
Supplementary Materials

Cheng-Hsun Lei?, Yi-Hsin Chen?, Wen-Hsiao Peng, and Wei-Chen Chiu

National Chiao Tung University, Taiwan
{raygoah.cs07g, yhchen.iie07g}@nctu.edu.tw {wpeng, walon}@cs.nctu.edu.tw

1 Further Training Details

This section provides further training details. For a fair comparison, we follow
the settings in iCaRL [1]. On CIFAR-100, the learning rate starts from 2.0 and
is divided by 5 after 49 and 63 epochs. Moreover, 70 epochs are run in each
incremental training phase. Likewise, on ImageNet the learning rate starts from
2.0 and is divided by 5 after 20, 30, 40 and 50 epochs. Each training phase has
60 epochs. On both datasets, the optimizer is SGD and the batch size is 128.

2 Rectified Cosine Normalization

This section conducts a simulation to justify our rectified cosine normalization.
It is reported empirically in the main manuscript that using rectified cosine
normalization for training can better encourage the separation between classes.

Specifically, in evaluating the binary cross-entropy loss Lbce(xk), our rectified
cosine normalization computes the activation ai|k of an image xk for class i to
be ai|k = W̄T

i F̄k, while the cosine normalization in [2] uses ai|k = w̄T
i f̄k. The

bar indicates l2-normalization, Wi = (wi, bi) is formed by the concatenation of
the classification weight vector wi and an additional learnable bias bi; likewise,
Fk = (fk, 1) (referred to as the augmented feature representation) concatenates
the feature fk (referred to as the original feature representation) of the image
xk and a constant bias 1. Due to the l2-normalization, the activation ai|k is in
the range of [−1, 1]. We thus introduce a learnable η to control the curvature of
the sigmoid function σ(·):

σ(ai|k) =
1

1 + exp(−ηai|k)
. (1)

Fig. 1 illustrates the benefits of our rectified cosine normalization, taking
the 2-dimensional cases as examples. In these examples, each class has only one
trainable data fk (or Fk) and the corresponding class embedding wk (or Wk),
where fk, wk ∈ R2 and Fk,Wk ∈ R3. They are learned via the steepest descent
algorithm. Notably, fk (or Fk) is considered a parameter to be solved, with the
aim of simulating the ideal case where the feature extractor has enough capacity.
The first row presents the results of training with rectified cosine normalization
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Fig. 1. Comparison of our rectified cosine normalization (denoted as rectified-CN)
and the typical cosine normalization (denoted as CN) with different number of classes.
Dots in various colors represent the learned feature vector fk for class k, and the line
segment of the same color denotes the corresponding weight vector wk.

in the augmented feature space Fk = (fk, 1) with fk = (x, y) ∈ R2. Both the
learned features Fk and the class embeddings Wi = (wi, bi) are projected onto
the xy-plane for visualization and comparison. The second row corresponds to
the results of using typical cosine normalization, for which both fk and wi are
learned directly in the original feature space without augmentation. It is clear
to see that in the cases with 3 and 4 classes, both rectified cosine normalization
and typical cosine normalization work well. The features fk point in the same
direction as their class embeddings wk, as expected. We note that minimizing
the Lbce(xk) (equation (6) in the main manuscript) requires that (1) Fk should
be separated from the class embeddings Wi not of the same class (i.e. i 6= k) by
at least 90 degrees and that (2) the angle between Fk and Wk of the same class
should be smaller than 90 degrees and preferably be 0 degrees. These apply to
fk and wi learned directly in the original feature space. When the number of
classes is small, these requirements are easy to fulfill, be it in the 2-dimensional
original feature space or in the 3-dimensional augmented feature space. They
however become difficult to hold simultaneously in the 2-dimensional feature
space when the number of classes increases beyond 4. Intriguingly, in those cases,
the feature vectors of different classes may collapse into few modes, putting much
emphasis on the first requirement due mainly to the excessive amount of negative
examples (i.e. for a given fk, the number of class embeddings wi, i 6= k not of the
same class is much larger than the case i = k). In contrast, both requirements
can still hold in the 3-dimensional augmented feature space. We observe that
this is achieved by setting all bi’s to negative values and having Fk and Wk

(respectively, Wi, i 6= k) point in approximately similar directions (respectively,
in significantly different directions) when projected onto the xy-plane. The larger
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degree of freedom in adapting the class embeddings Wi to the two requirements
in the higher dimensional augmented feature space explains the generally better
separation between feature vectors fk with our rectified cosine normalization in
the lower dimensional original feature space.

