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Supplementary Material

A Data Association Algorithm

Algorithm 1 Data Association

Data: Known Tracks H = {H0,H1, · · · ,HN},
incoming detection D = {D0,D1, · · · ,DM}

Result: Update for Known Tracks H

1: M← ∅ . Initiliaze set of matched detections
2: U ← D . Initiliaze set of incoming detections
3: Compute cost matrix C = [ci,j ] using Eq. 4
4: P ← {Kalman Filter(Hi) | Hi ∈ H}
5: d (i, j)← Mahalanobis distances(Hi,Pj)
6: Compute gate matrix B = [bi,j ] using Eq. 5
7: M←M∪ {(i, j) | bi,j · ci,j > 0} . Apply Hungarian algorithm
8: U ← U \

{
j |
∑

i bi,j · ci,j > 0
}

9: H ← {Hk | (i, j) ∈M, k 6= i} ∪ {Hi ∪ xi | (i, j) ∈M}Dmax

10: H ← H∪ {HN+j | j ∈M}

The ablation study of the data assotiation algorithm is summarized in Tab. A.1.
The settings for the Kalman filter and Mahalanobis gating correspond to those
of DeepSORT[40].

Table A.1: Ablation analysis of data association components. MA, IoU, KF, MG stand
for Metric association, Intersection-over-Union, the Kalman filter, Mahalanobis Gating
components, respectively.

MA IoU KF MG FP ↓ FN ↓ IDs ↓ FP + FN + IDs ↓
X 9’849 340’193 3’861 353’903

X X 9’849 340’193 3’813 353’855

X X X X 9’909 340’282 2’800 352’991

B Processing Time of ODESA-based DBT Solutions

The average frame processing time for our ODESA-based DBT solutions are
summarized in Table B.1. The last column contains the average processing time
per frame. The distribution of the total processing time among the components
is provided as well. The number of detects affects considerably the processing
time of the data association stage. In this respect, our solution is similar to any
DBT method. The average number of detects in the case of CVPR’19 Tracking
Challenge was at least an order of magnitude higher compared to KITTI.
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Table B.1: Average frame processing time for ODESA-based DBT Solutions. The per-
centage of the total processing time is provided for each component.

Benchmark Detector Predictor
Embedding vector

extraction

Association

stage
Total time, s

CVPR19 - 64.0 % 5.8 % 30.2 % 0.606

KITTI pedestrian 96.7 % - 0.7 % 2.6 % 0.454

KITTI car 96.9 % - 0.7 % 2.5 % 0.480

Table C.1: Properties of CNN, which serve as embedding functions. MAC denotes the
number of multiply-accumulate operations. The inference latency shown in the last
column corresponds to the batch size of one processed by NVidia GTX 1050 Ti.

Method
Color

Space

Patch

Size

Embedding

Size
Parameters, M MACs4, M Latency, ms

HardNet++[27] GRAY 32x32 128 1.3346 39.32 1.15 ± 0.15

SOSNet[36] GRAY 32x32 128 1.3346 39.32 1.40 ± 0.27

AGW[30] RGB 256x128 2048 25.0768 4’083.39 11.55 ± 0.17

OSNet[32] RGB 256x128 512 2.5548 1’003.39 13.97 ± 0.25

MLFN[57] RGB 256x128 1024 33.2428 2’794.52 24.38 ± 0.45

HACNN[33] RGB 160x64 1024 3.6996 551.95 18.87 ± 0.28

TriNet[64] RGB 256x128 128 25.7384 2’275.51 13.48 ± 0.35

ODESA (Our)

GRAY 32x32 128 1.3357 39.09 1.89 ± 0.10

HSV 32x32 128 1.3363 39.68 1.96 ± 0.16

HSV 64x64 128 1.3641 98.96 2.19 ± 0.20

HSV 64x64 512 4.5106 102.11 3.50 ± 0.31

C ODESA Characterization

In Table C.1 we summarize the embedding function properties, which are rel-
evant to their practical application, for a number of models compared with
ODESA within this study. It is necessary to mention that our goal was to
achieve the maximal MOT performance using the minimal number of modifi-
cations introduced into L2-Net topology[28]. For this reason, our models cannot
be regarded as optimal from a practical point of view. Nevertheless, it is evident
from this table that regarding the number of operations ODESA models still
stay close to their LLFD origin. Regarding the CNN parameter count, a few
person Re-ID models turn out to be comparable with our heaviest option, which
is HSV64/512. With respect to the inference time, all ODESA models fit into
the range between SOSNet[36] and AGW[30], which is the fastest considered
person Re-ID model, while staying closer to its shorter limit.

