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In this document, we present a series of additional experiments showcasing
the effect of some parameters, visualize perturbed images via the gradient-ascent
technique, and discuss architecture and implementation details.

1 Extended Ablation Studies

1.1 Adversarially Perturbed Images

In Fig. 1 we show a few examples of images perturbed using our gradient-ascent-
based technique. The figure shows at the top row the original images, the mid-
dle row shows visualization of the perturbations, and bottom row shows the
perturbed images. We can see that the perturbed images do not show signifi-
cant visual artifacts or modifications compared to the original images. However,
as our experiments demonstrated, the perturbations are beneficial in improving
performance on tail classes.

1.2 BLT Reduces Confusion as Epochs Progress

We visualize in Fig. 3 how the most confusing categories for chow and stone
wall tail classes from ImageNet-LT evolve throughout different epochs when
using our proposed BLT. The y-axis of the visualizations show the epochs and
progress from top to bottom. On the x-axis we show the confusing category
indices. The visualization shows a white pixel when there is confusion and black
pixel otherwise. The reader should see the progression of the confusion in the
visualizations from top to bottom. The Figure shows on the left column the
confusion progression when BLT is not used, and on the right column when
BLTis used. We can observe that from epoch 0 to about epoch 20, the confusion
is present across different categories. After epoch 20 BLT (see right column)
the confusion overall decreases for both cases but BLT shows that only a few
categories remain as confusing (see how there are more black pixels on the right
column compared to the left one). This experiment shows that generating images
at every batch effectively reduces the confusion for few shot classes.
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Fig. 1: Visualization of gradient-ascent-based images. Top-row shows original images,
middle-row shows visualization of the perturbations calculated via the gradient-ascent
technique, and bottom row shows the hallucinated or perturbed images.

1.3 Minimum confidence value

Our gradient-ascent-based image generation requires a minimum confidence value
score as one termination criterion for the image generation step. Recall that an
image is being perturbed to be classified as a category c′ until the class score for
that category reaches a predefined threshold, e.g., sc′ ≥ Sc′ (I ′) or when the pro-
cess reaches 15 iterations. In Fig. 4 we show top-1 accuracy on the ImageNet-LT
dataset for our BLT method with different minimum confidence thresholds sc′ .
As we can see in Fig. 4, the higher the minimum confidence threshold is, the lower
the few-shot accuracy is (by up to 5.9% lower). Simultaneously, both the many-
shot and medium-shot performance slightly increase (by around 1%). Choosing
a single constant value (0.2 here) as a minimum confidence threshold vs one
drawn from a range of possible values (0.15-0.25) shows that the former method
yields higher few-shot accuracy (by 1.2%), but lower many- and medium-shot
performance (1% and 0.4% respectively) and lower overall accuracy. For that
reason we chose in our implementation the threshold to be between 0.15-0.25 as
it yields the highest overall accuracy, while simultaneously allowing for a high
few-shot accuracy.

1.4 Impact of batch size and learning rate

We are interested to see the impact of varying batch size and learning rate
combined when used in BLT. Table 1 shows the ablation study for different
batch sizes with two different learning policies. Based on the results, we can see
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Fig. 3: Comparison of confused categories (x-axis) throughout different epochs (y-axis)
when using BLT (right column) and without long-tail augmentation (left column). A
white pixel indicates confusion while a black pixel indicates no confusion. Top row
shows the results for chow category while the bottom row shows the results for stone
wall class; both classes are tail classes. We observe that before 20 epochs the confusion
is present across different categories. However, this confusion decreases after 20 epochs.
In particular, we observe that BLT reduces the confusion (there are more black pixels
compared to the left column).
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Fig. 4: Top-1 classification accuracy on ImageNet-LT for our BLT approach with dif-
ferent minimum confidence values used.

Table 1: Performance effect of BLT as a function of batch size and two different learning
policies. Left: results with the learning policy described in Section 2 (with starting
learning rates of 0.1, 0.01, and 0.1). Right: results when dividing the learning rates
by a factor of 10 (starting learning rates of 0.01, 0.001, and 0.01). Smaller learning rate
enables promotes gains in the many-shot accuracy over the few-shot accuracy while
maintaining a comparable few-shot accuracy.