3 Detail Formulation of Our Evaluation

We follow the common metrics in prior works [1,3,2] to evaluate the performance
of incremental learning; that is, incremental accuracy, average incremental accu-
racy. Furthermore, we additionally propose a metric called phase accuracy. The
details of these metrics are described as follows.

Incremental Accuracy. Let Aj,i be the average accuracy of classes learned
in phase i after training the network sequentially to phase j, where i < j.
Incremental accuracy is defined as Aj =

∑j
i=1Aj,i, which is the accuracy for

classifying all the seen classes at the end of training phase j. It is the most
commonly-used metric, but has the limitation of showing only the accuracy over
the seen classes as a whole without giving any detail of how the model performs
on separate groups of classes (learned incrementally in each phase).

Average Incremental Accuracy. Average incremental accuracy accumu-
lates the incremental accuracy, obtained from each training phase, up to the
current phase j and then takes the average, i.e. 1

j

∑j
i=1Ai.

Phase Accuracy. A model that learns well incrementally should present a
balanced distribution of Aj,i, i ∈ {1, ..., j}. Thus, we propose phase accuracy to
evaluate at the end of the entire incremental training to present the classification
accuracy on separate groups of classes (a group represents a phase in this thesis).
It provides a breakdown look at whether the model would favor some groups of
classes over the others as a result of catastrophic forgetting.

4 Adding 5 New Classes in Each Phase

Here we conduct more experiments based on almost the same setting as the one
in the main manuscript (i.e. CIFAR-100 and ImageNet datasets, two training
scenarios, memory size of 1000 and 2000, as well as the three evaluation metrics),
but now the number of new classes in each incremental phase is set to 5 (e.g. in
total 20 phases while training from scratch).

4.1 Incremental Accuracy Comparison

The quantitative evaluation results in terms of incremental accuracy are provided
in Fig. 2, while Table 1 particularly summarizes the results at the end of the
entire incremental-training.

Similar to the observations we have in the main manuscript, on CIFAR-
100 and ImageNet, when learning from scratch, our model outperforms all the
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(a) M : 1K, FS (b) M : 2K, FS (c) M : 1K, from 50 (d) M : 2K, from 50

(e) M : 1K, FS (f) M : 2K, FS (g) M : 1K, from 50 (h) M : 2K, from 50

Fig. 2. Incremental accuracy on CIFAR-100 (top row) and ImageNet (bottom row),
for memory sizes M = 1K, 2K and training scenarios “FS” and “from 50”. Average
incremental accuracy of each method is shown in parentheses.

