
18 D. Jack et al.

7 Supplementary Material

7.1 Summary of Notation

Dimensions

D Physical dimensionality of point cloud
Q Number of input channels
P Number of output channels
S Size of input cloud
S′ Size of output cloud
E Number of edges
M Number of basis functions

Sets

X ⊂ RD Input cloud coordinates
X ′ ⊂ RD Output cloud coordinates
Ni ⊆ X Set of inputs in neighborhood of x′i
Tensors

xj ∈ X jth input coordinate

x′i ∈ X ′ ith output coordinate
∆xij ∈ RD Edge vector: x′i − xj , xj ∈ Ni

fj ∈ R Input feature associated with xj
f ′i ∈ R Output feature associates with x′i
f ∈ RS Single-channel input feature for input cloud X
f ′ ∈ RS′

Single-channel output feature for output clouse X ′
F ∈ RS×Q Multi-channel input features

F ′ ∈ RS′×P Multi-channel output feature

Θ(m) ∈ RQ×P kernel parameters associated with mth basis fn

N (m) ∈ RS′×S Neighborhood matrix

Table 6: Summary of notation.

Sparse Convolutions on Continuous Domains 19

7.2 Additional Point Cloud Network Details

Pseudo-code for Iterative Farthest Point (IFP) variants and rejection sampling
are given in Algorithms 1 through refalg:approx-ifp-rej.

Select differences between rejection sampling and random sampling are given
in Figure 3.

A diagram of our large point cloud network is given in Figure 4.

Random Rejection

Fig. 3: Output cloud (red dots) resulting from different sampling schemes applied
to input clouds (blue) and the corresponding neighborhoods (light red circles).
From the top left image, we can see random sampling can result in some re-
gions being under-sampled. This is particularly problematic for networks with
subsequent up-sampling, where some blue points have no red points in their own
neighborhood. The number of sampled points is not fixed for rejection sampling,
so significantly less points will be sampled from pointy surfaces (bottom). By
construction, none of the dark red circles (top right, half base radius) overlap, so
the total number of possible sample points is limited by ball packing theorems.

20 D. Jack et al.

Algorithm 1: IFP

Inputs: X input point cloud
S′ output size

Result: X ′: sampled points
X ′ ← [];
S ← size(X);
dmin ←∞× ones(S);
for i in range(S′) do

j ← argmin(dmin);
X ′.append(xj);
dmin ←
min(dmin, d(X , xj));

end

Algorithm 2: Approx. IFP

Inputs: X input point cloud
S′ output size
N (·) neighborhood fn
Q priority queue

Result: X ′: sampled points
X ′ ← [];
for j in range(S′) do

x′i ← Q.pop();
X ′.append(x′i);
for xn in N (x′i) do

Q.update(xn, d(xn, x
′
i))

end

end

Algorithm 3: Approx. IFP
(without rej.)

Inputs: X input point cloud
S′ output size
N (·) neighborhood fn

Result: X ′: sampled points
S ← size(X);
Q← Priority Queue(∞×
ones(S),X);
X ′ ←
Approx. IFP(X , S′,N , Q)

Algorithm 4: Rejection
Sampling

Inputs: X input point cloud
N (·) neighborhood fn

Result:
X ′: sampled points
dmin: distance from each

input
point to closest output

point
X ′ ← [];
S ← size(X);
dmin ←∞× ones(S);
visited ← False× ones(S);
for x′i in X do

if visited[i] then
continue;

end
X ′.append(x′i);
Ni ← N (x′i);
for xj in Ni do

visited[j]← True;
dmin[j]←
min(dmin[j], d(x′i, xj));

end

end

Algorithm 5: Approx. IFP
(with rej.)

