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S1 Implementation Detail of ADM

S1.1 Determination Rules of Hyperparameters

In Eq.10, a deterministic hyperparameter β{edge,∼edge} is adopted in proposed
ADM layer and we let βedge = αβ and β∼edge = β for handling edge and non-
edge pixels, respectively. As mentioned in Section 3.2, β is determined implicitly
by a relationship σ =

√
λ/β. To be clear, i-th iteration deconvolves with βi =

λ/σi
2, where λ i.e. the square of perturbed image’s noise level is fixed and σi

i.e. the denoising level decreases over iterations. In this work, we set σi as an
exponentially decreased sequence like

σi = σinit(
σend
σinit

)i/n (1)

where n is the number of iterations (for example, n = 30 in Fig.2; n = 8 in
UDN8; n = 10 in UDN10) and σ{init,end} = {49, 5} which is set empirically.
Therefore, βi increases at latter ADM layers to encourage the tendency to prior
regularization.

On the other hand, while βi is implicitly determined at each iteration, α needs
to be adjusted accordingly since the discrepancy of restored pixels between edge
and non-edge region increases during optimization process. Therefore, we set αi
as an exponentially decreased sequence that follows a relationship

αi = αinit(
αend
αinit

)i/n (2)

α{init,end} = 0.9− c{init,end}
σnoise − σmin
σmax − σmin

(3)

where σnoise is the noise level of perturbed image; σ{min,max} = {1%, 10%} is set
for the tested noise range in our experiment. The subtracting value c{init,end} =
{0.3, 0.6} are set by heuristics. Intuitively, when σnoise becomes high, the in-
terval between σinit and σend increases as well. Hence, for the solution on edge
and non-edge region, the discrepancy derived from ADM are emphasized, which
is designed under an intention to encourage edge preservation when noise are
dominant.
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S1.2 The Edge-Awareness Criterion

In this paper, an edge-awareness criterion is adopted to determine the edge region
from image I. It depends on the value of a multi-scaled Gaussian-smoothed edge
detector which takes the maximum of edge response over a set of Gaussian-
smoothed images Si = Gσi

⊗ I to detect edges on different scales, where Gσi
is

the Gaussian filter with scale σi and we set σ2
i = {0.5, 2.5, 10, 50}. In short, the

final edge response is defined as

E = max
i

{√
(∇xSi)2 + (∇ySi)2

}
(4)

where ∇. is a gradient operator along x or y direction. Those pixels with E
greater than a threshold (0.05) are be classified as edge, while others not.

S2 Combination of ADM and UDN results

In this section, we introduce a linear combination method to merge the restora-
tion results from the two proposed methods of the ADM and the UDN into a
single output.

S2.1 Motivated by Visual Outcomes

In our simulation like an example displayed in Fig. 1, we have already found the
introduction of ADMs into the iterative deconvolution process can successfully
alleviate the over-smoothness that generally observed in IRCNN [1]; thus, a
significant improvement is observed in our simulation results. On the other hand,
our second proposed framework, UDNs, rather restore more detail information
compared to ADM. However, the performance is not always superior than ADM
since the emergence of artifacts in smoothed regions.

(a) (b) 18.20dB/0.240

(c) 25.95dB/0.726 (d) 26.52dB/0.759 (e) 26.43dB,0.765

Fig. 1. A deblurring case in Set14[2]/Levin[3] dataset. (a) ground truth (b) noisy and
blurry observation (σ = 5%) and restoration outputs solved by (c) IRCNN [1] (d) ADM
and (e) UDN.
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By an empirical observation on patches shown in Fig. 2 and Fig. 3, we re-
gard the ADMs can preserve accurate structural information; for example, the
edges on flower structures and the borders between foreground and background.
However, as a trade-off, the restoration outputs have also lost a good portion of
details originally observed in ground truth. In contrast, UDNs especially excel on
restoring high frequency components like the fine textures on petals, but some
aliasing structures are also appeared in flat regions. Therefore, we merge two
outputs into one single image by weighted combination in frequency domain.

Fig. 2. Zoomed-in patches in (top) Fig. 1(a) and (bottom) Fig. 1(b).

Fig. 3. Zoomed-in patches in (top) Fig. 1(c), (mid) Fig. 1(d) and (bottom) Fig. 1(e)

S2.2 Method

With the aim to retrieve textural information from UDN and emphasize the
structural components which restored by ADM, we design a weighting mask
that places its minimum at the center and increase its values when closing to
the high frequency bands. The mask can be describes as (5) and a corresponding
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visualization is plotted in Fig. 4(a).

M(x, y) =
1

1 + exp

(
−
( √

x2+y2)√
(h
2 )

2+(w
2 )2
− 1

2

)) (5)

where x and y denote the coordinates which range from [−h2 ,
h
2 ] and [−w2 , w2 ].