Base learning rate Smaller learning rate

Batch size Many Medium Few Overall Many Medium Few Overall

256 41.6 33.4 26.3 35.5 36.2 25.3 20.5 28.8
128 40.8 33.0 25.4 34.9 42.0 31.0 22.8 34.1
64 39.9 32.9 25.9 34.6 45.5 33.6 22.8 36.6
32 33.4 27.8 27.0 31.0 46.8 35.5 22.6 38.0
16 22.7 17.2 21.4 20.0 44.1 34.3 21.3 36.2

that the smaller learning rate is more effective for smaller batch sizes with gains
of 7% and 16.2% in overall accuracy for batch sizes of 32 and 16, respectively.
In addition to that, we see that a smaller learning rate is responsible for an
increase in many- and medium-shot accuracy (higher for smaller batch sizes)
and a decrease in the few-shot accuracy. To mitigate this effect, we decided to
increase the fraction of tail classes to adversarially perturb images from p = 0.25
to p = 0.5. Table 2 presents the results of this experiment. Increasing p improved
the few-shot accuracy, while keeping the accuracy gains high for many- and
medium-shot classes due to the lower learning rate. This works best for smaller
batch sizes (e.g. batch size of 32 registers increase of 13% for many-shot classes,
6.9% for medium-shot and 7.1% overall compared to the base learning policy
results presented on the left side of Table 1).

1.5 Different network architectures

To support our claim that our proposed approach does not require a specific
architecture as a backbone - we have trained BLT on ImageNet-LT using six
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Table 2: Results for a smaller learning rate with a higher fraction of tail classes to
adversarially perturb (p = 0.5).

Batch size Many Medium Few Overall

256 35.6 24.6 22.7 28.6
128 41.3 30.0 25.5 33.7
64 44.6 33.0 26.3 36.5
32 46.4 34.7 27.0 38.1
16 41.2 32.4 24.6 34.6

Table 3: Top-1 accuracy comparison between a plain model + sampling baseline and
BLT for different architectures.

Plain + sampling BLT

Methods Many Medium Few Overall Many Medium Few Overall

EfficientNet-b0 29.1 25.2 16.5 25.5 33.1 27.3 24.3 29.1
ResNet-10 41.1 31.6 14.5 32.7 41.9 33.9 25.4 35.7
ResNet-18 47.3 34.2 14.4 36.3 47.9 36.1 26.1 39.2
ResNet-34 51.4 38.0 16.2 40.0 51.0 37.3 25.4 40.8
ResNet-152 41.1 34.8 16.8 35.0 48.0 39.5 29.8 41.4
DenseNet-121 53.4 39.2 17.9 41.5 54.3 41.7 28.9 44.7

different architectures. The results can be seen in the Table 3 comparing accuracy
for different architectures between the plain model + sampling baseline and BLT.
We can see that simply increasing the depth of the network does not help with the
few-shot accuracy for the baseline approach, whereas for BLT both the ResNet-
152 and the DenseNet-121 observe a significant increase in the few-shot accuracy
(13% and 11% respectively) compared to the baseline method. Moreover we can
observe, that the BLT keeps the many-shot and medium-shot accuracies the
comparable or higher w.r.t. to the baseline method.

1.6 Additional ablation studies

In Table 4 we present results for variants of BLT on ImageNet-LT dataset. We
substitute the Squashing-Cosine Classifier for a softmax classifier, add halluci-
nated images for all categories (instead of just for tail classes) and we modify
the sampling strategy to be uniform instead of oversampling the tail categories.
Both the uniform sampling and the BLT for entire batch result in higher many-
shot accuracy, but much lower few-shot accuracy. The change in the classifier
to softmax adds 0.5% accuracy to few-shot categories, but lowers all the other
more significantly thus showing the necessity of the squashing-cosine classifer.