Inputs: X input point cloud
S′ output size
N (·) neighborhood fn

Result: X ′: sampled points
X ′0, dmin ←
Rejection Sampling(X , S′,N);

Q← Priority Queue(dmin,X);
S′1 ← S′ − size(X ′0);
X ′1 ←
Approx. IFP(X , S′1,N , Q);
X ′ ← concatenate(X ′0,X ′1);

Sparse Convolutions on Continuous Domains 21

7.3 Additional Event Stream Network Details

The Leaky Integrate and Fire (LIF) algorithm we used is given in Algorithm 6.

Algorithm 6: Leaky Integrate and Fire (LIF)

Inputs: X input grid shape
t times for input events, sorted ascending
x coordinates for input events, same order as t
N (·) spatial neighborhood fn giving coordinates of receptive field
t̃ decay time
vthresh spike threshold
vreset reset potential

Result: tout, xout: time and coordinates of output stream.
xout ← [];
tout ← [];
V ← zeros(X);
T ← zeros(X);
S ← size(x);
for i in range(S) do

ti ← t[i];
xi ← x[i];
n← size(N (xi));
for xj in N (xi) do

v ← V [xj] exp
(
−(ti − T [xj])/t̃

)
+ 1

n
;

if v > vthresh then
v ← vreset;
tout.append(ti);
xout.append(xj);

end
V [xj]← v;
T [xj]← ti;

end

end

We down-sampled examples from the two highest-resolution datasets – N-
Caltech101 and ASL-DVS – by a factor of 2 in each dimension. We performed ba-
sic data augmentation involving small rotations (−22.5◦ to 22.5◦), time/polarity
reversal for all datasets except ASL-DVS and left-right flips for CIFAR-10-DVS
and N-Caltech101. No data augmentation was applied to ASL-DVS. We com-
puted neighborhood information for N-MNIST online and offline with 8 aug-
mented repeats for MNIST-DVS, CIFAR10-DVS and NCaltech101-DVS.

For the small number of examples with more than 300,000 events we took
the first 300,000. Apart from this infrequent cropping, we use all events in all
examples.

All models were trained with Adam optimizer, initial learning rate 1e − 3,
β1 = 0.9, β2 = 0.999, ε = 1e−7. We trained our ASL-DVS model for 100 epochs

22 D. Jack et al.

with a fixed learning rate. For all others, we decay the learning rate by a factor
of 5 after the training accuracy fails to increase for 10 epochs, and run until
learning ceases as a result of several such decays.

Dataset summary statistics and select model hyper-parameters parameters
given in Table 7.

A diagram of the model used for CIFAR10-DVS is given in Figure 5.

Dataset N-MNIST MNIST-DVS CIFAR10-DVS N-Caltech101 ASL-DVS

Classes 10 10 10 101 24
Resolution 34× 34 128× 128 128× 128 174× 234 180× 240
Train examples 60,000 9,000 9,000 7,838 80,640
Median # events 4,196 70,613 203,301 104,904 17,078
Mean # events 4,171 73,704 204,979 115,382 28,120
Max # events 8,183 151,124 422,550 428,595 470,435

Batch Size 32 32 16 8 8
Spike Threshold, vthresh 1.5 1.5 1.6 1.25 1.0
Reset Potential, vreset -3.0 -2.0 -3.0 -2.0 -3.0
Initial Decay Time, t0 2,000 10,000 4,000 1,000 1,000
Initial Filters, f0 32 8 8 16 16
Down Samples 3 5 5 5 5

Data Augmentation
Rotation up to ±22.5◦ Yes Yes Yes Yes No
Flip left-right No No Yes Yes No
Flip time/polarity Yes Yes Yes Yes No
Preprocessing repeats ∞ (online) 8 8 8 1

Table 7: Event stream dataset summary statistics and model/data augmentation
hyperparameters.