Table C.2 extends the evaluation results introduced in Table 2 with additional
entries. Here the bottom rows, which contain the results for a number of selected
local keypoint and person Re-ID embedding functions, were brought to serve as
a reference. It is worth noticing that the maximal TPR@FAR0.1 value of 87.95
achieved by HSV64/512 model falls in the middle of the range from 82.1 to
94.8, which is reported by Wang et al. [25] for JDE models trained with the
cross-entropy loss. And it is twice as high as the values obtained by JDE models

4 MAC was regarded here as a combination of two operations, i.e. multiplication fol-
lowed by accumulation.
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trained with triplet loss. At the same time, HSV64--/128 model achieves the
highest TPR@FAR10e-6 value of 7.88%. This value exceeds by a factor of two
any result exhibited by the considered person Re-ID model.
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Table C.2: The validation results obtained according to the retrieval routine described
in Ref. [25]. In the case of ODESA models, the first column refers to the color space
and the size of the square input patch in pixels.

Model
Keypoint Embedding TPR@FAR, % ↑

Detector Size 10e-6 10e-5 10e-4 0.001 0.01 0.05 0.1

GRAY32 HPatches[26] 128 6.35 10.25 16.63 28.20 48.78 68.14 77.40

GRAY32 LF-Net[47] 128 7.72 12.38 19.80 32.24 51.79 69.40 77.58

GRAY32 HCKD 128 7.08 11.30 18.48 31.32 52.47 70.38 78.67

GRAY32 D2-Net[48] 128 7.18 11.46 18.80 31.82 52.60 71.10 79.59

GRAY64 D2-Net[48] 128 7.79 12.35 19.74 32.75 53.72 72.24 80.38

RGB64 HCKD 128 4.47 9.32 17.04 31.13 56.60 77.15 85.45

RGB64 LF-Net[47] 128 5.35 10.91 20.14 35.13 60.29 79.25 86.59

LUV64 D2-Net[48] 128 4.41 10.31 20.56 36.35 61.35 79.85 86.92

RGB64 D2-Net[48] 128 4.79 10.65 19.45 35.85 61.62 80.21 87.33

LAB64 D2-Net[48] 128 5.22 11.13 20.69 36.39 62.23 80.61 87.49

HLS64 D2-Net[48] 128 4.16 10.39 19.49 35.45 61.70 80.62 87.66

HSV32 HCKD 128 4.54 9.58 17.84 33.80 58.93 78.95 86.68

HSV32 LF-Net[47] 128 5.23 10.93 20.33 35.18 59.40 79.15 86.92

HSV32 D2-Net[48] 128 5.06 10.93 20.51 36.78 61.78 80.27 87.30

HSV64 LF-Net[47] 128 4.37 8.78 17.16 33.10 59.39 79.58 87.11

HSV64 D2-Net[48]+HCKD 128 3.80 9.55 18.59 35.20 60.85 79.97 87.15

HSV64 HCKD 128 3.53 7.99 16.76 33.87 60.77 79.94 87.41

HSV64 D2-Net[48] 128 4.76 12.01 21.81 37.34 62.37 80.87 87.87

HSV64+- D2-Net[48] 128 6.29 11.77 20.51 35.24 58.59 76.44 83.98

HSV64-+ D2-Net[48] 128 7.20 10.76 16.59 29.80 52.95 72.61 81.06

HSV64-- D2-Net[48] 128 7.88 10.53 16.21 29.27 50.04 67.80 76.00

HSV64 D2-Net[48] 64 4.27 10.12 19.19 35.56 60.66 79.33 86.54

HSV64 D2-Net[48] 256 4.74 11.05 22.13 38.61 63.11 81.12 87.91

HSV64 D2-Net[48] 512 4.65 10.59 20.70 36.37 63.67 81.35 87.95

HardNet++[27] HPatches[26] 128 7.80 11.66 17.60 28.04 46.04 63.43 71.84

SOSNet[36] HPatches[26] 128 7.31 10.79 16.38 27.05 47.88 66.92 75.60

TriNet[64] - 128 1.23 6.51 14.74 32.82 32.82 56.41 69.88

MLFN[57] - 1024 3.06 6.14 11.75 22.98 44.39 68.34 80.52

AGW[30] - 2048 2.79 5.24 9.74 19.00 40.10 68.22 80.65

OSNet[32] - 512 3.23 5.98 11.35 22.46 44.76 70.01 81.45

HACNN[33] - 1024 2.96 11.10 20.21 33.46 54.34 74.43 83.93

JDE[25] - 512 2.88 6.87 14.32 28.25 55.17 81.53 90.10
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D ODESA Properties