The mask is designed in essence like a sigmoid function such that it gives 1/2
when input equals to 0, so that it tends to place equal weights on both outputs
in intermediate bands. One may also notes that the maximum and minimum are
fixed for any image size since the coordinates are normalized in advance. The
rationale is to prevent overly inclination to a specific output, which usually leads
to inferior restoration quality in our empirical studies. After a weighting mask
is determined, two outputs are combined as follows:

X(x, y) = F−1 {M(x, y)F{XUDN (x, y)}+ (1−M(x, y))F{XADM (x, y)}} (6)

where X, XADM and XUDN indicate the combined result, restoration outputs
from ADM and UDN, respectively. F(.) denotes the Fourier transform operator.
It is worth noting that the additional computational complexity is required by
merely 3 FFT operations, which implies

The corresponding combined results displayed in Fig. 4(b) and Fig. 5 have
achieved better performance than that of ADM or UDN on both PSNR and
SSIM. Especially, the textures on petals in Fig. 5 (a-b) are well preserved; the
artifacts in Fig. 5 (e) are mitigated as well.

(a) (b) 26.72dB/0.772

Fig. 4. (a) The mask M(x, y) used in combination and (b) the combined restoration
result.

(a) (b) (c) (d) (e)

Fig. 5. Zoomed-in patches in Fig. 4(b).
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S2.3 Quantitative Comparison

We have designed a simple and fast combination method that can not only merge
two restoration outputs effectively but also take advantages of both structural
and textural information. Besides, the preliminary result has shown a signif-
icant progress on restoration quality. Moreover, such an improvement is not
only observed in this single case, but also works in other simulation cases as
well; for example, the averaged PSNR and SSIM for Set14[2]/Levin[3] and Sun
et al.[4]/Pan et al.[5] (identical to the simulation dataset described in paper)
displayed in Table. 1 and Table. 2 have shown the superiority of ADM-UDN
combination. In general, ADM-UDN has significantly enhanced the restoration
quality at a wide range of noise levels. Even some of the performance is not
better than either that of ADM or UDN in specific circumstances, ADM-UDN
has a good ability to ensure a reasonable quality and only leads to neglectable
loss of performance in the end.

Table 1. Comparison on the Set14[2]/Levin[3] dataset.

σ IQA
IDD-
BM3D

IRCNN ADM UDN
ADM-
UDN

1%
PSNR 31.76 31.57 31.62 31.20 31.87
SSIM 0.879 0.876 0.879 0.869 0.884

3%
PSNR 27.79 27.63 27.84 28.12 28.32
SSIM 0.765 0.760 0.774 0.785 0.787

5%
PSNR 26.00 25.97 26.52 26.51 26.83
SSIM 0.705 0.697 0.718 0.729 0.733

10%
PSNR 23.80 23.99 24.49 23.84 24.48
SSIM 0.625 0.624 0.657 0.625 0.649

Table 2. Comparison on the Sun et al.[4]/Pan et al.[5] dataset.

σ IQA
IDD-
BM3D

IRCNN ADM UDN
ADM-
UDN

1%
PSNR 32.65 32.45 32.51 32.85 33.00
SSIM 0.887 0.880 0.884 0.900 0.901

3%
PSNR 28.73 28.59 28.84 29.36 29.43
SSIM 0.775 0.759 0.773 0.812 0.806

5%
PSNR 27.08 27.11 27.48 27.83 27.97
SSIM 0.714 0.704 0.724 0.757 0.753

10%
PSNR 25.22 25.34 25.91 25.92 26.18
SSIM 0.642 0.640 0.677 0.677 0.684
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S3 Additional Visual Results

S3.1 Additional Visual Comparison for Different Deconvolution
Methods

We provide additional visual comparison for several examples in Set14[2] and
Sun et al.[4] dataset. Both datasets have included a variety of scenes like pho-
tography of portraits, landscapes and buildings or illustrations to cover widely
scoped cases in practical situations. The results have shown latent clear images,
synthetic blurry and noisy images, outputs restored by representative methods
like a patch-based method (IDD-DM3D) [6] and a learning based plug-and-play
method (IRCNN) [1], and finally, our proposed ADM, UDN and ADM-UDN.
For all of the examples, our methods demonstrate evident improvement for de-
tail preservation as well as precise edge restoration.

(a) (b) 19.87dB/0.298 (c) 22.09dB/0.524 (d) 22.14dB/0.541

(e) 22.62dB/0.603 (f) 23.16dB/0.639 (g) 23.12dB/0.632

(a) (b) (c) (d) (e) (f) (g)
Fig. 6. A deblurring case in Set14 dataset [2]. (a) ground truth (b) noisy and blurry
observation (σ = 3%)(c) IDD-BM3D (d) IRCNN (e) ADM (f) UDN (g) ADM-UDN.
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