Sparse Convolutions on Continuous Domains 23

S ×Q Dense
ReLU
BN S ×Q/4

Conv
ReLU
BN

S ×Q/4

Dense
BN

Dropout

S ×Q

+
ReLU

S ×Q

(a) In-place residual block

S ×Q

Sample

Dense
ReLU
BN S × P/4

Conv
ReLU
BN

S′ × P/4

Dense
BN

Dropout

S′ × P

+
ReLU

S′ ×Q

Dense
BN

Dropout

S′ × P

S′ × P

(b) Down-sample residual block

X0

[1024?× 3]

X1

[256?× 3]

X2

[64?× 3]

X3

[16?× 3]

Sample

Sample

Sample

Ball
r = r0

Ball
r = 2r0

Ball
r = 4r0

Ball
r = 8r0

N01

[10× 256?× 1024?]

N11

[10× 256?× 256?]

N12

[10× 64?× 256?]

N22

[10× 64?× 64?]

N23

[10× 16?× 64?]

N33

[10× 16?× 16?]

Res Block
[256?× 64]

Res Block
[256?× 64]

Res Block
[64?× 128]

Res Block
[64?× 128]

Res Block
[16?× 256]

Res Block
[16?× 256]

Dense
[16?× 1024]

Ball
r =
√

2r0

Ball
r = 2

√
2r0

Ball
r = 4

√
2r0

Global Pooling
[1024]

ReLU, BN, Dropout, Dense
[256]

ReLU, BN, Dropout, Dense
[40]

N00

[10× 1024?× 1024?]
Feat.less Conv

[1024× 32]

(c) Large Point Cloud Network, r0 = 0.1125. Numbers in brackets represent output
example dimensions. Dimensions with question marks (?) correspond to approximate
number of points when using no point dropout. Dashed line corresponds to preprocess-
ing/batching divide. BN is batch normalization, and Dropout uses a rate of 0.5

Fig. 4

24 D. Jack et al.

Polarity
[128× 128× 2]

Conv 3× 3× 4/2, t0
[64× 64× f0]

Conv 3× 3× 4/2, 2t0
[32× 32× 2f0]

Conv 3× 3× 4/2, 4t0
[16× 16× 4f0]

Conv 3× 3× 4/2, 8t0
[8× 8× 8f0]

Conv 3× 3× 4/2, 16t0
[4× 4× 16f0]

Inception, t0
[64× 64× f0]

Inception, 2t0
[32× 32× 2f0]

Inception, 4t0
[16× 16× 4f0]

Inception, 8t0
[8× 8× 8f0]

Inception, 16t0
[4× 4× 16f0]

Mean Voxelize
[16× 16× 4× 4f0]

Mean Voxelize
[8× 8× 2× 2f0]

Mean Voxelize
[4× 4× 1× 16f0]

+

+

Conv3D, 2× 2× 2/2
[8× 8× 2× 8f0]

Conv3D, 2× 2× 2/2
[8× 8× 2× 8f0]

Dense
[4× 4× 1× 32f0]

Max Pool
[32f0]

Dense
[256]

Softmax Classifier

Input
[H ×W ×Q]

+
[H ×W ×Q]

Conv (1× 5 ∪ 5× 1)× 4/1, t̃
[H ×W ×Q]

Conv 1× 1× 16/1, 4t̃
[H ×W ×Q]

Dense, ReLU
[H ×W × 4Q]

Dense
[H ×W ×Q]

+, ReLU, BN

Inception Block, t̃

Fig. 5: Network architecture for event stream inference for CIFAR10-DVS. Conv
h×w×t/S, t̃ is a down-sampling convolution with spatial stride S, spatial kernel
shape h×w and temporal kernel size t, i.e.Mu = hw, Mv = t. The output stream
is the result of LIF subsampling with the same spatial kernel size and decay time
t̃. Edges with ∆t > 4t̃ are cropped, and convolutions use ∆t scaled by t̃. Each
down-sampling convolution, the pre-max-pooling dense layer and the final dense
layer are all followed by ReLU, batch normalization and dropout with rate 0.5.
Each mean voxelization is followd by batch normalization, and each Conv3D is
followed by ReLU and batch normalization.