D.1 ODESA Object Representation

In this section, we would like to trace the evolution of the object representation
from LLFD to ODESA models. For this purpose, the features introduced in
Section 5.1 will be discussed. To facilitate the comparison, the following models
were selected: HardNet++[27], SOSNet[36], GRAY32/128, HSV32/128. All of
them accept 32x32 patches as their input and output 128-dimensional embedding
vectors projected on the unit hypersphere. Each model is represented by a row
in Fig. D.1.

Starting with the top two rows corresponding to HardNet++ and SOSNet
models, one could notice that the features depicted in the two left-most columns
are quite similar. Apart from certain particularities, the corresponding t-SNE
projections also exhibit essential agreement. The manifold extent perceived from
both Figs. D.1(b) and (e) agrees well with the data shown in Fig. 4 for Hard-
Net++ model. Unlike the case of HSV64/128, which is shown in Fig. 2(a), the
t-SNE projections of HardNet++ and SOSNet indicate that some manifolds get
split into a number of segments, e.g. the objects #364 and 132, or some in-
dividual elements become detached from the rest, e.g. the object #132. This
observation agrees with the presence of sharp maxima in Figs. D.1(c) and (f)
for a number of objects. Finally, each solid curve in Figs. D.1(b) and (e) ex-
hibit quite restricted variation along the vertical axis compared to the case of
Fig. 2(b).

Model GRAY32/128 differs from SOSNet solely by the utilization of our
own set of patches during training, see Section 3.2 for details. The loss func-
tion and CNN topology are identical. In the case of GRAY32/128, this set of
patches was converted to grayscale. This transition results in noticeable changes.
In the first place, the manifolds in t-SNE projection do not show any obvious
signs of abrupt evolution. The peaks, which are still observed in Fig. D.1(i),
become rather suppressed in comparison with HardNet++ and SOSNet mod-
els. Next, the manifold extent represented by the solid lines and the distance
to the nearest angle-wise neighbors get scaled down. Finally, t-SNE projections
corresponding to the objects #162 and 461 start to exhibit some structure. It is
also reflected by considerably broader intervals, where corresponding solid curves
vary in Fig. D.1(h).

The last option of HSV32/128 differs from GRAY32/128 by the preserved
color information and some minor modifications of CNN topology. Perhaps, the
latter factor could be disregarded, since the difference is negligible, see Tab. C.1
for details. Among obvious differences between these two models one could list
the following. The manifold extent in the former case gets further scaled down.
Some peaks in Fig. D.1(l) get significantly suppressed in comparison to their
counterparts shown in Fig. D.1(i). As for the comparison between HSV32/128
and HSV64/128, the former appears to already posess all essential features of
the latter. This observation is also supported by the data from Table C.1, where
these models achieve quite similar values. Single visible difference concerns a
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Fig.D.1. Object mapping into the metric space: (a-c) HardNet++[27], (d-f) SOS-
Net[36], (g-i) GRAY32/128, (j-l) HSV32/128. (a, d, g, j) t-SNE projections for all
embedding vectors corresponding to the objects depicted at the top. The distances
from a given sample embedding vector to (b, e, h, k) its furthest element of the same
manifold; (c, f, i, l) its two closest angle-wise neighbors halved. Best viewed in color.
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number of solid curves in Fig. 2(b), which tend to be smoother and, perhaps
for this reason, exhibit several narrow minima. The latter may be speculated to
serve as a sign of a rather developed manifold structure.

D.2 The Influence of Data Augmentation

It was mentioned in Section 5 that the utilization of random keypoint trans-
formations, as described in HPatches[26], considerably reduces the sensitivity of
our models to the patch periphery. Figure D.5 serves as another illustration of
this effect. As this augmentation technique tends to affect several aspects of re-
sulting embedding functions, we summarize some of them below. Along with the
random transformations of keypoints we also consider the utilization of random
patch flips during training as they expected to produce somewhat similar effects.

