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Abstract. This paper is the supplementary material for the paper en-
titled “Cascaded Transposed Long-range Convolutions for Monocular
Depth Estimation.” In this supplementary material, we report additional
analysis of our Cascaded Transposed Long-range Convolutions (CTLCs),
specifically the impact of kernel size and feature extraction backbone net-
works on performance and qualitative results.

1 Additional Analysis of Kernel Size

In Table 1 of the main paper, we report our analysis of the impact of kernel
shapes on depth estimation performance. The analysis is limited to the kernels
with (approximately) the same number of parameters as (5 x 5) — (5 x 5).
We here report additional results for other patterns with different number of
parameters such as (1 x 5) — (5 x 1) and (1 x 9) — (9 x 1).

The results are shown in Table 1. We observed a similar trend to the results
presented in our main paper; the longer the kernel shapes, the better the perfor-
mance. An additional observation from this analysis is that (1x5) — (5x1) (resp.
(1x9) = (9x 1)) is slightly better than (3x3) = (3x3) (resp. (5x5) = (5x5))
that has more number of parameters. These results highlight the validity of our
idea of CTLC. Note that (1 x 25) — (25 x 1) is still the best. This is because
(1 x9) or (1 x5)is a downgrade version of (1 x 25) and cannot capture local
vertical-horizontal correlations as (3 x 9) can. We tried possible combinations
of these kernels (e.g., (1 x5) — (5 x 1) and (1 x 9) — (9 x 1)) for making the
final CTLC block, but none surpassed our original version shown in Fig. 5 of the
main paper.

2 Additional Results on KITTI

In Table 4 of the main paper, we compare our method with the state-of-the-
art methods on KITTI. In this comparison, we use DenseNet-161 as our feature
extraction backbone network. In this supplementary material, we report the per-
formance of our method when it is coupled with the ResNet-50 feature extraction
backbone network.
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Backbone Kernel Shape higher is better lower is better
01 02 63 |AbsRel SqRel RMSE RMSEj ¢

( ) 10.849 0.975 0.995] 0.126 0.077 0.430 0.157
(5x 1) |0.845 0.975 0.995| 0.126 0.075 0.434 0.158
" (3x3) = (3x3) [0.844 0.974 0.995 0.128 0.078 0437 0.160
DenseNet-161 (9 x 1) — (1 x 9) |0.857 0.977 0.996| 0.121 0.072 0.425 0.153
( ) — ( ) 10.852 0.976 0.995| 0.123 0.075 0.431 0.156
T(5x5) = (B x5) [ 0.850 0.975 0.995| 0.126 0.075 0.431 0.156
)[0.867 0.978 0.995| 0.119 0.070 0.412  0.148

) = (5%5)
) = (1x25
(1 x 25) — (25 x 1)|0.871 0.979 0.995|0.116 0.068 0.409 0.147
) = (1x5)
)= (5x1)

0.781 0.955 0.990| 0.156 0.109 0.514 0.193
0.783 0.956 0.991| 0.155 0.108 0.513 0.192
" (3x3) = (3x3) [0773 0.952 0.988( 0.164 0.117 0.523 0.197 ~
ResNet-50 (9 x 1) — (1 x9) [0.818 0.965 0.992| 0.143 0.094 0.471 0.175
( ) — ( ) 10.814 0.966 0.993| 0.141 0.092 0.477 0.176
" (5x5) = (5x5) [0.812 0.965 0.992| 0.143 0.094 0478 0.177 ~
(1 x25)[0.863 0.977 0.994| 0.120 0.073 0.418 0.150
(1 x25) — (25 x 1)|0.867 0.9800.995| 0.117 0.069 0.413 0.148
Table 1: Additional results on impact of kernel sizes and shapes. The
scores are evaluated on NYU Depth V2 dataset. The best scores for each metric

are shown in bold.

The results are shown in Table 2. Although there are slight performance
differences between Ours w/ ResNet-50 and Ours w/ DenseNet-161, we found
that Ours w/ ResNet50 can still outperform all the baselines listed in Table 4
of the main paper. These results demonstrate that our method has excellent
performance on KITTI, regardless of the feature extraction backbone network.

3 Qualitative Results

Our final CTLC block has a parallel structure with four branches with long-range
kernels of different shapes and combinations (see Fig. 5 of the main paper). In
the main paper, we quantitatively analyze the benefits of this parallelization. In
this supplementary material, we demonstrate its qualitative benefits.

Fig. 1 shows qualitative results of our final CTLC block. The depth maps
estimated by our final CTLC block have the advantages of both when not paral-
lelized. While maintaining the high estimation accuracy as (1 x25) — (25 x 1), it
can represent roundish corners as (1x9) — (9% 1). Compared to (1x9) — (9x1)
and (1 x 25) — (25 x 1), the final CTLC block can recover more precise depth
boundaries. These observations emphasize the qualitative advantages of the final
CTLC block.
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Method cap[ higher is better lower is better
‘ (51 (52 (53 AbsRel SqRel RMSE ];U\/[S]'E‘qOg

Ours w/ ResNet-50 (raw) 80m|0.938 0.989 0.998| 0.071 0.317 3.040 0.112
Ours w/ ResNet-50 (GT) 80m|0.947 0.992 0.998| 0.065 0.272 2.929 0.103
Ours w/ DenseNet-161 (raw)|80m|0.896 0.972 0.990| 0.093 0.519 3.856  0.155
Ours w/ DenseNet-161 (GT) |80m|0.951 0.992 0.998| 0.064 0.271 2.945 0.101

Ours w/ ResNet-50 (raw) 50m|0.947 0.992 0.998| 0.072 0.232 2.224  0.107
Ours w/ ResNet-50 (GT) 50m|0.952 0.993 0.998| 0.068 0.213 2.177 0.101
Ours w/ DenseNet-161 (raw)|50m|0.911 0.975 0.991| 0.086 0.399 2.933  0.145
Ours w/ DenseNet-161 (GT) |50m|0.956 0.994 0.999| 0.065 0.199 2.141 0.098

Table 2: Performance with different feature extraction backbone net-
works on KITTI. “cap” gives the maximum depth used for evaluation. “(raw)”
and “(GT)” mean that the models are trained with raw depth maps and post-
processed ground truth depth maps, respectively. The best scores for each metric

are shown in bold.
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RGB Image (3x9)—>(9x3) (1x25)-(25x 1) Our Final CTLC Block

Fig. 1: Qualitative results. Examples of the estimated depth maps on NYU
Depth V2 are shown. DenseNet-161 is used for the feature extraction backbone.