Table 1. Comparison of incremental accuracy at the end of training

Training scenario from scratch from 50 classes

Dataset CIFAR ImageNet CIFAR ImageNet

Memory size 1K 2K 1K 2K 1K 2K 1K 2K

iCaRL [1] 31.8 37.7 42.7 47.9 42.5 49.4 47.4 52.8

End-to-End [3] 29.6 37.7 37.2 46.8 39.4 48.6 41.9 51.1

BIC [4] 28.8 37.8 38.9 46.9 40.2 46.6 43.3 51.2

Hou19 [2] 28.1 36.5 23.2 32.4 41.5 48.8 44.2 51.4

Mnemonics [5] 32.7 39.1 30.9 38.6 52.8 55.0 58.7 61.4

Ours 36.1 40.5 44.2 49.8 43.4 48.4 49.5 53.6

baselines with memory size 1000 and 2000. Also, we find again that Hou19 [2]
and Mnemonics [5] are unable to perform well when the feature extractor is
learned from scratch. When starting from 50 classes, ours performs compara-
bly to Mnemonics [5] and outperforms all the other baselines on ImageNet. On
CIFAR-100, our model performs comparably to the other baselines with memory
size 2000 and achieves the second highest incremental accuracy with memory size
1000. When starting from 50 classes, ours outperforms all the other baselines,
except Mnemonics [5], on ImageNet. On CIFAR-100, our model performs com-
parably to the other baselines with memory size 2000 and achieves the second
highest incremental accuracy with memory size 1000.

4.2 Phase Accuracy Comparison

Fig. 3 presents the phase accuracy for different methods with the training sce-
nario “from 50”, where the baselines perform more closely to our method in terms
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(a) M : 1K, from 50 (b) M : 2K, from 50 (c) M : 1K, from 50 (d) M : 2K, from 50

Fig. 3. Phase accuracy comparison: (a)(b) are results on CIFAR-100 and (c)(d) on
ImageNet. M is the memory size, and the model is pre-trained with 50 classes. The
mean absolute deviation in phase accuracy is shown in parentheses.

Table 2. Comparison of forgetting measure under the setting that learns 10 new classes
in each phase.

Training scenario from scratch from 50 classes

Dataset CIFAR ImageNet CIFAR ImageNet

Memory size 1K 2K 1K 2K 1K 2K 1K 2K

iCaRL [1] 24.6 20.6 22.3 20.6 24.6 20.4 24.1 20.4

End-to-End [3] 41.6 32.9 39.1 31.0 38.2 29.1 37.2 28.4

BIC [4] 37.3 28.6 36.1 31.4 33.5 26.4 33.9 27.3

Hou19 [2] 27.3 16.8 38.7 28.8 17.2 11.1 20.4 13.4

Mnemonics [5] 39.9 33.1 38.4 31.7 22.8 18.9 15.9 14.0

Ours 25.0 22.3 24.6 23.6 17.7 16.1 18.4 17.8

of incremental accuracy. Shown in parentheses is the mean absolute deviation
from the average of each method’s phase accuracy. The smaller the deviation, the
more balanced the classification accuracy is on different classes. From the figure,
our scheme is seen to achieve the minimum mean absolute deviation in phase
accuracy on CIFAR-100 and comparable mean absolute deviation to iCaRL [1]
and Mnemonics [5] on ImageNet.

5 Forgetting Measure

In this section, we present the results of forgetting measure [6] on every class
at the end of training, in order to understand to what degree the competing
methods forget the previously learned classes. Generally, the lower the forgetting
measure, the less the catastrophic forgetting. Table 2 summarizes the results for
the setting that learns 10 new classes in each training phase. It shows that
our method has low forgetting measure and performs comparably to iCaRL [1],
Hou19 [2] and Mnemonics [5].

Table 3 further provides the results for the setting of learning 5 new classes in
each phase. In this setting, the model needs to be updated more frequently and
tends to forget more easily what it has learned. On CIFAR-100, ours achieves
the lowest forgetting measure, when learning from scratch. Moreover, it has the
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Table 3. Comparison of forgetting measure under the setting that learns 5 new classes
in each phase

