

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044

MTNAS: Search Multi-Task Networks for Autonomous Driving Supplementary Material

Hao Liu¹, Dong Li², JinZhang Peng², Qingjie Zhao¹, Lu Tian², and Yi Shan²¹ Beijing Institute of Technology, Beijing, CHN {3120181007, zhaoqj}@bit.edu.cn² Xilinx Inc. Beijing, CHN {dong1, jinzhang, lutian, yishan}@xilinx.com

1 Overview

In this supplementary material, we present five sets of algorithm details and additional experimental results.

- We compared DARTS with our method by searching on different datasets.
- We show the performance improvement from the mixed datasets.
- We introduce the details of our final multi-task network.
- We present detailed quantitative evaluations on the mixed-set benchmark.
- We offer more results on different datasets.
- We provide a video demo to show qualitative results of our method.

2 More comparisons with DARTS

We compare the existing NAS method of DARTS with our method by searching on different datasets. Table 1 shows DARTS still obtains inferior performance compared to our MTNAS method in spite of reimplementing it by directly searching on the target datasets. We note that DARTS only optimizes one normal cell and one reduction cell for the entire network while MTNAS optimizes different cells for different branches and backbone. The results show the effectiveness of searching for task-specific branch architectures and task-shared backbone architecture.

Table 1. Comparisons with DARTS by searching on different datasets. We show mAP for detection and mIoU for segmentation on the mixed-set benchmark.

Methods	mAP (%)	mIoU (%)
DARTS (CIFAR10)	38.6	42.6
DARTS (ImageNet)	35.6	43.0
DARTS (Target)	38.3	44.5
MTNAS (Target)	43.7	46.2

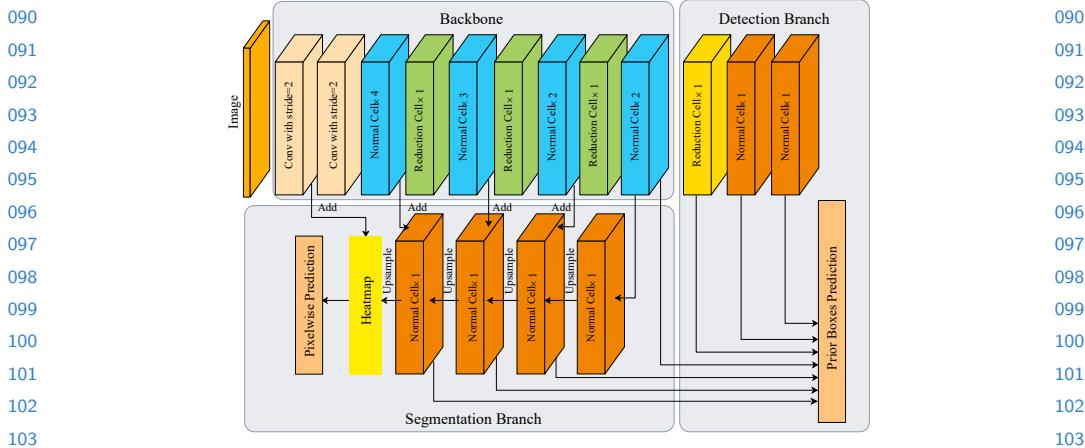
045 **3 Improvement from Mixed Data** 045
046

047 We conduct experiments in Table 2 to show the performance improvement
048 from the mixed datasets. Using mixed training data for detection (Waymo and
049 BDD100K) and segmentation (CityScapes and BDD100K), we can achieve im-
050 proved performance on either separate or mixed test sets for both tasks.

051
052 **Table 2.** Performance comparisons on the detection and segmentation tasks using
053 mixed or separate training data. W: Waymo. B: BDD100K. C: CityScapes.
054

Training		Test on Detection			Test on Segmentation		
Detection	Segmentation	W	B	W+B	B	C	B+C
W	B	38.9	-	-	38.4	-	-
W	C	39.2	-	-	-	40.9	-
B	B	-	39.5	-	38.0	-	-
B	C	-	40.4	-	-	41.1	-
W+B	B+C	39.8	42.0	40.2	42.7	44.7	44.2

067 **4 Network Details** 067
068


069 We show in Figure 1 our final multi-task network architecture searched on the
070 mixed set. For backbone, we stack 11 normal cells and 3 reduction cells. The
071 normal cells do not change the feature dimension while reduction cells reduce
072 the spatial size of feature maps by half and double the number of channels.
073 For branches, we stack several normal cells and reduction cells by adjusting the
074 kernel size, stride or amount of output channels in the input nodes. For the
075 network searched on the single set, we apply a similar stacking manner but add
076 two more normal cells after each reduction cell in the backbone.