Additional experiments performed on Places-LT dataset are present in Ta-
ble 5. They reflect the same experiments done on ImageNet-LT and shown in
Fig.3a of our main paper and described in the section Hallucinations vs Augmen-
tations. These experiments show consistently that substituting hallucinations for
augmentations (Augmentations) or removing them (Neither) in BLT result in a
deteriorated performance among few-shot categories.
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Table 4: Additional ablation studies for BLTon ImageNet-LT. All presented variants of
BLT show how delicate the balance between many- and few-shot accuracy is. BLT with
Squashing-Cosine Classifier, with the proposed balancer and augmenting only images
from tail classes (row 1 below) maintains the optimal balance. We show in bold and
blue the highest and the second highest accuracy, respectively.

Batch size Many Medium Few Overall

BLT 44.4 33.5 25.5 36.6
BLT with softmax 41.2 32.1 25.9 34.5
BLT for entire batch 46.1 35.1 19.0 37.0
BLT with uniform sampling 54.6 23.5 8.1 33.2

Table 5: Comparison of hallucinations vs augmentations on Places-LT. Results below
show the impact of hallucinations on the few-shot accuracy that cannot be substituted
by an oversampling with additional just augmented images.

Batch size Many Medium Few Overall

Plain model + sampling 37.8 13.0 0.8 19.3
BLT 31.0 27.4 14.1 25.9
Augmentations 32.4 27.1 8.2 25.0
Neither 32.3 27.5 8.6 25.2

2 Implementation Details

In our experiments we have used two different architectures: ResNet-10 for
ImageNet-LT and Places-LT datasets and ResNet-34 for iNaturalist 2018. Both
implementations follow a simple technique, where we remove the last fully-
connected layer and substitute it with a different fully connected layer - in this
case of dimensions 512 × 512 (same as Liu et al. [1]). On top of that we have
added the squashing-cosine classifier (with α = 20 and β = 0.5) as the final
layer. We train the network in two stages (both with the same architecture):
first for 35 epochs without data balancing (or with γ = 0) and without the
gradient-ascent image generation; and at the second stage for 55 epochs with
data balancing (γ = 0.9) and gradient-ascent image generation. We used SGD
optimizer with a momentum of 0.9, weight decay of 0.0005 and with an initial
learning rate of 0.1 for stage 1 and 0.01 for stage 2 for the backbone and of 0.1
for the squashing-cosine classifier. For stage 1 the learning rate drops by a factor
of 10 at epochs 25 and 32, and for stage 2 at epochs 23, 38 and 52.

3 Time analysis

To provide more in-depth information about the time efficiency of using per-
batch gradient ascent method for image generation, we measure the average
time it takes to run BLT per image, per batch, and per epoch. The results of
this experiments are shown in Table 6. We ran the experiments on a PC with 20
CPUs, 128 GB of RAM, and 1 Nvidia RTX 2080 Ti GPU. BLT is about 7 times
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Table 6: Time analysis for the training procedure on ImageNet-LT dataset between the
plain model with sampling baseline and BLT. Per image, batch, and epoch times show
the normalized training time in seconds, whereas the final row shows the total training
time. As the proposed method can be flexible and the user can decide to augment less
batches, or add BLT augmentation to only few epochs - we can see that the additional
time can be even smaller.

Time Plain + sampling BLT

Per image [s] 0.00109 0.00309
Per batch (256) [s] 0.28 0.852
Per epoch [s] 126 259
Total training time 3h 10min 7h 3min

more efficient than GANs as generating images for ImageNet-LT adds 3hrs and
53 mins to the regular 3hrs 10 mins training time for a vanilla CNN (compared
to additional 48 hrs to just train a GAN [2]). To show the impact of the BLT on
the training time in more detail, we also provide normalized times on per epoch,
per image, and per batch of size 256. As BLT augments the batch once - the
bigger the batch size, the more time efficient the training procedure will be, and
the BLT does not change the inference time at all.

References

1. Liu, Z., Miao, Z., Zhan, X., Wang, J., Gong, B., Yu, S.X.: Large-scale long-tailed
recognition in an open world. In: Proc. of the IEEE Conf. on Computer Vision and
Pattern Recognition. (2019)

2. Brock, A., Donahue, J., Simonyan, K.: Large scale gan training for high fidelity
natural image synthesis. arXiv preprint arXiv:1809.11096 (2018)


