
Progressive Batching for Efficient Non-linear
Least Squares - Supplementary Material

Huu Le1, Christopher Zach1, Edward Rosten2, and Oliver J. Woodford2

1 Chalmers University, Sweden
2 Snap, Inc., London & Santa Monica

A More Results on Dense Image Alignment

In this section, we provide additional results on the dense image alignment exper-
iment. Fig. A plots the evolution of 4 more image pairs in the ETH-3D dataset.
Note that L-BFGS performs poorly, hence we omit their results. We also show
an example of qualitative result in Fig. B.

Fig. A: Plots of objective vs. time for our method in comparison with LM on
dense image alignment.



2 H. Le et al.

Fig. B: Qualitative results for dense image alignment experiment. Top: Source
and target images. Bottom: Alignment result.

B Weak-Perspective Affine Bundle Adjustment

We also test the performance of our algorithm on small-scale affine bundle ad-
justment problems. The objective function can be written as

min
{Ri,ti},{Xj}

C∑
i=1

P∑
j=1

‖π(RiXj + ti)−mij‖2, (1)

where C is the number of cameras and P is the number of 3D points. The
parameters (Ri, ti) are respectively the rotation and translation that map a 3D
point X ∈ R3 from the world coordinate to the coordinate of i-th camera, and
mij is the 2D projection of the point Xj onto the image of camera i. Here we
use the weak-perspective affine model, i.e.,

π([x1, x2, x3]T ) =

[
x1
x̃3
,
x2
x̃3

]T
, (2)

where x̃3 is a fixed average depth. In our experiments, instead of using a single
average depth for all 3D points, we associate each point Xj with an average



ACCV-20 submission ID 126 3

depth x̃j , where x̃j is assigned with the initial depth of the point Xj and fixed
throughout the optimization process. Observe that, with this affine model, when
{Ri} and {ti} are fixed, the points can be solved in closed form. Therefore,
we employ variable projection [1] to first solve for the camera parameters, then
update the points using standard linear least squares. In this experiment, we
focus on settings where every 3D point is visible in all cameras, which is a com-
mon setting in e.g., several monocular SLAM applications. The “South Building”
dataset from the COLMAP package3 is used, where we extract 3 adjacent frames
and all 3D points that are visible in all extracted frames, resulting in a problem
instance containing 802 points in 3D and 2406 measurements. Fig. C (left) plots
the objective for conventional LM and our method. Observe that ProBLM also
offers favorable results. The same experiment is repeated for 5 views with 212
3D points, and the results is plotted in Fig. C (right). It can also be seen that
ProBLM converges faster (although LM has comparable performance in this case
because the number of 3D points is smaller than the case of three views shown
in the left figure).

0 2 4 6 8 10
Time (seconds)

0

500

1000

1500

2000

2500

3000

3500

O
bj

ec
tiv

e

ProBLM
LM

0.00 0.05 0.10 0.15
Time (seconds)

0

100

200

300

400

500

600

700

O
bj

ec
tiv

e

ProBLM
LM

Fig. C: Plots of objective of LM and ProBLM for bundle adjustment. Left: A
problem instance with with 3 views. Right: A problem instance with 5 views.

C Algorithm for Relaxed Condition

Algorithm A describes the relaxed version of our method (using Eq. (18)). In
Fig. D, we compare the performance of the standard condition (Eq. (13)) and
relaxed condition (Eq. (18)). As can be seen, the relaxed condition generally
offers better performance.

3 https://demuc.de/colmap/datasets/index.html



4 H. Le et al.

Algorithm A Relaxed ProBLM

Require: Initial solution θ(0), initial batch size K0, maximum iterations max iter

Require: Confidence level δ ∈ (0, 1), margin parameter α ∈ [0, 1), η
1: Randomly reshuffle the residuals {fi}
2: Initialization: t← 0, K ← K0, t0 ← 0.
3: while t < max iter and a convergence criterion is not met do
4: S(t) ← {1, . . . ,K}
5: Compute gS(t) and HS(t)

gS(t) :=
∑

i∈S(t)
J
(t)
i r

(t)
i HS(t) :=

∑
i∈S(t)

(J
(t)
i )TJ

(t)
i . (3)

and solve

∆θ(t) ← (HS(t) + λI)−1 gS(t) θ(t+1) ← θ(t) +∆θ(t) (4)

6: if fi(θ
(t+1))− fi(θ(t) ≥ 0 then

7: θ(t+1) ← θ(t), and λ← 10λ B Failure step
8: else
9: Determine current lower and upper bounds a and b, and set

U
(t0,t+1)
K ←

∑
i∈S(t)

max
{
a,
(
fi(θ

(t+1))− fi(θ(t0))
)}

. (5)

10: p← Random number between 0 and 1.
11: if UK satisfies Eq. (18) or p ≤ η then
12: λ← λ/10 B Success step
13: else
14: θ(t+1) ← θ(t) and increase K using Eq. (16). (with SK replaced by UK)
15: t0 ← (t+ 1)
16: end if
17: end if
18: t← t+ 1
19: end while
20: return θ(t)

D RANSAC vs. Robustified ProBLM

In Fig. E, we plot the number of inliers obtained using RANSAC and robustified
ProBLM of 5 randomly chosen image pairs from the ETH3D dataset. For every
image pair, each method is run 10 times with a fixed time budget (ProBLM is
initialized with random initializations), and the reported results are averaged
over 10 runs. As can be observed from Fig. E, within the same run-time budget,
ProBLM achieves competitive number of inliers without the need of RANSAC.
This suggests that our method has the potential of directly fitting the model
without requiring RANSAC as a pre-processing step, which is highly relevant
for many real-time applications.



ACCV-20 submission ID 126 5

Fig. D: Comparison between the two conditions. Left: Plots of objective vs. run
time for 20 runs. Right: Performance profile with a 10ms time budget, summa-
rized over 500 runs.

Fig. E: Number of inliers obtained after a fixed time budget of RANSAC and
robustified ProBLM.

References

1. Hyeong Hong, J., Zach, C., Fitzgibbon, A.: Revisiting the variable projection
method for separable nonlinear least squares problems. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. (2017) 127–135