078 **5 Quantitative Evaluations** 078
079081 **5.1 Mixed-set result** 081
082

083 We also present detailed per-class performance on the mixed-set benchmark in
084 Table 3 and 4. The mixed set includes 4 classes ³ for detection and 16 classes ⁴
085 for segmentation. The results show that we achieve consistent improvement for
086 all of classes on both detection and segmentation tasks.

087 ³ car, pedestrian, traffic sign, background

088 ⁴ road, sidewalk, building, wall, fence, pole, traffic light, traffic sign, vegetation, terrain,
089 sky, person, rider, car, motorcycle, bicycle

Fig. 1. Illustration of our final multi-task network searched on the mixed set.**Table 3.** Performance comparisons of per-class detection accuracy between the multi-task baseline and our MTNAS method on the mixed-set benchmark.

Methods	person	car	traf.sign	mAP
MTL baseline	30.1	59.3	30.1	40.2
MTNAS	35.4	64.3	31.3	43.7

Table 4. Performance comparisons of per-class segmentation accuracy between the multi-task baseline and our MTNAS method on the mixed-set benchmark.

Methods	road	sidewalk	build.	wall	fence	pole	traf.light	traf.sign	mIoU
MTL baseline	92.6	59.2	78.8	15.3	22.4	21.2	12.9	30.7	
MTNAS	93.9	61.8	80.5	16.4	24.1	22.7	13.8	32.7	

Methods	vege.	terrian	sky	person	rider	car	motor.	bicycle	mIoU
MTL baseline	79.4	30.0	91.0	46.2	6.2	84.8	5.6	37.0	44.2
MTNAS	80.7	31.7	91.8	49.7	7.4	86.7	7.3	37.3	46.2

5.2 CIFAR10 results

As we can see in Table 5, we search for the network on CIFAR-10 and get similar test error with the CARS method.

5.3 Compare with other NAS methods

We search for the multi-task network on VOC2012 for detection and CityScapes for segmentation with simiar FLOPs to other NAS networks, and results are in Table 6.

135 **Table 5.** Performance comparisons of different NAS methods on the CIFAR-10 bench-
136 mark.
137

Method	CARS	Darts	NASNet-A	Random Search	MTNAS
Test Error(%)	2.66	2.76	2.65	3.29	2.66

140 **Table 6.** Performance comparisons of different NAS methods on the VOC2012 and
141 CityScapes benchmark.
142

Method	mAP(%)	mIoU(%)	Search Time(GPU Days)
NAS-FCOS	81.8	-	28
DetNAS	80.1	-	68
Fasterseg	-	71.5	2
Squeezeenas-small	-	72.5	14.6
MTNAS	80.6	72.7	20

143 **5.4 Generality**
144145 We search for a multi-task network with BDD100K data and evaluate it on the
146 KITTI and CitygScapes benchmarks to assess its generality, and we achieve com-
147 parable results with the network which is searched with KITTI and CityScapes
148 data. Results are in Table 7.
149150 **Table 7.** Performance comparisons of architecture searched with different datasets and
151 evaluate on KITTI&CityScapes.
152

Search Datasets	mAP(%)	mIoU(%)
BDD100K	68.5	63.5
KITTI&CityScapes	68.8	63.4

164 **6 Qualitative Evaluations**
165166 We provide a demo to show the results of our MTNAS method on the BDD100K
167 validation videos. We include different autonomous driving scenes such as high-
168 way, downtown, night and rainy day. Our searched model costs 18 ms for each
169 forward propagation on average with an input image of 512×320 on a single
170 NVIDIA P100 GPU.
171

172

173

174

175

176

177

178

179