  
064 tribute attention sub-modules in the ProA module. Generally, these two weights  
065 are close in all the time steps, suggesting that the influence of prospective infor-  
066 mation is similar in the two modalities. It can be noticed our model assigns more  
067 weights to the prospective information to generate the nouns like ‘*motor*’, ‘*herd*’  
068 and ‘*sheep*’ since these nouns are already predicted by the coarse caption. More  
069 importantly, the prospective information is successfully exploited to generate  
070 the new key word ‘*fence*’. This is because the ‘*sheep*’, which has been generat-  
071 ed in the coarse caption, frequently appears with the ‘*fence*’ in the countryside  
072 landscape images. Thus, the prospective information guides our model to attend  
073 to the features that are correlated to the ‘*fence*’ in both modalities by form-  
074 ing relatively global linguistic contexts, which further leads to the generation  
075 of the new instance ‘*fence*’. We also visualize the attended areas of some image  
076 attributes in the AAD to show how we integrate the object features. Fig. 1(b)  
077 shows the attended areas for the top-ranked image attributes, where the lighter  
078 the area is the larger its corresponding weight is. The attribute ‘*fence*’ is accu-  
079 rately detected since the AAD precisely attend to the most related areas inside  
080 the image. Consequently, the ‘*fence*’ is successfully depicted by the Pro-LSTM  
081 model thanks to the plausible image attributes.  
082

083 Similarly, in Fig. 2, the AoA\* model fails to point out the ‘*clock tower*’.  
084 However, with the help of AAD, although the linguistic information in the coarse  
085 caption is thoroughly utilized after the generation of ‘*building*’, our model still  
086 delineates the ‘*clock tower*’ as these two attributes are predicted with relatively  
087 high confidence by the AAD.  
088

089 To conclude, we can witness that the collaboration of ProA and AAD enables  
090 our model to spot the new instances in the image so as to polish the coarse  
091 caption.  
092



CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

4 ACCV-20 submission ID 808



**Fig. 2.** The visualization of how ProA and AAD refine the coarse caption.

180 3 Implementation Details 180  
181  
182183 3.1 Attentive Attribute Detector 181  
184  
185  
186  
187  
188  
189

We leverage the focal loss [1] to train AAD (*in section 4.2 of the paper*) as shown in Eq. 1, where  $l_i$  denotes whether the  $i^{th}$  attribute is in the ground truth captions or not, and  $\delta$  and  $\gamma$  are empirically set to 0.95 and 2. The AAD model was trained 10 epochs in the MSCOCO dataset. The Adam Optimizer [2] was used with a batch size of 10. The learning rate was initially set to 5e-4 and decayed by a factor of 0.8 every 3 epochs.

$$\begin{aligned} loss_i^{fl} = & -l_i\delta(1-p_i)^\gamma \log(p_i) \\ & -(1-l_i)(1-\delta)p_i^\gamma \log(1-p_i) \end{aligned} \quad (1)$$

The performance of AAD is evaluated by the average F1 score (*in Table 1 of the paper*), here we explain how to compute it in detail. The precision and recall of attribute detection for each image are defined in Eq. 2, in which  $\mathbf{I}_{gt}$  is the set of ground truth attributes of an image,  $\mathbf{I}_d$  is the set of top- $L$  detected attributes, and  $|\cdot|$  represents the cardinality of a set. The F1 score is defined as the harmonic mean of precision and recall.

$$\text{precision} = \frac{|\mathbf{I}_{gt} \cap \mathbf{I}_d|}{|\mathbf{I}_{gt}|}, \quad \text{recall} = \frac{|\mathbf{I}_{gt} \cap \mathbf{I}_d|}{|\mathbf{I}_d|}, \quad \text{F1} = 2 \times \frac{\text{precision} \times \text{recall}}{\text{precision} + \text{recall}} \quad (2)$$

202 3.2 Prospective attention guided LSTM 202  
203

The Pro-LSTM model (*in section 4.1 of the paper*) adopted the bottom-up  $36 \times 2048$  object feature provided in [3]. The dual encoder was formed with 6 attention blocks, where the sizes of hidden layer and the feed-forward network were set to 1024 and 2048 respectively. The Adam optimizer was also adopted to train the Pro-LSTM model. In the cross-entropy (XE) training phase, we trained our model for 15 epochs with a batch size of 40. The learning rate was initially set as 2e-4 and then reduced by a factor 0.8 every 3 epochs. We optimized the CIDEr-D score with SCST [4] for another 10 epoch with a batch size of 40. The learning rate was initially set as 2e-5 and then reduced by a factor 0.5 when the CIDEr-D on the validation set does not improve for 4500 iterations. The gradients were clipped by the maximum absolute value of 0.1 in both training phases. We used the beam search strategy with the beam size of 2 to generate the image captions. Note that our model was trained for much fewer epochs than other compared methods with the aid of prospective information in the coarse caption. In practice, after only 1 epoch XE training, the CIDEr-D score on the validation set is over 110.

221 References 221  
222

1. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence (2018)

CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

6 ACCV-20 submission ID 808

225 2. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization (2014) 225  
226 3. Anderson, P., He, X., Buehler, C., Teney, D., Johnson, M., Gould, S., Zhang, L.: 226  
227 Bottom-up and top-down attention for image captioning and visual question 227  
228 answering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern 228  
229 Recognition. Volume 3. (2018) 6 229  
230 4. Rennie, S.J., Marcheret, E., Mroueh, Y., Ross, J., Goel, V.: Self-critical sequence 230  
231 training for image captioning. In: Proceedings of the IEEE Conference on Computer 231  
232 Vision and Pattern Recognition. (2017) 1179–1195 232  
233 233  
234 234  
235 235  
236 236  
237 237  
238 238  
239 239  
240 240  
241 241  
242 242  
243 243  
244 244  
245 245  
246 246  
247 247  
248 248  
249 249  
250 250  
251 251  
252 252  
253 253  
254 254  
255 255  
256 256  
257 257  
258 258  
259 259  
260 260  
261 261  
262 262  
263 263  
264 264  
265 265  
266 266  
267 267  
268 268  
269 269