Training scenario from scratch from 50 classes

Dataset CIFAR ImageNet CIFAR ImageNet

Memory size 1K 2K 1K 2K 1K 2K 1K 2K

iCaRL [1] 34.5 29.4 34.1 30.6 32.7 26.7 36.3 30.5

End-to-End [3] 55.6 44.2 56.1 43.8 47.4 36.2 49.4 37.9

BIC [4] 50.4 40.9 54.6 45.7 43.2 35.9 48.5 39.9

Hou19 [2] 61.7 51.6 72.5 63.0 46.6 38.2 50.3 41.8

Mnemonics [5] 47.4 39.4 49.8 39.5 24.8 20.0 20.2 20.3

Ours 28.0 23.9 35.6 30.6 26.4 21.8 32.1 27.8

(a) M : 1K, FS (b) M : 2K, FS (c) M : 1K, from 50 (d) M : 2K, from 50

(e) M : 1K, FS (f) M : 2K, FS (g) M : 1K, from 50 (h) M : 2K, from 50

Fig. 4. Comparison of discrepancy measure D(p∗i|k, pi|k) on CIFAR-100 for memory
sizes M = 1K, 2K and training scenario “FS” and “from 50,” with the mean absolute
deviation in phase accuracy shown in parentheses. The bars in the top row are evaluated
by five random orderings of classes.

second lowest forgetting measure with the training scenario “from 50”. On Im-
ageNet, iCaRL [1] performs comparably to ours, when learning from scratch.
Since Hou19 [2] and Mnemonics [5] are unable to perform well when learning
from scratch, they suffer from serious catastrophic forgetting, showing large for-
getting measure. When learning from 50 classes, ours performs comparably to
Mnemonics [5] and outperforms the other baselines.

To sum up, our method has the ability to preserve well the knowledge of
old classes under various settings, while showing high incremental accuracy in
learning new classes and more balanced phase accuracy.

6 More Ablation Experiments

6.1 Symmetric vs. Asymmetric Discrepancy Measure D(p∗i|k, pi|k)

We argue in Sec. 3.1 of the main manuscript that an a∗i|k-symmetric discrepancy

measure is desirable. That is, D(p∗i|k, pi|k) is preferably symmetric with respect
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(a) M : 1K, FS (b) M : 2K, FS (c) M : 1K, from 50 (d) M : 2K, from 50

(e) M : 1K, FS (f) M : 2K, FS (g) M : 1K, from 50 (h) M : 2K, from 50

Fig. 5. Comparison of iCaRL with/without rectified cosine normalization and our
method on CIFAR-100 for memory sizes M = 1K, 2K and training scenarios ”FS”
and ”from 50,” with the mean absolute deviation in phase accuracy shown in paren-
theses. The bars in the top row are evaluated by five random orderings of classes.

to a∗i|k when viewed as a function of ai|k. To single out its benefits, we change our

distillation loss Ldist wE by replacing the D(p∗i|k, pi|k) in Eq. (3) with the binary

cross-entropy (BCE) between p∗i|k and pi|k, and setting γi|k = p∗i|k, while keeping

the other design aspects (including BCE as classification loss and rectified cosine
normalization) untouched. Note that these changes lead to a scheme (denoted
collectively as Ldist bce with our γi|k) that differs from ours only in adopting an
asymmetric discrepancy measure with respect to a∗i|k. From the top row of Fig. 4,

it is interesting to see that the replacement of D(p∗i|k, pi|k) = (log p∗i|k− log pi|k)2

with BCE does not show much impact on incremental accuracy. However, our
a∗i|k-symmetric discrepancy measure presents more balanced phase accuracy,

achieving smaller mean absolute deviations (cp. the bottom row of Fig. 4). This
highlights the fact that it allows our model to strike a better balance between
incremental accuracy and phase accuracy.

6.2 iCaRL with vs. without Rectified Cosine Normalization

This section investigates whether our rectified cosine normalization could also
benefit iCaRL [1]. Compared in Fig. 5 are iCaRL [1] with (denoted as Norm-
iCaRL) and without (denoted as iCaRL) rectified cosine normalization. Note
that the other design aspects of iCaRL remain the same. As a benchmark, our
scheme is also presented. A comparison between Norm-iCaRL and iCaRL in the
top row of Fig. 5 reveals that rectified cosine normalization does help improve the
incremental accuracy of iCaRL [1], reducing largely the performance gap between
ours and iCaRL [1]. However, without our weighted-Euclidean regularization,
both Norm-iCaRL and iCaRL [1] exhibit higher variations in phase accuracy
than ours (cp. the bottom row of Fig. 5).
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