As another evidence of a strong effect from these two data augmentation
options, one could regard the results shown in Table C.2 for the set of mod-
els, which could be referred together to as HSV64**/128. Here the first asterisk
corresponds to the application of the random keypoint transformations, while
the second one represents the random patch flips. The ’-’ signs indicate dis-
abled option, whereas ’+’ or the sign absence stand for enabled one. From
the comparison between HSV64/128, which is equivalent to HSV64++/128,
and HSV64--/128, it is evident that the former model benefits significantly
from the data augmentation whenever FAR> 10−5. The intermediate options
of HSV64-+/128 and HSV64+-/128 indicate that the effect from the random
transformations of keypoint is stronger. At the same time, the opposite ten-
dency takes place for the FAR value of 10−6. Moreover, HSV64--/128 achieves
the highest TPR@FAR10e-6 value of 7.88% among all entries from Table C.2.
Perhaps, these results provide the best inside into the cause of such behavior
when considered along with the evolution of Dm(δx, δy) shown in Fig. D.2. The
data depicted in Fig. D.2(b), (c), and (d) were calculated according to Eq. 7 while
employing HSV64++/128, HSV64-+/128, and HSV64--/128 as embedding func-
tions f(·), respectively. The last two options make the minimum of Dm(δx, δy),
which corresponds to low (δx, δy) values, much narrower compared to the case of
our default augmentation routine, i. e. HSV64++/128. Such behavior is rather
typical as evident from Figs. D.3 and D.4. We assume the random transforma-
tions of keypoint scale and orientation to produce the effects similar to those
shown in Fig. D.2(b), (c), and (d), on condition that the distance between em-
bedding vectors is estimated as a function of scale factor or rotation angle. If
it is, indeed, the case, one could expect that narrower minima imply better dis-
crimination capability for corresponding embedding functions. At the same time
the models exhibiting broader minima shall show better generalization, i. e. be-
come less susceptible to object appearance variation. In our opinion, the results
for HSV64**/128 models presented in Table C.2 fit rather well into the picture
described above. On condition that this assumption is correct, the utilization of
random keypoint transformations could serve as an additional tuning parameter
for ODESA-like embeddings.
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Fig.D.2. The influence of the training routine on the distribution of misalingment
distances Dm(δx, δy) calculated according to Eq. 7. The following factors were con-
sidered: the random transformations of keypoint with respect to their position, scale
and orientation; and the utilization of random flips during training. (a) image patch,
which corresponds to the ground truth bounding box. Dm(δx, δy) corresponding to (b)
the default training routine, i.e. HSV64/128 model; (c) HSV64-+/128 model, where
the random transformations were excluded; (d) HSV64--/128, where both the random
transformations and flips were disabled. Best viewed in color.
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Fig.D.3. Examples of Dm(δx, δy) for the samples corresponding to pedestrian cate-
gory: Each set of examples contains from left to right: the content of the ground truth
bounding box; Dm(δx, δy) obtained by means of HSV64/128; Dm(δx, δy) produced by
HSV64--/128. Best viewed in color.
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Fig.D.4. Additional examples of Dm(δx, δy). Each row contains from left to right:
the content of the ground truth bounding box; Dm(δx, δy) obtained by means of
HSV64/128; Dm(δx, δy) produced by HSV64--/128. Best viewed in color.



Learning LFD for MOT 29

0.00

0.03

0.05

0.07

0.01

0.06

0.10

0.15

0.02

0.08

0.14

0.20

0.06

0.15

0.24

0.33

0.12

0.22

0.32

0.41

0.22

0.33

0.44

0.54

Fig.D.5. The influence of the occluder size s on Do(δx, δy) calculated using Eq. 6.
The top image represents the content of the ground truth bounding box. The rows
representing Do(δx, δy) correspond to the occluder size amounting 5%, 10%, 15%,
25%, and 35% of the bounding box height h. They are ordered from top to bottom.
The left column was produced by means of HSV64/128 model, which corresponds to
the default training routine. The right one was obtained using HSV64--/128, where
the random transformations of keypoints and flips were disabled during training. Best
viewed in color.


